
Under review as a conference paper at ICLR 2020

LEARN INTERPRETABLE WORD EMBEDDINGS EFFI-
CIENTLY WITH VON MISES-FISHER DISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Word embedding plays a key role in various tasks of natural language processing.1

However, the dominant word embedding model don’t explain what information2

is carried with the resulting embeddings. To generate interpretable word embed-3

dings we intend to replace the word vector with a probability density distribution.4

The insight here is that if we regularize the mixture distribution of all words to5

be uniform, then we can prove that the inner product between word embeddings6

represent the point-wise mutual information between words. Moreover, our model7

can also handle polysemy. Each word’s probability density distribution will gen-8

erate different vectors for its various meanings. We have evaluated our model in9

several word similarity tasks. Results show that our model can outperform the10

dominant models consistently in these tasks.11

1 INTRODUCTION12

Word embedding is a widespread technique in boosting the performance of modern NLP systems13

by learning a vector for each word as its semantic feature. The general idea of word embedding is to14

assign each word with a dense vector having lower dimensionality than the vocabularies’ cardinal-15

ity. In a qualified word embedding model, the vector-similarity tends to reflect the word-similarity.16

Therefore, feeding these vectors as features of words into the other NLP systems will always boost17

the performance of them in many downstream tasks (Turian et al., 2010; Socher et al., 2013).18

One such qualified model is the skip-gram with negative sampling (SGNS) model proposed in19

word2vec (Mikolov et al., 2013; Joulin et al., 2016), which is very popular in various NLP tasks20

with expressive performance. The SGNS model propose to represent each word with vectors and21

estimate these vectors by applying maximum likelyhood estimation method. It implicitly factorize22

a word-context matrix containing a co-occurrence statistic. This would assign each word wc in the23

vocabulary with a ”word” vector vc ∈ Rd and a ”context” vector uc ∈ Rd, so as to model the con-24

ditional probabilities p(wk|wc) separately for different words. By maximizing the log likelyhood of25

p(wk|wc), the SGNS model can estimate the ”word” vector and ”context” vector of each word.26

However, the SGNS model’s main problem is that it doesn’t build interpretable model for the em-27

beddings themself, and therefore, people don’t understand how word vectors can express useful28

information. For example, previous work emphasized that the inner product between one word’s29

”word” vector and another word’s ”context” vector represents the point-wise mutual information30

between the two words (Levy & Goldberg, 2014). However, people never use the ”word-context”31

inner product in practise. Instead, people will simply chose ”word” vectors as the word embeddings32

and drop the other one or vice versa. Therefore, we should care about the behaviour of ”word-word”33

or ”context-context” inner product, which are rarely analyzed and are never guaranteed to have any34

good properties.35

In this paper, we propose a variational inference based framework to learn more interpretable word36

embeddings. That is, we would estimate a probability density distribution for each word instead of37

estimating a vector from the training corpus. To be specific, we propose to replace the ”word” vector38

with a probability density distribution, namely the von Mises-Fisher (vMF) distribution, and keep39

the ”context” vector for each word. As what we will show in this paper, representing the word with40

a probability density distribution can result in more interpretable word embeddings. Besides, the41

probability density representations can provide other benefits too. For example, such representations42

can model the polysemy phenomenon when we train our model. To be specific, we can sample a43

1

Under review as a conference paper at ICLR 2020

Figure 1: Each word wc would generate a latent meaning vector v̂c, and then wk is picked by v̂c.

vector from the vMF distribution to represent the specific meaning of this word in a particular context44

during training.45

The main inspiration for this work is the analysis in Ma (2017)’s work, which can also be found in46

Arora et al. (2016)’s paper. They assumed that the word vectors would obey the uniform distribution47

over a sphere during the analysis. This assumption is critical in their analysis and yet it turns out to48

be wrong as reported by Mimno & Thompson (2017). In fact, the word frequency obey the Zipf’s49

law, which means that it’s impossible for word vectors to obey the uniform distribution when we50

represent each word by a vector. However, when we represent each word by a probability density51

distribution, it’s possible that the mixture distribution of all words is uniform if we adjust each52

word’s probability density distribution’s position and shape carefully.53

To estimate each word’s probability density representation, we need to adopt the Bayesian varia-54

tional inference technique, and this would result in a Bayesian version of SGNS model. We are55

not the first to propose a Bayesian version of word embedding model (Zhang et al., 2014; Sakaya56

et al., 2015; Barkan, 2017). Among them, the state-of-the-art model is the BSG model introduced57

by Bražinskas et al. (2017), and it is also the most related work with us. However, our model is dif-58

ferent from the BSG model in many aspects. The BSG model represents each word with a Gaussian59

distribution while we adopt the vMF distribution. It’s important to notice that the vMF distribution60

is defined over a unit hyper-sphere, which means that we will sample a unit vector for each word61

during training. Further more, the BSG model is based on the variational autoencoding framework62

