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ABSTRACT

Many notions of fairness may be expressed as linear constraints, and the resulting
constrained objective is often optimized by transforming the problem into its La-
grangian dual with additive linear penalties. In non-convex settings, the resulting
problem may be difficult to solve as the Lagrangian is not guaranteed to have a de-
terministic saddle-point equilibrium. In this paper, we propose to modify the linear
penalties to second-order ones, and we argue that this results in a more practical
training procedure in non-convex, large-data settings. For one, the use of second-
order penalties allows training the penalized objective with a fixed value of the
penalty coefficient, thus avoiding the instability and potential lack of convergence
associated with two-player min-max games. Secondly, we derive a method for
efficiently computing the gradients associated with the second-order penalties in
stochastic mini-batch settings. Our resulting algorithm performs well empirically,
learning an appropriately fair classifier on a number of standard benchmarks.

1 INTRODUCTION

Machine learning systems are becoming increasingly prevalent in real-world applications, conse-
quently affecting the decisions that determine a person’s life and future, such as playing a role in
parole conditions (Angwin et al.| [2016), loan applications (Guegan & Hassanil |2018), and airport
screening (Guimaraes & Tofighi, 2018). Recent work has shown that such machine learning mod-
els often have biases which can unfairly disadvantage certain groups. For example, learned word
embeddings exhibit gender-specific biases in what should be gender neutral words (Bolukbasi et al.,
2016). In another case, a machine learning model’s predictions regarding convict recidivism were
found to be unfairly biased against African-Americans (Angwin et al.,2016). While it may seem at
first that simply ignoring the features corresponding to these protected traits when training can alle-
viate this, previous work (Pedreshi et al., [2008) has shown that enforcing such blindness is largely
ineffective due to redundant encodings in the data. In other words, while the learning algorithm
used may not be biased, the data can be inherently biased in complex ways, and this leads to models
which perpetuate these undesirable biases.

Research into the challenging problem of machine learning fairness is therefore of great interest.
To better specify this problem, previous work has elaborated on precise notions of fairness, such as
demographic parity (Dwork et al., 2012), equal opportunity (Hardt et al.| 2016)), etc. These notions
can often be expressed mathematically as a linear constraint on the output of a machine learning
model, taken in expectation over the entire data distribution. Accordingly, a number of recent works
have proposed to incorporate fairness during training by expressing the objective as a constrained
optimization problem (Zafar et al.l 2015} |Goh et al., 2016). If the original objective is convex,
the addition of linear constraints results in a problem which may be readily solved by Lagrangian
methods.

However, modern machine learning models are often not in a convex form. Indeed, the success
of deep neural networks over the past decade makes it clear that the most well-performing models
are often highly non-convex and optimized via stochastic gradient methods over large amounts of
data (Szegedy et al., [2017; [Wu et al., [2016). It is unfortunate that much of the existing work on
fairness in machine learning has provided methods which are either focused on the convex, small
data-set setting (Zafar et al., 2015} |Goh et al.,[2016)), or otherwise require sophisticated and complex
training methods (Cotter et al., 2018b)).
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In this paper, we present a general method for imposing fairness conditions during training, such that
it is practical in non-convex, large data settings. We take inspiration from the standard Lagrangian
method of augmenting the original loss with linear penalties. In non-convex settings, this dual objec-
tive must be optimized with respect to both model parameters and penalty coefficients concurrently,
and in general is not guaranteed to converge to a deterministic equilibrium.

We propose to re-express the linear penalties associated with common fairness criteria as second-
order penalties. Second-order penalties are especially beneficial in non-convex settings, as they
may be optimized using a fixed non-negative value for the penalty coefficient A. When A — 0 the
optimization corresponds to an unconstrained objective, while as A — oo, the problem approaches
that of a hard equality constraint. This allows us to avoid sophisticated optimization methods for
potentially non-convergent two-player games. Instead, we only need to choose a fixed value for
the penalty coefficient, which may be easily determined via standard hyperparameter optimization
methods, such as cross-validation. As an additional benefit, by choosing the penalty coefficient on a
separate validation set, we can improve generalization performance.

