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ABSTRACT

Autonomous driving is still considered as an “unsolved problem” given its inher-
ent important variability and that many processes associated with its development
like vehicle control and scenes recognition remain open issues. Despite reinforce-
ment learning algorithms have achieved notable results in games and some robotic
manipulations, this technique has not been widely scaled up to the more challeng-
ing real world applications like autonomous driving. In this work, we propose a
deep reinforcement learning (RL) algorithm embedding an actor critic architec-
ture with multi-step returns to achieve a better robustness of the agent learning
strategies when acting in complex and unstable environments. The experiment is
conducted with Carla simulator offering a customizable and realistic urban driv-
ing conditions. The developed deep actor RL guided by a policy-evaluator critic
distinctly surpasses the performance of a standard deep RL agent.

1 INTRODUCTION

An important approach for goal-oriented optimization is reinforcement learning (R L) inspired from
behaviorist psychology (Sutton & Barto,2018). The frame of RL is an agent learning through inter-
action with its environment driven by an impact (reward) signal. The environment return reinforces
the agent to select new actions improving learning process, hence the name of reinforcement learning
(Jaafra et al.,|2018)). RL algorithms have achieved notable results in many domains as games (Mnih
et al., 20155 |Silver et al.l [2016) and advanced robotic manipulations (Levine et al., 2016; Lillicrap
et al., 2016) beating human performance. However, standard RL strategies that randomly explore
and learn faced problems lose efficiency and become computationally intractable when dealing with
high-dimensional and complex environments(Wahlstrom et al., 2015)).

Autonomous driving is one of the current highly challenging tasks that is still an “unsolved problem”
more than one decade after the promising 2007 DARPA Urban Challenge (Buehler et al.,[2009). The
origin of its difficulty lies in the important variability inherent to the driving task (e.g. uncertainty
of human behavior, diversity of driving styles, complexity of scene perception...).

In this work, we propose to implement an advantage actor-critic approach with multi-step returns for
autonomous driving. This type of RL has demonstrated good convergence performance and faster
learning in several applications which make it among the preferred R L algorithms (Grondman et al.,
2012). Actor-critic RL consolidates the robustness of the agent learning strategy by using a temporal
difference (1'D) update to control returns and guide exploration. The training and evaluation of the
approach are conducted with the recent CARLA simulator (Dosovitskiy et al.,|2017). Designed as a
server-client system, where the server runs the simulation commands and renders the scene readings
in return, CARLA is an interesting tool since physical autonomous urban driving generates major
infrastructure costs and logistical difficulties. It particularly offers a realistic driving environment
with challenging properties variability as weather conditions, illumination, and density of cars and
pedestrians.
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The next sections review previous work on actor-critic RL and provide a detailed description of
the proposed method. After presenting CARLA simulator and related application advantages, we
evaluate our model using this environment and discuss experimental results.

2 RELATED WORK

Various types of RL algorithms have been introduced and are classified into three categories, actor,
critic or actor-critic depending on whether they rely on a parameterized policy, a value function or
a combination of both to predict actions (Konda & Tsitsiklis, 2003). In the actor-only methods, a
gradient is generated to update the policy parameters in a direction of improvement (Williams}|1992).
Despite policy gradients offer tough convergence guarantees, they may suffer from high variance
resulting in slow learning (Berenji & Vengerov, [2003). On the other hand, critic-only methods built
on value function approximation, use 7'D learning and show lower variance of estimated returns
(Boyan, 2002). However, they lack reliable guarantee of converging and reaching the real optimum
(Grondman et al., 2012).

Actor-critic methods combine the advantages of the two previous ones by inducting a repetitive cycle
of policy evaluation and improvement. [Barto et al.| (1990) is considered as the starting point that
defined the basics of actor-critic algorithms commonly used in recent research. Since then, several
algorithms have been developed with different directions of improvements. Wang et al.| (2007),
introduced the Fuzzy Actor-Critic Reinforcement Learning Network (FACRLN), which involves one
neural network to approximate both the actor and the critic. Based on the same strategy, Niedzwiedz
et al.| (2008) developed the Consolidated Actor-Critic Model (CACM). Jan et al.| (2003) used for
the first time a natural gradient (Amari & Douglas| [1998) for the policy updates in their actor-
critic algorithm. |Silver et al.| (2014)) presented the Deterministic Policy Gradient algorithm (DPG)
that assign a learned value estimate to train a deterministic policy. Recently, Mnih et al.| (2016)
proposed the Asynchronous Advantage Actor-Critic (A3C) algorithm where multiple agents operate
in parallel allowing data decorrelation and learning experience diversity.

