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ABSTRACT

As the complexity of neural network models has grown, it has become increas-
ingly important to optimize their design automatically through metalearning.
Methods for discovering hyperparameters, topologies, and learning rate schedules
have lead to significant increases in performance. This paper shows that loss func-
tions can be optimized with metalearning as well, and result in similar improve-
ments. The method, Genetic Loss-function Optimization (GLO), discovers loss
functions de novo, and optimizes them for a target task. Leveraging techniques
from genetic programming, GLO builds loss functions hierarchically from a set of
operators and leaf nodes. These functions are repeatedly recombined and mutated
to find an optimal structure, and then a covariance-matrix adaptation evolutionary
strategy (CMA-ES) is used to find optimal coefficients. Networks trained with
GLO loss functions are found to outperform the standard cross-entropy loss on
standard image classification tasks. Training with these new loss functions re-
quires fewer steps, results in lower test error, and allows for smaller datasets to be
used. Loss function optimization thus provides a new dimension of metalearning,
and constitutes an important step towards AutoML.

1 INTRODUCTION

Much of the power of modern neural networks originates from their complexity, i.e., number of
parameters, hyperparameters, and topology. This complexity is often beyond human ability to op-
timize, and automated methods are needed. An entire field of metalearning has emerged recently
to address this issue, based on various methods such as gradient descent, simulated annealing, rein-
forcement learning, Bayesian optimization, and evolutionary computation (EC) (Elsken et al., 2018).

While a wide repertoire of work now exists for optimizing many aspects of neural networks, the
dynamics of training are still usually set manually without concrete, scientific methods. Training
schedules, loss functions, and learning rates all affect the training and final functionality of a neural
network. Perhaps they could also be optimized through metalearning?

The goal of this paper is to verify this hypothesis, focusing on optimization of loss functions. A
general framework for loss function metalearning, covering both novel loss function discovery and
optimization, is developed and evaluated experimentally. This framework, Genetic Loss-function
Optimization (GLO), leverages Genetic Programming to build loss functions represented as trees,
and subsequently a Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) to optimize their
coefficients.

EC methods were chosen because EC is arguably the most versatile of the metalearning approaches.
EC, being a type of population-based search method, allows for extensive exploration, which often
results in creative, novel solutions (Lehman et al., 2018). EC has been successful in hyperparameter
optimization and architecture design in particular (Miikkulainen et al., 2019; Stanley et al., 2019;
Real et al., 2019; Loshchilov & Hutter, 2016). It has also been used to discover mathematical
formulas to explain experimental data (Schmidt & Lipson, 2009). It is, therefore, likely to find
creative solutions in the loss-function optimization domain as well.

Indeed, on the MNIST image classification benchmark, GLO discovered a surprising new loss func-
tion, named Baikal for its shape. This function performs very well, presumably by establishing an
implicit regularization effect. Baikal outperforms the standard cross-entropy loss in terms of training
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speed, final accuracy, and data requirements. Furthermore, Baikal was found to transfer to a more
complicated classification task, CIFAR-10, while carrying over its benefits.

At first glance, Baikal behaves rather unintuitively; loss does not decrease monotonically as a net-
work’s predictions become more correct. Upon further analysis, Baikal was found to perform im-
plicit regularization, which caused this effect. Specifically, by preventing the network from being
too confident in its predictions, training was able to produce a more robust model. This finding was
surprising and encouraging, since it means that GLO is able to discover loss functions that train
networks that are more generalizable and overfit less.

The next section reviews related work in metalearning and EC, to help motivate the need for GLO.
Following this review, GLO is described in detail, along with the domains upon which it has been
evaluated. The subsequent sections present the experimental results, including an analysis of the
loss functions that GLO discovers.

2 RELATED WORK

In addition to hyperparameter optimization and neural architecture search, new opportunities for
metalearning have recently emerged. In particular, learning rate scheduling and adaptation can have
a significant impact on a model’s performance. Learning rate schedules determine how the learning
rate changes as training progresses. This functionality tends to be encapsulated away in practice
by different gradient-descent optimizers, such as AdaGrad (Duchi et al., 2011) and Adam (Kingma
& Ba, 2014). While the general consensus has been that monotonically decreasing learning rates
yield good results, new ideas, such as cyclical learning rates (Smith, 2017), have shown promise in
learning better models in fewer epochs.