Second-order penalties, however, potentially introduce a new problem: By squaring an expectation
over the entire data distribution, the resulting penalized loss is no longer an expectation of loss func-
tions on individual data points sampled from the distribution, and therefore not readily approachable
by stochastic gradient methods. We solve this by presenting an equivalent form of the second-order
penalty as an expectation of individual loss functions on pairs of independently sampled data points.

Our resulting algorithm is thus not only more practical to optimize in non-convex settings, using a
fixed value for the penalty coefficient, but is also easily optimized in large-data settings via standard
stochastic gradient descent. We evaluate the performance of our algorithm in a number of different
settings. In each setting, our algorithm is able to adequately optimize the desired constraints, such
as encouraging feature orthonormality in deep image autoencoders and imposing predictive fairness
across protected data groups.

2 FAIRNESS AS LINEAR CONSTRAINTS

Consider a data domain X and a probability measure y constituting a data distribution D = (X, p).
Let H be a set of real-valued functions f : X — R endowed with the inner-product,

(f.9) = /X f(@)g(@)du(z). 0

A machine learning model is a function d € H. Given a data point € X it provides a score d(x).
When the machine learning model is a predictive binary classifier, the range of d is [0, 1] and a score
d(x) corresponds to a machine learning model which on input x returns 1 with probability d(x) and
returns 0 with probability 1 — d(z). Many notions of fairness may be written as linear constraints
on d. That is, they may be expressed as (d,c) € [C' —¢,C + €|, where ¢ € H is some other fixed
function and C' € R, e € R.. We elaborate on a few popular notions below.

For simplicity, we restrict the text to refer to a domain X with a single protected group G C X
whose predictions d(z) we desire to be fair with respect to the distribution of predictions on the
entire domain X. Nevertheless, all of our results apply to the fully general multi-group setting. We
assume access to an indicator function g(z) = 1[z € G] and thus the proportion of data in G is
Za =(1,g9). Welety : X — {0,1} be the true label function. Thus, the proportion of examples
which are positive is Px = (1, y); the proportion which are positive and in G is Pg = (g, y).

e Demographic parity (Dwork et al., 2012): A fair classifier d should make positive predic-
tions at the same rate on each group. This constraint may be expressed as (d, ¢) = 0, where
o(z) =g(x)/Za - 1.

e Equal opportunity (Hardt et al., 2016): A fair classifier d should have equal true pos-
itive rates on each group. This constraint may be expressed as (d,c¢) = 0, where
co(z) = g(x)y(x)/Po —y(x)/Px.

e Equalized odds (Hardt et al., [2016): A fair classifier d should have equal true positive
and false positive rates on each group. In addition to the linear constraint associated with
equal opportunity, this notion applies an additional constraint (d,b) = 0, where b(z) =

9(x)(1 —y(x))/(Za — Po) — (1 —y(x))/(1 = Px).
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o Disparate impact (Feldman et al., 2015): A fair classifier d should have a rate of positive
prediction on a group at least p% as high as the rate of positive prediction on another
group. Traditionally, p = 80. Unlike the other notions of fairness, disparate impact may
not be expressed as a linear constraint. Nevertheless, previous work (Zafar et al., 2015)) has
suggested approximating it as such; i.e. (d,c) € [—e, €], where c(x) = g(x)/Zg — 1.

3 NON-CONVEX OPTIMIZATION WITH SECOND-ORDER PENALTIES

Any linear constraint (d, ¢) € [C' — ¢, C' + €] may be equivalently written as a quadratic constraint:

((d,e) = C)* < €. 2)

We first discuss the known approaches based on the penalty-form Lagrangian with linear constraints
and list their disadvantages. We then introduce the optimization based on our second-order penalties
and how it avoids many of the issues associated with linear constraints.

3.1 CLASSICAL LAGRANGIAN WITH LINEAR PENALTIES

Suppose that we wish to minimize a loss ¢(d) over classifiers d subject to constraints (d,cx) €
[Cx — ek, Cr + €x], k = 1,...,m. The Lagrangian is formulated as follows

L(d,\) = £(d) + Z Me((d, cx) — Cp — €x) + Z Metm (—(d, ci) + Cr — €x).
k=1 k=1
Then, the original constrained optimization problem (the primal problem) would be
ming maxy>o £(d, A) and the dual problem would be max>o ming £(d, A).