Despite that several actor-critic methods have been developed, most of them were tested on standard
RL benchmarks. The latter generally include basic tasks with low-level complexity comparatively
to real world applications, like cart-pole balancing (Wang et al.,[2007; Jan et al.| |2003), maze prob-
lems (Niedzwiedz et al.| 2008)), multi-armed bandit (Silver et al.l [2014), Atari games (Mnih et al.,
20165 |Gruslys et al.l [2018)) and OpenAl Gym tasks (Parisi et al., 2019; |Lillicrap et al., 2016). Our
work contribution consists in extending actor-critic R L application to a very challenging task which
is urban autonomous driving. The domain setting is particularly difficult to handle due to intricate
and conflicting dynamics. Indeed, the driving agent must interact, in changing weather and light-
ing conditions and through a wide action space, with several actors that may behave unexpectedly,
identify traffic rules and street lights, estimate appropriate speed and distance...

Our approach, that will be detailed in the next section, incorporates an actor and a multi-step 7'D
critic component to improve the stability of the RL method.

3 ADVANTAGE ACTOR CRITIC WITH MULTI-STEP RETURNS

The RL task considered in this work is a Markov Decision Process (MDP) T; defined according to
the tuple (S, A, p, 7,7, po, H) where S is the set of states, A is the set of actions, p(s¢+1]|st, a¢) is
the state transition distribution predicting the probability to reach a state s;;; in the next time step
given current state and action, r is a reward function, -y is the discount factor, pg is the initial state
distribution and H the horizon. Consider the sum of expected rewards (return) from a trajectory
TO,H-1) = (80,G05 -y SH—1,0H—1,5H ). A RL setting aims at learning a policy 7 of parameters
0 (either deterministic or stochastic) that maps each state s to an optimal action a maximizing the
return R of the trajectory.

t+H-1
Ry =11 + 7R = Z Y i (D
i=t
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Following the discounted return expressed above, we can define a state value function V'(s) : S — R
and a state-action value function (s,a) : A x S — R to measure, respectively, the current state
and state-action returns estimated under policy 7:

V(St) = E[Rt|8t = S] (2)
Q(Stv at) = E[Rt|st = S,a¢t = a] 3)

In value-based RL algorithms such as Q-learning, a value function is approximated to select the best
action according to the maximum value attributed to each state and action pair. On the other hand,
policy-based methods directly optimize a parameterized policy without using a value function. They
use instead gradient descents like in the family of REINFORCE algorithms (Williams| 1992) updating
the policy parameters 6 in the direction:

Al = aVglog mg(si|ar) Ry 4)

The main problem with policy based methods is that the score function R, uses the averaged rewards
calculated at the end of a trajectory which may lead to the inclusion of ”bad” actions and hence slow
learning. The solution provided in actor-critic framework is to replace the reward function R; in
the policy gradient (equation 4 with the action value function that will enable the agent to learn the
long-term value of a state and therefore enhance its prediction decision:

Al = aVglog mg(si|ar)Q(st, ar) 5)

Then train a critic to approximate this value function parameterized with w and update the model
accordingly. At this point, we can conclude that an efficient way to derive an optimal control of
policies is to evaluate them using approximated value functions. Hence, building accurate value
function estimators results in better policy evaluation and faster learning.

T'D learning combining Monte Carlo method and dynamic programming (Sutton & Barto, [2018)
has proved to be an effective way to calculate good approximations of value functions by allowing
an efficient reuse of rewards during policy evaluation. It consists in taking an action according to
the policy and bootstrapping the 1-step sampled return from the value function estimate resulting in
the below 1-step T'D target:

Gy =1 +7v*Vi(s141) 6)

Given the last return estimation, we obtain the 1-step 7'D update rule that allows the adjustment of
the value function according to the T'D error §; with step size 3:

V(st) = V(st) + B(re +vVilse+1) = V(se)) @)
Ot

At this level, the actor-critic algorithm still suffers from high variance. In order to reduce the variance
of the policy gradient and stabilize learning, we can subtract a baseline function, e.g. the state value
function, from the policy gradient. For that, we define the advantage function A(s,a;) which
calculates the improvement in predicting an action compared to the average V' (s;):

A(se,ar) = Q(st,a1) — V(se) (8)
An approximation of the advantage function is required since it involves two value functions

Q(s¢,a¢) and V (s;). Therefore let’s reformulate A(s, a;) as the difference between the expected
future reward and the actual reward that the agent receives from the environment (Heess et al.,[2013):