Metalearning methods have also been recently developed for data augmentation, such as AutoAug-
ment (Cubuk et al., 2018), a reinforcement learning based approach to find new data augmentation
policies. In reinforcement learning tasks, EC has proven a successful approach. For instance, in
evolving policy gradients (Houthooft et al., 2018), the policy loss is not represented symbolically,
but rather as a neural network that convolves over a temporal sequence of context vectors. In re-
ward function search (Niekum et al., 2010), the task is framed as a genetic programming problem,
leveraging PushGP (Spector et al., 2001).

In terms of loss functions, a generalization of the L2 loss was proposed with an adaptive loss param-
eter (Barron, 2017). This loss function is shown to be effective in domains with multivariate output
spaces, where robustness might vary across between dimensions. Specifically, the authors found im-
provements in Variational Autoencoder (VAE) models, unsupervised monocular depth estimation,
geometric registration, and clustering.

Additionally, work has found promise in moving beyond the standard cross-entropy loss for clas-
sification (Janocha & Czarnecki, 2017). L1 and L2 losses were found to have useful probabilistic
properties. The authors found certain loss functions to be more resilient to noise than the cross-
entropy loss.

Notably, no existing work in the metalearning literature automatically optimizes loss functions for
neural networks. As shown in this paper, evolutionary computation can be used in this role to
improve neural network performance, gain a better understanding of the processes behind learning,
and help reach the ultimate goal of fully automated learning.

3 THE GLO APPROACH

The task of finding and optimizing loss functions can be framed as a functional regression problem.
GLO accomplishes this through the following high-level steps (shown in Figure 1): (1) loss function
discovery: using approaches from genetic programming, a genetic algorithm builds new candidate
loss functions, and (2) coefficient optimization: to further optimize a specific loss function, a
covariance-matrix adaptation evolutionary strategy (CMA-ES) is leveraged to optimize coefficients.
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(1) Loss function discovery genetic algorithm. (2) Coefficient optimization via CMA-ES.
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Figure 1: Genetic Loss-function Optimization (GLO) overview. A genetic algorithm constructs
candidate loss functions as trees. The best loss functions from this set then has its coefficients
optimized using CMA-ES. GLO loss functions are able to train models more quickly and more
accurately.

3.1 LOSS FUNCTION DISCOVERY

GLO uses a population-based search approach, inspired by genetic programming, to discover new
optimized loss function candidates. Under this framework, loss functions are represented as trees
within a genetic algorithm. Trees are a logical choice to represent functions due to their hierarchical
nature. The loss function search space is defined by the following tree nodes:

Unary Operators: log(◦), ◦2,
√
◦

Binary Operators: +, ∗,−,÷
Leaf Nodes: x, y, 1,−1, where x represents a true label, and y represents a predicted label.

The search space is further refined by automatically assigning a fitness of 0 to trees that do not
contain both at least one x and one y. Generally, a loss function’s fitness within the genetic algorithm
is the validation performance of a network trained with that loss function. To expedite the discovery
process, and encourage the invention of loss functions that make learning faster, training does not
proceed to convergence. Unstable training sessions that result in NaN values are assigned a fitness
of 0. Fitness values are cached to avoid needing to retrain the same network twice. These cached
values are each associated with a canonicalized version of their corresponding tree, resulting in
fewer required evaluations.

The initial population is composed of randomly generated trees with a maximum depth of 2. Re-
cursively starting from the root, nodes are randomly chosen from the allowable operator and leaf
nodes using a weighting (where log(◦), x, y are three times as likely and

√
◦ is two times as likely

as +, ∗,−,÷, 1,−1). This weighting can impart a bias and prevent, for example, the integer 1 from
occurring too frequently. The genetic algorithm has a population size of 80, incorporates elitism
with six elites per generation, and uses roulette sampling.

Recombination is accomplished by randomly splicing two trees together. For a given pair of parent
trees, a random element is chosen in each as a crossover point. The two subtrees, whose roots are
the two crossover points, are then swapped with each other. Figure 1 presents an example of this
method of recombination. Both resultant trees become part of the next generation. Recombination
occurs with a probability of 80%.