If our loss function is convex, then solving the dual problem would lead to the solution for the
original problem; i.e., there is no duality gap. Unfortunately, this is not so in the non-convex case.
Not only can the solution to the dual problem not yield an optimal feasible solution, there may not
even exist a saddle point in the Lagrangian that we can converge to. Instead, in order to solve such
a constrained optimization problem, one must consider it as a two-player game where one player
chooses a classifier and the other player chooses a Lagrange multiplier. The final solution will then
be a mixed equilibrium: in other words yields a randomized classifier. This line of work has received
recent attention; e.g. |Arora et al.[(2012);|Agarwal et al.[(2018)); Cotter et al.[(2018b). To summarize:

e The Lagrangian when optimizing jointly over model parameters and multipliers may not
converge to any saddle point, and even if converged, may not lead to the right solution.
This requires us to resort to sophisticated procedures with many parameters and hyperpa-
rameters, which may be difficult to train.

e The Lagrangian approach with non-convex objectives leads to randomized classifiers,
which may not be desirable in practice. Although work has been done to reduce the ran-
domization (Cotter et al.l 2018b)), it is in general not possible to reduce the solution to a
deterministic one while still being an equilibrium.

e Another weakness of the Lagrangian approach is that the constraints must be relaxed or
approximated (e.g. hinge relaxation (Goh et al., [2016)) in order to make them convex
and differentiable. The introduced slack necessitates hyperparameter tuning to encourage
the optimization on approximated constraints to yield a classifier satisfying the original
constraints.

3.2 OUR FORMULATION WITH SECOND-ORDER PENALTIES
We propose to optimize the following objective
inf(d) + A d,cr) — Ci)? 3
min £(d) + ;((,01& k) 3)
where A > 0 is a hyperparameter which decides the fairness-accuracy tradeoff. Note that A — 0

corresponds to the unconstrained objective, while A\ — oo corresponds to an optimization with hard
constraints (i.e. € = 0). Any fixed value of A\ > 0 will yield a solution between these two extremes.
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Since the penalty coefficient ) is fixed during training, it may be treated as an additional hyperparam-
eter. Standard hyperparameter optimization methods may be used to choose A based on validation
so that the final solution gives the desired fairness-accuracy trade-off. While we are not optimizing
for the fairness metrics such as demographic parity or equalized odds directly, we will show that
empirically our second-order penalties provide a reasonable proxy for many of the popular metrics.
Additionally, while popular methods such as the aforementioned Lagrangian with linear penalties
appear to directly optimize for the fairness metrics, in practice they require some sort of relaxation
of these constraints to make the optimization feasible; thus in essence, such methods also optimize
a proxy to the fairness metrics rather than the actual metrics desired and accordingly also require
some amount of hyperparameter tuning.

It can now also be seen that this alternative way of solving for fairness-constrained classifiers over-
comes many of the drawbacks listed earlier associated with methods based on the Lagrangian: For
any fixed choice of ), there will exist a solution to the optimization. Moreover, this solution will
be deterministic. Next, by tuning A to directly satisfy the desired fairness metrics, we decouple
much of the inherent difficulty of hyperparameter tuning in the Lagrangian approaches, which rely
on the procedure itself to allow a certain amount of slack. Moreover, this decoupling encourages
better generalization performance as there is less chance of overfitting to the training set compared
to approaches which solve for the model parameters and Lagrange multipliers simultaneously on the
same dataset.

3.3 STOCHASTIC OPTIMIZATION OF SECOND-ORDER PENALTIES

At face value, it appears that the introduction of second-order penalties may complicate stochastic
optimization of the objective. The quadratic penalty is a square of an expectation over the dataset.
It is not possible to express such a penalty as an expectation of individual loss functions over the
dataset. In this section, we show that despite this obstacle, it is in fact possible to express the second-
order penalty as an expectation of individual loss functions over pairs of data points sampled from
the dataset. This derivation is crucial for most modern machine learning applications, in which the
data set is exceedingly large, at times presenting itself in an online form, and must be optimized
using stochastic mini-batches.