(VAE). As reported by Davidson et al. (2018), it’s impossible for the native VAE to work well when63

the prior is defined over a hyper-sphere. In contrast, we didn’t adopt the VAE framework, and yet we64

would still talk about the reparameterization tricks. At last but not least, the BSG model focuses on65

how to build a more reasonable model using the VAE techniques, while we focus on how to generate66

more interpretable word embeddings using the vMF distribution.67

Our main contributions can be summarized as follows. First, we proposed to represent each word68

with a vMF distribution. Second, we generated highly interpretable word embeddings, and show69

that our model’s ”context-context” inner-product would represent the point-wise mutual information70

between words. At last, our word embeddings out-perform the dominant models and the state-of-71

the-art model in various tasks.72

2 OUR FRAMEWORK73

In this section, we intend to generate interpretable word embeddings by adopting the vMF represen-74

tation for each word. Specifically, we will show that the ”context-context” inner-product between75

word embeddings would represent the point-wise mutual information between words.76

2.1 MODEL DEFINITION77

The SGNS model intends to maximize the probability of a context word appearing around a center78

word. It assumes this probability is proportional to the inner product between two fixed vectors. In79

contrast, we assume that the probability of a context word appearing around a center word should80

be the average probability when the center word take different meanings. That is, we are suggesting81

a generative model as pictured in 1. Assuming there are T words wc in a training corpus, then for82

2

Under review as a conference paper at ICLR 2020

each word we would like to predict the possible words wk appearing around it within a K length83

word window. However, it’s hard to determine what exactly the current word wc means, therefore,84

we propose to take the average probability over all possible v̂c for each observed wk.85

The training objective of our model is to find vector representations and probability density repre-86

sentations for words that are useful for predicting the surrounding words in a sentence. Given a87

sequence of training words w1, · · · , wT , we are meant to maximize the average log likelyhood88

argmax
θ

1

T

T∑
t=1

K/2∑
j=−K/2

log

∫
p(wt+j |v̂t, wt; θ)p(v̂t|wt; θ)dv̂ + L(θ), j 6= 0, (1)

where θ is the set of all parameters to be optimized. What’s more, v̂t ∈ Rd denotes a vector89

representation for a patential meaning of wt, and p(v̂t|wt; θ) is the probability density representaton90

for wt. We sample v̂t according to p(v̂t|wt; θ). At last, p(wt+j |v̂t, wt; θ) denotes the probability of91

word wt+j appearing given v̂t, and L(θ) denotes the possible regularization term.92

Unfortunately, it’s intractable to calculate the integration in (1). Therefore, we propose to git rid of93

the integration by applying the jensen inequality considering that log is concate and we are doing94

maximization. By doing so, our model can be defined as95

argmax
θ

1

T

T∑
t=1

n∑
j=−n

E
v̂t∼p(v̂m

t |wt)
log p(wt+j |v̂mt , wt; θ) + L(θ), j 6= 0. (2)

More details can be found in the appendix. We will call the p(v̂mt |wt) as a prior for each word96

wt. Although the equation (2) is very similar to the ELBo in the standard varitional inference97

auto-encoder (VAE) technique, the actual meaning of it is quite different from ELBo. First, the ex-98

pectation term in (2) doesn’t involve a ”encoder” as what VAE would do. Second, the regularization99

term in (2) is also different from the VAE’s KL-divergence term, as what we will show.100

2.2 EXPECTATION TERM101

The most troublesome component of equation (2) is the epctation term. For each v̂t sampled from102

word wt’s prior, we choose the softmax function to calculate the odds of word wt+j appearing103

around it. That is, we can decompose the expectation term into104

E
v̂t∼p(v̂m

t |wt)
log p(wt+j |v̂mt , wt; θ) = E

v̂t∼p(v̂m
t |wt)

[
log

exp(u>t+jv̂t)∑|V |
i=1 exp(u

>
i v̂t)