To introduce variation into the population, the genetic algorithm has the following mutations, applied
in a bottom-up fashion:

• Integer scalar nodes are incremented or decremented with a 5% probability.
• Nodes are replaced with a weighted-random node with the same number of children with a
5% probability.

• Nodes (and their children) are deleted and replaced with a weighted-random leaf node with
a 5% ∗ 50% = 2.5% probability.
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• Leaf nodes are deleted and replaced with a weighted-random element (and weighted-
random leaf children if necessary) with a 5% ∗ 50% = 2.5% probability.

Combined, the iterative sampling, recombination, and mutation of trees within the population leads
to the discovery of new loss functions which maximize fitness.

3.2 COEFFICIENT OPTIMIZATION

Loss functions found by the above genetic algorithm can all be thought of having unit coefficients
for each node in the tree. This set of coefficients can be represented as a vector with dimensionality
equal to the number of nodes in a loss function’s tree. The number of coefficients can be reduced
by pruning away coefficients that can be absorbed by others (e.g., 3 (5x + 2y) = 15x + 6y). The
coefficient vector is optimized independently and iteratively using a covariance-matrix adaptation
evolutionary strategy (CMA-ES) (Hansen & Ostermeier, 1996). The specific variant of CMA-ES
that GLO uses is (µ/µ, λ)-CMA-ES (Hansen & Ostermeier, 2001), which incorporates weighted
rank-µ updates (Hansen & Kern, 2004) to reduce the number of objective function evaluations that
are needed. The implementation of GLO presented in this paper uses an initial step size σ = 1.5. As
in the discovery phase, the objective function is the network’s performance on a validation dataset
after a shortened training period.

4 EXPERIMENTAL EVALUATION

This section provides an experimental evaluation of GLO, on the MNIST and CIFAR-10 image
classification tasks. Baikal, a GLO loss function found on MNIST, is presented and evaluated in
terms of its resulting testing accuracy, training speed, training data requirements, and transferability
to CIFAR-10. Implementation details are presented in the appendix in Section A.1.

4.1 TARGET TASKS

Experiments on GLO are performed using two popular image classification datasets, MNIST Hand-
written Digits (LeCun et al., 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009). Both datasets,
with MNIST in particular, are well understood, and relatively quick to train. The choice of these
datasets allowed rapid iteration in the development of GLO and allowed time for more thorough
experimentation. The selected model architectures are simple, since achieving state-of-the-art accu-
racy on MNIST and CIFAR-10 is not the focus of this paper, rather the improvements brought about
by using a GLO loss function are. More information on the datasets, along with their corresponding
architectures and experimental setup is provided in the appendix, under Section A.2.

Both of these tasks, being classification problems, are traditionally framed with the standard cross-
entropy loss (sometimes referred to as the log loss): LLog = − 1

n

∑n−1
i=0 xi log(yi), where x is

sampled from the true distribution, y is from the predicted distribution, and n is the number of
classes. The cross-entropy loss is used as a baseline in this paper’s experiments.

4.2 THE BAIKAL LOSS FUNCTION

The most notable loss function that GLO discovered against the MNIST dataset (with 2,000-step
training for candidate evaluation) is the Baikal loss, named due to its similarity to the bathymetry of
Lake Baikal when its binary variant is plotted in 3D (Section 5.1):

LBaikal = −
1

n

n−1∑
i=0

log(yi)−
xi
yi
, (1)

where x is from the true distribution, y is from the predicted distribution, and n is the number of
classes. Additionally, after coefficient optimization, GLO arrived at the following version of the
Baikal loss:

LBaikalCMA = − 1

n

n−1∑
i=0

2.7279

(
0.9863 ∗ log(1.5352 ∗ yi)− 1.8158

xi
yi

)
. (2)
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Figure 3: Training curves for different loss functions on MNIST. Baikal and BaikalCMA result in
faster and smoother training compared to the cross-entropy loss.

This loss function, BaikalCMA, was selected for having the highest validation accuracy out of the
population. The Baikal and BaikalCMA loss functions had validation accuracies at 2,000 steps
equal to 0.9838 and 0.9902, respectively. For comparison, the cross-entropy loss had a validation
accuracy at 2,000 steps of 0.9700. Models trained with the Baikal loss on MNIST and CIFAR-10
(to test transfer) are the primary vehicle for validating GLO’s efficacy, as detailed in subsequent
sections.