The second-order penalty is of the form

m

d Ck Ck = (/ d Ck d,u( ) Ck> . (4)

k:l

Since p is a probability measure, we may re-write the integrals as

i (/X d(z)cp(x) — Cy du(x)>2. (5)

We may express each squared integral as a double integral:

Z/ / — Cr)(d(x)cr(x) — Cy) du(w)du(z). (6)

Finally, we may express the sum of these double integrals as a double integral of a sum:

/ /XZ — Cr)(d(z)er(x) — Cy) du(w)du(x). (7)

The gradients of this double integral with respect to parameters of d may be approximated via Monte
Carlo estimation, only requiring access to two independent samples w, x from D.

3.4 ALGORITHM

Algorithm [T| provides a pseudocode of our fairness-aware training algorithm. The machine learning
model is parameterized as dy, for parameter vector 9 We also assume the training loss ¢ is an
expectation of individual loss functions: £(dg) = [y £(dg(x), y(x)) du(z).
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Algorithm 1 Fairness training with second-order penalties.

Input: Dataset D, classification loss function ¢, constraints {c, Ck, € } 7, model parameteri-
zation dy, learning rate 7, number of training steps N, batch size B, hyperparameter .
Initialize 6%
fort=0to N —1do
Sample batch {(x;,y;)}2., ~ D.
Compute loss gradient VoL = 4 S22 | 24de(eo).yi) oo’

Compute penalty gradients Vg@l-jk = %(dg(xi)ck(:):i) — Ci)(dg(xj)er(z;) — Ck) ‘0:9(”.
Aggregate penalty gradients V@Q = ﬁ Zib;l ZjB:iJrl Z}Tzl v@@i]‘k.

Compute update (1) = () — (VoL + AV4Q).
end for
Return dG(N) .=0

For a fixed penalty coefficient A, our algorithm performs stochastic gradient descent by sampling
batches. Each batch is used to compute an unbiased estimate of the gradient of the loss ¢(dp) as
well as an unbiased estimate of the gradient of the second-order penalty. The optimal choice of A is
determined by standard hyperparameter tuning.

4 RELATED WORK

Our work builds on the constrained optimization view of fairness in machine learning. This view
was first introduced in|Zafar et al.| (2015) and later extended in |Goh et al.|(2016). These works have
focused on the convex setting, where optimality and convergence can be guaranteed. Although less
is known in the non-convex case, there is work which frames the constrained optimization problem
as a two-player game (Cotter et al.l 2018b). The resulting classifier in this case is a randomized
distribution over classifiers.

In contrast, our work proposes the use of second-order penalties in a general setting. This allows
one to avoid the two-player game formulation in the non-convex case and accordingly the resulting
classifier is deterministic. We are not the first to propose training for fairness in this manner: |Donini
et al.| (2018)) studies this for kernel methods and [Komiyama et al.| (2018)) gives results for training
a linear model with such penalities. In contrast, our methods are applicable to highly non-convex
models and previous works do not address how to optimize for these penalities stochastically.

Another approach for non-convex settings is the use of adversarial training (Edwards & Storkey,
2015)). In this setting, a predictive model is trained concurrently with an adversary, whose objective
is to recover sensitive or protected attributes from the model outputs. The model’s loss is then
augmented with a penalty based on the adversary’s success. This is thus another form of a two-
player game, and hence also suffers from convergence issues. Our approach avoids these issues by
allowing the use of a fixed penalty coefficient in training. Moreover, the form of our constraints
may be seen as equivalent to an adversarial formulation in which the adversary is parameterized by
a linear model.

The quadratic penalties we propose are similar to previous notions of orthogonality in machine
learning, which is generally useful when one desires diversity of features (Xie et al., 2015} Xie,
2015} [Kulesza et al., 2012). The specific penalties we impose may be interpreted as penalizing the
Frobenius norm of the Gram matrix of model outputs, as mentioned in |Xie et al.| (2018)). Many of
these methods propose optimization schemes which are not amenable to stochastic mini-batching.
In contrast, one of the key contributions of our work is showing that a second-order penalty may
be optimized stochastically. Our result hinges on a standard calculus identity relating a product of
integrals to a double integral. Similar techniques have been used previously in the context of rein-
forcement learning. Specifically, double-sampling is a known technique for unbiased minimization
of the Bellman error, also a square of an expectation (Antos et al., 2008).
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S5 SIMULATIONS: LEARNING ORTHOGONAL REPRESENTATIONS

5.1 VISUALIZATION OF IRIS DATASET

We use the Iris dataset (Lichman et al., 2013) and train a simple model which is a network with a
single intermediate 2-node layer.We show the effects of adding a penalty to encourage orthogonality
on this layer. That is, we wish for the two learned features to be decorrelated over the dataset. We
show the results in Figure [1| as weight on the penalty increases. We further increase the difficulty
task by using small stochastic batches of size 4. While this is only a toy example, it clearly shows
the possibility of stochastically training with these second-order penalties.