]
, (3)

where ui ∈ Rd denotes the ”context” vector for word wi, and |V | is the cardinality of our vocabu-105

lary. As what’s been suggested in the SGNS model, we extend the negative sampling technique to106

our model to avoid the computation of the softmax function’s denominator. It’s worth to notice that107

different words would have different denominators in theory. We will use Zt to denote the denom-108

inator of word wt. According to the theory proved by Gutmann & Hyvärinen (2012), maximizing109

objective (3) is equivalent to minimizing110

E
v̂t∼p(v̂m

t |wt)

[
log σ(u>t+jv̂t) +NEi∼p(wi) log σ(−u

>
i v̂t)

]
, (4)

where ui is the context vector of word wi, and wi is the negative word sampled according to the111

empirical unigram probability p(wi). There are N negative samples.112

At last, we also need to sample v̂t, and we choose von Mises-Fisher (vMF) distribution to calculate113

the probability of wt taking this particular meaning. The vMF distribution is an analogy of Gaussian114

distribution over the unit sphere. It’s parameterized by a mean vector and a concentration parameter115

κ ≥ 0. For word wt, it’s corresponding mean vector vt can be interpreted as the vector repre-116

sentation for its average meaning. Formally, the probability of wt taking one particular meaning117

is118

p(v̂t|wt) = cd(κt) exp(κtv
>
t v̂t),

cd(κt) =
κ
d/2−1
t

(2π)d/2Id/2−1(κt)
,

(5)

where d is the dimension of embedding space and Id/2−1(·) denotes the modified Bessel function119

of the first kind Sra (2016).120

3

Under review as a conference paper at ICLR 2020

Figure 2: By adjusting the position and shape of each word’s vMF distribution, the mixture distri-
bution of all words can be uniform.

2.3 REGULARIZATION TERM121

We will introduce an regularization term in this subsection, and show that this term will link the122

”context-context” inner-product directly to the point-wise mutual information. The general idea is123

to regularize the mixture distribution of all words to be uniform, then we can achieve our goal. This124

can be done by simply applying the maximum entropy algorithm which would result in a uniform125

distribution naturally. Therefore, the regularization term we are seeking for is126

argmax
θ

p(v̂) log p(v̂),

where p(v̂) =
∑|V |
i=1 p(wi)p(v̂|wi).

(6)

Objective (4) + (6) is the final objective that we want to optimize. We claim that by doing so, for
each pair of words wc and wk, we have

u>k uc
d
≈ PMI(wk, wc) := log

(
p(wk, wc)

p(wk)p(wc)

)
,

where PMI(wk, wc) is called the point-wise mutual information (PMI) between word wk and word127

wc, and p(wk, wc) denotes the probability for them to appear in the same word window.128

Before we show why our claim holds, we would like to emphasize why PMI is important. PMI indi-129

cates how much more possible that word wk, wc co-occur than by chance (Church & Hanks, 1990).130

Then, people developed the notion of word window to help define when two words ”co-occur”, i.e.,131

wk and wc co-occur, only when they appear in the same word window. Most of the word embedding132

model will take advantage of such co-occurrence statistics. Indeed, the PMI evaluated from co-133

occurrence counts has a strong linear relationship with human semantic similarity judgments from134

survey data (Hashimoto et al., 2016). In conclusion, it’s reasonable to relate word embedding with135

the point-wise mutual information.136

Then, we will show how to link the ”context-context” inner-product directly to the PMI by two steps.137

The first step is to show that138

log p(wk, wc) ≈ ‖uk+uc‖22
2d − 2 log(Z),

log p(wk) ≈ ‖uk‖22
2d − log(Z),

log p(wc) ≈ ‖uc‖22
2d − log(Z),

(7)

where Z is the constant that most Zc approximate to. This is a conclusion proved by Ma (2017).
The second step is quite obvious because

PMI(wk, wc) = log p(wk, wc)− log p(wk)− log p(wc) ≈
u>k uc
d

.