A(St, CLt) = R(St, Clt) — V(St) (9)
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When used in the previous policy gradient (equation [5), this gives us the advantage of the actor
policy gradient:

A0 = aVglogme(se|ar)(Ge — V(st)) (10)

We can subsequently assume that 7" D error is a good candidate to estimate the advantage function.
Accordingly, we deduce the final actor policy gradient:

Af = aVglog mg(si|ar)d: (11

Given the complex nature of the autonomous urban driving task, we will use a generalized version
of T'D learning by extending the bootstrapping over multiple time steps into the future. Algorith-
mically, we will define configurable multi-step returns within the 7D target. Hence, T'D error
becomes:

t+H—1 )
So=1 Y ]+ "V (sian) = V(st) (12)
i=t

Multi-step returns have been demonstrated to improve the performance of learning especially with

the advent of deep RL (Mnih et al,2016). Indeed, it allows the agent to gather more information
on the environment before calculating the error in the critic estimates and updating the policy.

So far, we have a good theoretical basis to launch our agent. The experiments carried out by the
application of this approach in the Carla simulator will be presented in the next section.

4 EXPERIMENT

In this section we investigate the performance of an advantage actor-critic (A2C) algorithm embed-
ding multi-step T'D target updates on the challenging task of urban autonomous driving. The goal
of our experimental evaluation is to demonstrate that the incorporation of a multi-step returns critic
(MSRC) component in a deep RL framework consolidates the robustness of the agent by controlling
and guiding its learning strategy. We expect a reduction of the actor gradient variance, an ascendant
trend of episodic average returns and more generally a better performance comparatively to the case
where the MSRC component is deactivated in the A2C algorithm.

Figure 1: Carla environments. Left: Clear Noon weather in Town 2. Right: Hard Rainy in Town 1.

Environment. We conduct the experiments using CARLA simulator for autonomous driving which
provides an interesting interface allowing our RL agent to control a vehicle and interact with a
dynamic environment. Comparatively to existing platforms, Carla offers a customizable and quite
realistic urban driving conditions with a set of advanced features for controlling the vehicle and
gathering the environment feedback. It is designed as a server-client system where the server imple-
mented in Unreal Engine 4 (UE4) E|runs the simulation commands and returns the scene readings.

'https://www.unrealengine.com
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The client implemented in Python sends the agent predicted actions mapped as driving commands
and receives the resulting simulation measures that will be interpreted as the agent rewards.

Carla 3D environment consists of static objects as buildings, roads and vegetation and dynamic non-
player characters, mainly pedestrians and vehicles. During training, we can episodically vary server
settings as the traffic density (number of dynamic objects) and visual effects (weather and lightening
conditions, sun position, cloudiness, precipitation...). Some examples of resulting environments are
illustrated in figure [T}

Observation and action spaces. The agent interacts with the environment by generating actions
and receiving observations over regular time steps. The action space selected for our experiments
is built on the basis of three discrete driving instructions (steering, throttle, and brake) extended
with some combinations in-between (turn left and accelerate/decelerate...). The observation space
includes sensors outputs as color images produced by RGB cameras and derived depth and semantic
segmentations. The second type of available observations consists in a range of measurements
reporting the vehicle location (similarly to GPS) and speed, number of collisions, traffic rules and
positioning of non-player dynamics characters.

Rewards. A crucial role is played by rewards in building driving policies as they orient the agent
predictions. In order to further optimal learning, the reward is shaped as a weighted sum of mea-
surements extracted from the observations space described in the previous paragraph. The idea is
to compute a difference between the current (step t) and the previous (step t — 1) measure of the
selected observation then impact it positively or negatively on the aggregated reward. The positively
weighted variables are distance traveled to target and speed in km/h. The negatively weighted vari-
ables are collisions damage (including collisions with vehicles, pedestrians and other), intersections
with sidewalk and opposite lane. For example, the agent will get a reward if the distance to goal
decreases and a penalty each time a collision or an intersection with the opposite lane is recorded.

Experiment settings. The agent training follows a goal-directed navigation on straight roads from
scratch. An episode is terminated when the target destination is reached or after a collision with a
dynamic non-player character. The A2C networks are trained with 10 millions steps for 72 hours of
simulated continuous driving. Motivated by the recent success achieved by deep RL in challenging
domains (Mnih et al., [2016), we use convolutional neural networks (CNN) to approximate both the
value function of the critic and the actor policy where the parameters are represented by the deep
network weights.
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Figure 2: Training phase - Comparison between n-step A2C and standard deep RL performance
trained in Town 2.