Weight 0: correlation 0.99  Weight 0.01: correlation 0.91 Weight 1: correlation 0.56 Weight 100: correlation 0.26 Weight 1000: correlation 0.1

.
2,

L

Figure 1: The learned 2d representation of the datapoints (colored by label) as the penalty weight
changes. We see that indeed, the two features become decorrelated as we increase the weight.

5.2 CONVOLUTIONAL AUTOENCODER ON MNIST

We now move to applying our technique to a highly non-convex, neural network model. We use a
convolutional autoencoder applied to MNIST images, where the encoder consists of 3 convolutional
and max-pooling layers and the decoder consists of 4 convolutional and 3 upsampling layers. The
encoded representation is 128-dimensional. We train this autoencoder with added penalties that
encourage orthonormality. That is, in additional to orthogonality (as in the previous simulation),
we also encourage the feature columns to be of unit norm. For training, we trained with the Adam
optimizer and batch-size 128. We show in Figure [2]that indeed, we can stochastically optimize with
the quadratic penalty and that feature correlation on the test set decreases as we increase the penalty
coefficient. We see that we can dramatically decrease the correlation of features while suffering

small sacrifices in reconstruction error.

Figure 2: MNIST Autoencoder. First: Orthonormality loss on testing set as we change the penalty
weight. Second: RMSE reconstruction error and average absolute pairwise feature correlation on
the testing set across different penalty weight setttings. Third: Correlation heat map trained with no
penalty. Fourth: Correlation heat map trained with penalty weight 1. We show the absolute values
of the correlations.
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6 EXPERIMENTS: FAIRNESS

6.1 DATASETS

Adult (Lichman et al} [2013) (48842 examples). Each datapoint corresponds to an individual and
the task is to predict whether the person’s income is more than 50k per year. We use 2 protected
groups based on gender and preprocess the dataset and use a linear model, consistent with previous
works, e.g. [Zafar et al.| (2015); |Goh et al.| (2016). The 2 fairness constraints here are the equal
opportunity constraints for the 2 protected classes with slack 0.05, that is, the positive prediction
rate on the positively-labeled examples for each protected class must be at least 95% of the overall
positive prediction rate over all positively-labeled examples.
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Bank Marketing (Lichman et al., 2013)) (45211 examples). The data is based on a direct marketing
campaign of a banking institution. The task is to predict whether someone will subscribe to a bank
product. We use age as a protected feature and we have 5 protected groups, based on age quantiles
and the 5 fairness constraints are demographic parity.

Communities and Crime (Lichman et al., [2013) (1994 examples). Each datapoint represents a
community and the task is to predict whether a community has high (above the 70-th percentile) or
low crime rate. We preprocess the data and use a linear model, consistent with previous works, e.g.
Cotter et al.| (2018a)) and form the protected group based on race in the same way as done in |Cotter,
et al.|(2018a). We use four race features as real-valued protected attributes corresponding to White,
Black, Asian and Hispanic. We threshold each at the median to form 8 protected groups. There is
one fairness constraint for each of the 8 protected groups, which constrains the groups false positive
rate to be at most the overall false positive rate.

ProPublicas COMPAS recidivism data (7,918 examples). The task is to predict recidivism based
on criminal history, jail and prison time, demographics, and risk scores. We preprocess this dataset
in a similar way as the Adult dataset and the protected groups are two race-based (Black or White)
and two gender-based (Male or Female). We use a 2-layer Neural Network with ReLLU activations
and 10 hidden units. The 4 fairness constraints here are the equal opportunity constraints for the 4
protected classes each being bounded by at most 0.05. That is, we wish to not predict recidivism
more than 5% on top of the overall predicted recidivism rate restricted to examples whose which
indeed had recidivism in two years for any protected class.