4

Under review as a conference paper at ICLR 2020

We will show (7) by a series equations briefly, and reveal why the regularization term is very impor-139

tant. More details can be found in the appendix. We start with p(wk, wc)140

p(wk, wc) =
|V |∑
i=1

p(wi)p(wk, wc|wi)

=
|V |∑
i=1

p(wi)p(wk|wi)p(wc|wi)

= E
i∼p(wi)

p(wk|wi)p(wc|wi)

= E
i∼p(wi)

∫
eu
>
k v̂′i
Zi

p(v̂′i|wi)ds′
∫
eu
>
c v̂i

Zi
p(v̂i|wi)ds

≈ 1
Z2 E

i∼p(wi)

∫ ∫
eu
>
k v̂′ieu

>
c v̂ip(v̂′i|wi)p(v̂i|wi)dsds′

≈ 1
Z2 E

i∼p(wi)

∫
exp

[
(uk + uc)

>v̂i
]
p(v̂i|wi)ds

= 1
Z2

|V |∑
i=1

p(wi) ∗
{∫

exp
[
(uk + uc)

>v̂i
]
p(v̂i|wi)ds

}
= 1

Z2

∫
exp

[
(uk + uc)

>v̂
] [∑|V |

i=1 p(wi)p(v̂|wi)
]
ds

= 1
Z2

∫
exp

[
(uk + uc)

>v̂
]
p(v̂)ds

= 1
Z2 E

v̂∼p(v̂)

{
exp

[
(uk + uc)

>v̂
]}

= 1
Z2Ex∼N (0,‖uk+uc‖22/d){exp(x)}

≈ 1
Z2 exp

(
‖uk+uc‖22

2d

)
.

(8)

Step ten is why we need a regularization term, but before that, we would like to explain all the141

equations above. The first step of (8) says that wk and wc co-occur iff they appear in another word142

wi’s word window together. This is true for the Skip-gram model. The second step is also true143

when we considering the definition of p(wk|wi) and p(wc|wi) in the Skip-gram model. Step four144

is just by definition and we use slightly different notations here to indicate that v̂i, v̂′i are different145

variable. Step six is a strong claim which needs rigorous prove. We put this prove in the appendix.146

The key insight is that v̂i, v̂′i obey the same vMF distribution, which means that when this vMF is147

concentrate enough, then the probability of v̂i, v̂′i being very different is small. In the eighth step, we148

omit i to emphasize that every word can generate the same vector v̂ and that’s why the summation149

and integration can exchange with each other in this way.150

If we regularize the v̂ to be uniformly distributed over the unit sphere in step ten, then (uk +uc)
>v

will obey Gaussian distribution approximately (Ma, 2017). This means that step eleven holds. More
details can be found in the appendix. The last step is the result of a famous calculation practise

Ex∼N (0,σ2){exp(x)} = exp(σ2/2).

Obviously, by replacing the ”word” vector with the vMF distribution, we can eliminate the assump-151

tion that p(wi) being uniform.152

2.4 REPARAMETERIZATION TRICK153

There is one problem to solve before our model becomes practical. p(v̂t|wt) is difficult to optimize154

because the operation of sampling is nondifferentiable. We can solve this problem by applying the155

reparameterization trick. The vMF distribution’s reparameterization trick is usually discussed in156

the context of hyperspherical variational auto-encoders (Davidson et al., 2018; Xu & Durrett, 2018;157

Guu et al., 2018). To simplify our model, we propose to fix the concentration parameter κt as a158

constant during training for each word wt. This is because the gradient estimation of κ is complex159

and computational expensive.160

When it comes to each word wt’s mean vector vt, we follow the technique used in Xu & Durrett’s
work. Firstly, we sample an auxiliary random variable ω according to the rejection sampling scheme
of Wood (1994). The distribution of ω is controlled by κ. Specifically, the probability of ω being
sampled is

p(ω;κ) ∝ exp(ωκ)(1− ω2).

5

Under review as a conference paper at ICLR 2020

Figure 3: The illustration about our reparameterization trick.

Then we draw our v̂t in the following way

v̂t = ωvt + z
√
1− ω2,

where z is a random unit vector and is tangent to the unit sphere Sd−1 at vt. Figure 3 illustrates the161

geometric vision. Because of applying this trick, we can take gradient with respect to vt as usual.162

2.5 FINAL ALGORITHM163

Putting all the details together, we have the following objective to minimize

log σ(u>k v̂) +NEi∼p(wi)

[
log σ(−u>i v̂)

]︸ ︷︷ ︸
L1

− p(v̂) log p(v̂)︸ ︷︷ ︸
L2

,

164

where v̂ = ωvc + z
√
1− ω2, ‖vc‖2 = 1

ω ∼ p(ω;κc) ∝ exp(ωκc)(1− ω2),
‖z‖2 = 1, z is tangent to Sd−1 at vc,
p(v̂) =

∑|V |
j=1 p(wj)p(v̂|wj)

p(v̂|wj) = cd(κj) exp(κjv
>
j v̂),

cd(κj) =
κ
d/2−1
j

(2π)d/2Id/2−1(κj)
.