The CNN architectures consist of 4 convolutional layers, 3 max-pooling layers and one fully con-
nected layer at the output. The discount factor is set as 0.9. We used 10-step rollouts, with initial
learning rate set as 0,0001. Learning rate is linearly decreased to zero over the course of train-
ing. While training the approach, a stochastic gradient descent is operated each 10 time steps and
the resulting policy model is stored only if its performance (accumulated rewards) exceeds the last
retained model. The final stored model is then used in the test phase.

Comparative evaluation. In the absence of various state-of-the-art works on the recent CARLA
simulator, we choose to compare 2 versions of our algorithm: the original deep actor RL guided
by the MSRC policy-evaluator versus a standard deep actor RL resulting from the deactivation of
the MSRC component in the original algorithm. In fact the few available state-of-the-art results in
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CARLA environment (Dosovitskiy et al.L|2017; Liang et al., 2018) report the percentage of success-
fully completed episodes. This type of quantitative evaluation doesn’t meet our experiment objec-
tives mentioned in the beginning of this section to evaluate and interpret the MSRC contribution in
complex tasks like autonomous driving. Guided by the several works on RL strategies in differ-
ent domains (Mnih et al., [2016)), (Paris1 et al., 2019), we selected episodic average and cumulative
rewards metrics to evaluate our approach.

Figure 2| shows the generated reward in training phase. We use average episodic reward to describe
the methods global performance and step reward to emphasize the predictions return variance. We
can make few observations in this regard. In term of performance, our n-step A2C approach is
dominant over almost all the 10000 training episodes confirming the efficiency of the RL strategy
controlled by the MSRC. Furthermore, we noticed that regarding the best retained models, the A2C
stored just few models (5) in the 2000 first episodes, then this number drastically increased to 100
retained models in the remaining 8000 episodes. This means that our method early achieved the
exploration phase and moved to exploitation from the training level of 2000 episodes. On the other
hand, the standard deep RL totalized only 10 best models over the training phase reflecting the weak
efficiency of a random strategy to solve a very complex and challenging problem like autonomous
driving. A last visual interpretation that we can deduce from the step reward graph is that the
variance of A2C predictions is significantly reduced relatively to the standard deep RL confirming
the T'D learning contribution in accomplishing a faster learning.
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Figure 3: Testing Phase - Evaluation of n-step A2C and standard deep RL tested in 2 different
environments env]l and env2. (Both have been trained in env1).

Figure [3|recaps the testing phase evaluation following two different scenarios. First, the testing was
conducted in the same environment and conditions as the training: Town 2 and Clear Noon weather
(env1). From the episodic reward graph we can observe that our approach substantially outperforms
the standard deep R L which means that training with multi-step returns critic leads to more efficient
RL models. In the second scenario, both methods agents are tested in a different environment than
training: Town 1 and in hard rainy conditions (env2). The n-step A2C is still more competitive
than the standard deep RL showing superior generalization capabilities in the new unseen setting.
Nevertheless, its performance has decreased in the second test scenario reflecting a certain fragility
to changing environment. On the other side, the standard deep R L is still showing higher prediction
return variance in the step reward graph confirming training phase conclusions.

5 CONCLUSION

In this paper we addressed the limits of RL algorithms in solving high-dimensional and complex
tasks. Combining both actor and critic methods advantages, the proposed approach implemented a
continuous process of policy assessment and improvement using multi-step 7' D learning. Evaluated
on the challenging problem of autonomous driving using CARLA simulator, our deep actor-critic al-
gorithm demonstrated higher performance and faster learning capabilities than a standard deep RL.
Furthermore, the results showed a certain vulnerability of the approach when facing unseen testing
conditions. Considering this paper as a preliminary attempt to scale up RL approaches to high-
dimensional real world applications like autonomous driving, we plan in future work to examine
the performance of other RL methods such as deep Q-learning and Trust Region Policy Optimiza-
tion (Schulman et al.| 2015) on similar complex tasks. Furthermore, we propose to tackle the issue
of non-stationary environments impact on RL methods robustness as a multi-task learning problem
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(Caruana, |1998). In such context, we will explore recently applied concepts and methodologies such
as novel adaptive dynamic programming (ADP) approaches, context-aware and meta-learning strate-
gies. The latter are currently attracting a keen research interest and particularly achieving promising
advances in designing generalizable and fast adapting RL algorithms (Santoro et al.,[2016} [Ravi &
Larochellel [2017). Subsequently, we will be able to increase driving tasks complexity and operate
conclusive comparisons with the few available state-of-the-art experiments on CARLA simulator.
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