6.2 BASELINES

Deterministic Lagrangian: This method (Goh et al.l 2016)) is jointly training the Lagrangian in
both model parameters and Lagrange multipliers and uses a Hinge approximation of the constraints
to make the Lagrangian differentiable in its input. We then return the “best” iterate selected using a
heuristic introduced by (Cotter et al.|(2018b), which finds a reasonable accuracy/fairness trade-off.

Stochastic Lagrangian: This method (Cotter et al.,[2018b) returns a stochastic solution to the two-
player game with the Lagrangian of the previous method as pay-off function. This solution is based
on approximating a Nash equilibrium to this two-player game.

6.3 HYPERPARAMETER TUNING

We optimize over hyperparameters for our method in the following way: we perform a grid search
over the weight of the orthogonality penalty as well as the fixed learning rate for the model trained
using Adam optimizer. Then, to choose the best model, we find the highest accuracy model on the
validation set which satisfies the constraints on the validation set. A final evaluation is performed on
a fully un-seen test set. The Lagrangian baselines take in the desired slack and the hyperparameter
search is over the fixed learning rate and is chosen using the heuristic on a validation set which
chooses the best accuracy and constraint trade-off as done in Cotter et al. (2018b).

Table 1: Adult Experiment Results

Algorithm Train Error  Test Error  Train Violation Test Violation
Unconstrained 14.32% 14.32% 0.0688 0.0445
Stochastic Lagrangian 14.78% 14.92% 0 0
Deterministic Lagrangian 14.30% 14.52% 0 0
Our Method 14.31% 14.32% 0.0025 0.0092

We see that our method attains far lower constraint violation compared to training without con-
straints with almost no trade-off in accuracy. The Lagrangian baselines give solutions that satisfy
the constraints but with considerable trade-off in accuracy.
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Table 2: Bank Marketing Experiment Results

Algorithm Train Error  Test Error  Train Violation Test Violation
Unconstrained 9.48% 9.37% 0.0202 0.0152
Deterministic Lagrangian 9.64% 9.55% 0 0
Stochastic Lagrangian 9.39% 9.51% 0 0
Our Method 9.32% 9.44% 0 0

We see that our method attains the best testing error compared to the baselines while satisfying the
fairness constraints.

Table 3: Communities and Crime Experiment Results

Algorithm Train Err.  Train Vio. Train FPR  Test Err.  Test Vio. Test FPR
Unconstrained 9.93% 0.1802 0.0518 15.43% 0.3482 0.1108
Determ. Lagrangian 32.70% 0 0.0700  34.26% 0.0153 0.0554
Stoch. Lagrangian 10.34% 0 0.0238  15.29% 0.1129 0.0576
Our Method 14.24% 0.0948 0.0252 17.43% 0.0903 0.0408

We show both the violations and overall false positive rates (FPR). The violation is the maximum
difference between the FPR for any given protected group and the overall FPR. For example, in the
first row, we see that there exists a protected group with a FPR of 0.3482 4 0.1108 = 0.459 by the
model. While our method does not attain the lowest violation, it provides a reasonable trade-off.
Interestingly, our method attains the lowest overall (i.e. average) FPR across the entire dataset out
of all the methods. A low violation at the cost of high overall FPR may be undesirable because
ensuring fairness in FPR might make everyone worse off in terms of FPR.

Table 4: COMPAS Experiment Results

Algorithm Train Error  Test Error  Train Violation Test Violation
Unconstrained 30.56% 31.09% 0.1151 0.1082
Deterministic Lagrangian 28.40% 32.23% 0.0803 0.0800
Stochastic Lagrangian 37.11% 36.76% 0 0.0284
Our Method 35.39% 33.68% 0 0.0062

We see that our method is able to learn a classifier that is significantly closer to satisfying the fairness
constraints than the baselines while trading off a reasonable amount of accuracy.

7 CONCLUSION

We have presented a method for stochastically learning with second-order penalties. Such penal-
ties may be used in a number of applications. We have shown how they can be used to encourage
the learning of orthonormal features. We have additionally demonstrated their applicability to fair-
ness, where they provide a more stable training procedure while yielding at least competitive final
performance.
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A PARETO CURVES
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Figure 3: For two of our datasets, we show the pareto frontiers for the testing error vs constraint

violation trade-off over the runs of our method obtained from the grid search on the single constant
learning rate and the orthogonality penalty term.
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