(9)

Based on our final model, we propose algorithm (1) to train the word embeddings. The for loop165

started from line 1 controls how many times we will go through the entire training corpus. Then, for166

each epoch, we would iterate over each word in the corpus as what the for loop in line 2 suggests. In167

line 3, we will take wc’s mean vector vc and concentrate parameter κc from dictionaries. The third168

layer of for loop will iterate over all the words in a word window centered around wc. For each word169

wk in this word window, we will take its context vector uk from the dictionary, and sample a v̂ from170

wc’s prior with the help of our reparameterization trick (line 5 to line 6). Then form line 7 to line171

10, we will sample N negative samples for each wk, and then calculate the gradients of L1. From172

line 11 to line 13, we will calculate L2 based on the v̂, and update all word’s prior accordingly.173

noend 1 PDF (N,ui,vi, κi, p(wi), i = 1, · · · , |V |)
1: for epoch in epochs do
2: for wc in corpus do
3: vc ← {vi}i=1,··· ,|V |, κc ← {κi}i=1,··· ,|V |
4: for wk in Window(wc) do
5: ω ∼ p(ω;κc), z ∼ U(Sd−2)
6: v̂← ωvc + z

√
1− ω2, uk ← {ui}i=1,··· ,|V |

7: for i in range(N) do
8: wi ∼ p(wi), ui ← {ui}i=1,··· ,|V |
9: L1 ← L1(uk,ui, v̂)

10: Update vc,uk according to L1’s gradient.
11: L2 ← L2({vj}j=1,··· ,|V |, v̂)
12: for j in range(|V |) do
13: Update vj according to L2’s gradient.

6

Under review as a conference paper at ICLR 2020

Model Embedding WS353 WS353-SIM WS353-REL RG65 MEN
SGNS context 0.5648 0.6184 0.4832 0.491 0.479
GloVe context 0.5686 0.6219 0.4864 0.4959 0.4921
Ours context 0.6378 0.6932 0.5961 0.522 0.646

SGNS word 0.6606 0.7071 0.6237 0.669 0.676
GloVe word 0.6436 0.7085 0.5865 0.6606 0.666
Ours mean 0.6637 0.7444 0.6404 0.596 0.68

Table 1: Results on the word similarity tasks.

3 EXPERIMENTS174

We will now experimentally validate our embedding by comparing the performance of our model175

with the dominant word embedding models on the word similarity tasks. Subsection 3.1 presents all176

the experiment settings for different training corpus and different word embedding models. Subsec-177

tion 3.2 introduces several word similarity benchmarks, and how we evaluate model’s performance178

on them. Subsection 3.3 compares our model with the STOA model on several benchmarks.179

3.1 EXPERIMET SETTINGS180

We use part of massachusetts bay transportation authority (mbta) web crawled corpus because it181

is well cleaned and is large enough. The mbta corpus contains about 600 million tokens. We182

preprocessed all corpora by removing non-English characters, numbers and lower-casing all the183

text. The vocabulary was restricted to the 100K most frequent words in each corpus.184

We trained embeddings using three methods: word2vec Mikolov et al. (2013), GloVe Pennington185

et al. (2014), and our model. This is because these models are implemented with C/C++, and186

therefore are fast enough to be evaluated on mbta corpus. For fairness we fix all hyperparameters187

for word2vec, GloVe and our model. Specifically, we trained for 5 epochs for each model using 75188

threads for parallel computation; the word embedding dimension is 100; the window size is 5.189

For the word2vec, and our model, the negative sampling number is 5; We adopt the Hogwild! algo-190

rithm to train models, and the learning rate decays linearly from 0.0025 to 0. The noise distribution191

is set as the same as used in Mikolov et al., pn(w) ∝ p(ww)
0.75. We also use a rejection threshold192

of 10−4 to subsample the most frequent words.193

For the GloVe model, we follow the original inplementation’s default settings for the other hyperpa-194

rameters. This means the initial learning rate is 0.05.195

We also use the news corpus1 with about 15 million tokens to evaluate the BSG model. This is196

because the original implementation of BSG is based on theano, and it’s slow to be trained on the197

mbta corpus. Given the small volume of this corpus, we trained for 25 epochs for each model using198

12 threads. we also restrict each model’s vocabulary to be 10K. For both the BSG, word2vec and199

our model, we set the negative number to be 10; the window width is 10.200

3.2 PERFORMANCE EVALUATION201

We test the quality of the word embeddings by checking if our word embeddings agree with the202

human judgement on word similarity / relatedness.203

For the mbta corpus, we test the performance of our embeddings on three benchmarks: the Word204

Similarity353 data set Finkelstein et al. (2002), the RG65 data set Luong et al. (2013), and the MEN205

data set Bruni et al. (2014). Taking the WS353 data set for example, it contains 353 word pairs along206

with their similarity scores assigned by 29 subjects. These subjects possessed near-native command207

of English and they are instructed to estimate the relatedness of the words in pairs on a scale from 0208

to 10. During experiments, we will cumpute the Spearman’s rank correlation coefficient Spearman209

(1904) between human judgement and the inner product between the vector representations. The210

larger this coefficient is, the better this embedding is and the mximume value is 1. Some words in211

1 https://drive.google.com/file/d/1QWC2x6qq8KyHFUCgyvVJJoGHexZrw7gO/view

7

Under review as a conference paper at ICLR 2020

Datasets Ours BSG GloVe SGNS
MC-30 0.6190 0.5818 0.4524 0.4524

MEN-Tr-3k 0.4905 0.3937 0.3607 0.5182
MTurk-287 0.5343 0.5147 0.3334 0.5351
MTurk-771 0.4221 0.3693 0.2647 0.4177

RG65 0.5727 0.6036 0.3455 0.4000
RW-STNFRD 0.4172 0.3830 0.2710 0.3725
SIMLEX-999 0.2110 0.1717 0.1914 0.2339

VERB-143 0.3127 0.1371 0.0712 0.2376
WS353-ALL 0.4567 0.4350 0.2379 0.4387
WS353-Rel 0.3485 0.4197 0.1583 0.3591
WS353-SIM 0.6070 0.5018 0.3277 0.5549

Table 2: Results on the word similarity tasks.

these testing datasets do not appear in our training corpora, and this means we can’t calculate the212

inner product between vectors for those words. In order to provide comparable results, we propose213

to use the mean vectors of the rest words for these missing words. Also, the mean vector of each214

word’s prior is similar to the ”word” vector in the SGNS model, and we also test the performance of215

this vector too.216

We also evaluate the performance over more Benchmarks. Table 2 presents similarity results com-217

puted using the online tool of Faruqui & Dyer (2014). Since the BSG model can only generate the218

mean vectors from its prior, we only evaluate the ”word” or mean vectors in these experiments.219

3.3 COMPARE WITH THE DOMINANT MODELS220

Table 1 shows the results on these benchmarks. As we can see, our ”context” word embedding can221

constantly outperform the counterpart of the dominant word embedding models by a large margin.222

This is exactly what we expect according to our theory. It’s interesting that the ”word” vector of our223

model can still outperform ours ”context” vector. Another exception is that on the RG65 test set, the224

SGNS model can outperform our model by a large margin. We argue this may be caused by its bias225

– it only contains 65 noun pairs after all. Besides, our model’s ”context” vector can still outperform226

SGNS on this test set.227

Also, the gap between the ”context” vectors and the ”word” vectors in our model is much smaller228

than the dominant models’ gaps. These results demonstrate that our model is more specific about229

which part of our embedding contains the useful information.230

3.4 COMPARE WITH THE BSG MODEL231

First, we observe that our model can out-perform the BSG model for almost every task except for the232

RG65 data set as before. Although the BSG model can perform better than our model in the WS353-233

Rel data set, we would like to point out that this data set is a subset of WS353-ALL. Therefore, this234

may also be caused by the bias of small data set. Second, the performance of BSG model is weaker235

than the SGNS model for some data sets. Given that we used their released implementation directly,236

this may be the result of small training data set, i.e., the SGNS model may perform better in the case237

of small training data set because of its simplicity.238

4 CONCLUSIONS239

We generated interpretable word embeddings by represent each word with a von Mises-Fisher dis-240

tribution. We have demonstrated that our word embeddings can be linked to the point-wise mutual241

information directly without making any unrealistic assumptions. The experiments over different242

training and testing data sets demonstrate that our model can outperform both the dominant and the243

STOA models. We argue that our insight into the interpretable word embeddings is important. For244

example, as we are sure that the unit word vectors can encode the semantic similarity between words,245

it’s possible to encode the syntactic information between words into the norm of word vectors.246

8

Under review as a conference paper at ICLR 2020

REFERENCES247

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model248

approach to pmi-based word embeddings. Transactions of the Association for Computational249

Linguistics, 4:385–399, 2016.250

Oren Barkan. Bayesian neural word embedding. In Thirty-First AAAI Conference on Artificial251

Intelligence, 2017.252

Arthur Bražinskas, Serhii Havrylov, and Ivan Titov. Embedding words as distributions with a253

bayesian skip-gram model. arXiv preprint arXiv:1711.11027, 2017.254

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. Multimodal distributional semantics. Journal of255

Artificial Intelligence Research, 49:1–47, 2014.256

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and lexi-257

cography. Computational linguistics, 16(1):22–29, 1990.258

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspheri-259

cal variational auto-encoders. arXiv preprint arXiv:1804.00891, 2018.260

Manaal Faruqui and Chris Dyer. Community evaluation and exchange of word vectors at wordvec-261

tors. org. In Proceedings of 52nd Annual Meeting of the Association for Computational Linguis-262

tics: System Demonstrations, pp. 19–24, 2014.263

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and264

Eytan Ruppin. Placing search in context: The concept revisited. ACM Transactions on informa-265

tion systems, 20(1):116–131, 2002.266

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical267

models, with applications to natural image statistics. Journal of Machine Learning Research, 13268

(Feb):307–361, 2012.269

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Generating sentences by270

editing prototypes. Transactions of the Association for Computational Linguistics, 6:437–450,271

2018.272

Tatsunori B Hashimoto, David Alvarez-Melis, and Tommi S Jaakkola. Word embeddings as metric273

recovery in semantic spaces. Transactions of the Association for Computational Linguistics, 4:274

273–286, 2016.275

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient276

text classification. arXiv preprint arXiv:1607.01759, 2016.277

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Ad-278

vances in neural information processing systems, pp. 2177–2185, 2014.279

Thang Luong, Richard Socher, and Christopher Manning. Better word representations with recursive280

neural networks for morphology. In Proceedings of the Seventeenth Conference on Computational281

Natural Language Learning, pp. 104–113, 2013.282

Tengyu Ma. Non-convex Optimization for Machine Learning: Design, Analysis, and Understanding.283

PhD thesis, Princeton University, 2017.284

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-285

tations of words and phrases and their compositionality. In Advances in neural information pro-286

cessing systems, pp. 3111–3119, 2013.287

David Mimno and Laure Thompson. The strange geometry of skip-gram with negative sampling. In288

Empirical Methods in Natural Language Processing, 2017.289

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word290

representation. In Proceedings of the 2014 conference on empirical methods in natural language291

processing (EMNLP), pp. 1532–1543, 2014.292

9

Under review as a conference paper at ICLR 2020

Joseph Hosanna Sakaya et al. Scalable bayesian induction of word embeddings. 2015.293

Richard Socher, John Bauer, Christopher D Manning, et al. Parsing with compositional vector294

grammars. In Proceedings of the 51st Annual Meeting of the Association for Computational295

Linguistics (Volume 1: Long Papers), pp. 455–465, 2013.296

Charles Spearman. The proof and measurement of association between two things. American297

journal of Psychology, 15(1):72–101, 1904.298

Suvrit Sra. Directional statistics in machine learning: a brief review. 2016.299

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method300

for semi-supervised learning. In Proceedings of the 48th annual meeting of the association for301

computational linguistics, pp. 384–394. Association for Computational Linguistics, 2010.302

Andrew TA Wood. Simulation of the von mises fisher distribution. Communications in statistics-303

simulation and computation, 23(1):157–164, 1994.304

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. arXiv305

preprint arXiv:1808.10805, 2018.306

Jingwei Zhang, Jeremy Salwen, Michael Glass, and Alfio Gliozzo. Word semantic representations307

using bayesian probabilistic tensor factorization. In Proceedings of the 2014 Conference on Em-308

pirical Methods in Natural Language Processing (EMNLP), pp. 1522–1531, 2014.309

10

	Introduction
	Our framework
	Model definition
	Expectation term
	Regularization term
	Reparameterization trick
	Final algorithm

	Experiments
	Experimet Settings
	Performance Evaluation
	Compare with the dominant models
	Compare with the BSG model

	Conclusions