4.3 TESTING ACCURACY

Data

Test Accuracy Log Loss Baikal BaikalCMA

0.9898 0.9941 0.9945

0.9898 0.9937 0.9941

0.9902 0.9925 0.9949

0.9894 0.9932 0.995

0.9895 0.9935 0.9952

0.9905 0.9924 0.9956

0.9902 0.9937 0.9944

0.9896 0.9934 0.9944

0.9898 0.993 0.9944

0.9899 0.9935 0.9944

Mean Test Accuracy 0.9899 0.9933 0.9947

Standard Deviation 0.0003 0.0005 0.0005

T-Test Baikal vs Log 
Loss

2-Tailed 1-Tailed

Paired 0.000000185917 0.000000092958

Homoscedastic 0.000000000002 0.000000000001

Heteroscedastic 0.000000000024 0.000000000012
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Figure 2: Mean testing accuracy
on MNIST, n = 10. Both Baikal
and BaikalCMA provide statisti-
cally significant improvements to
testing accuracy over the cross-
entropy loss.

Figure 2 shows the increase in testing accuracy that Baikal
and BaikalCMA provide on MNIST over models trained with
the cross-entropy loss. Over 10 trained models each, the
mean testing accuracies for cross-entropy loss, Baikal, and
BaikalCMA were 0.9899, 0.9933, and 0.9947, respectively.

This increase in accuracy from Baikal over cross-entropy loss
is found to be statistically significant, with a p-value of 2.4 ×
10−11, in a heteroscedastic, two-tailed T-test, with 10 samples
from each distribution. With the same significance test, the
increase in accuracy from BaikalCMA over Baikal was found
to be statistically significant, with a p-value of 8.5045× 10−6.

4.4 TRAINING SPEED

Training curves for networks trained with the cross-entropy
loss, Baikal, and BaikalCMA are shown in Figure 3. Each
curve represents 80 testing dataset evaluations spread evenly (i.e., every 250 steps) throughout
20,000 steps of training on MNIST. Networks trained with Baikal and BaikalCMA both learn signif-
icantly faster than the cross-entropy loss. These phenomena make Baikal a compelling loss function
for fixed time-budget training, where the improvement in resultant accuracy over the cross-entropy
loss becomes most evident.

4.5 TRAINING DATA REQUIREMENTS

Figure 4 provides an overview of the effects of dataset size on networks trained with cross-entropy
loss, Baikal, and BaikalCMA. For each training dataset portion size, five individual networks were
trained for each loss function.

The degree by which Baikal and BaikalCMA outperform cross-entropy loss increases as the train-
ing dataset becomes smaller. This provides evidence of less overfitting when training a network
with Baikal or BaikalCMA. As expected, BaikalCMA outperforms Baikal at all tested dataset sizes.
The size of this improvement in accuracy does not grow as significantly as the improvement over
cross-entropy loss, leading to the belief that the overfitting characteristics of Baikal and BaikalCMA
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Figure 4: Sensitivity to different dataset sizes for different loss functions on MNIST. For each size,
n = 5. Baikal and BaikalCMA increasingly outperform the cross-entropy loss on small datasets,
providing evidence of reduced overfitting.

Figure 5: Testing accuracy across varying training steps on CIFAR-10. The Baikal loss, which has
been transferred from MNIST, outperforms the cross-entropy loss on all training durations.

are very similar. Ostensibly, one could run the optimization phase of GLO on a reduced dataset
specifically to yield a loss function with better performance than BaikalCMA on small datasets.

4.6 LOSS FUNCTION TRANSFER TO CIFAR-10

Figure 5 presents a collection of 18 separate tests of the cross-entropy loss and Baikal applied to
CIFAR-10. Baikal is found to outperform cross-entropy across all training durations, with the differ-
ence becoming more prominent for shorter training periods. These results present an interesting use
case for GLO, where a loss function that is found on a simpler dataset can be transferred to a more
complex dataset while still maintaining performance improvements. This faster training provides a
particularly persuasive argument for using GLO loss functions in fixed time-budget scenarios.

5 WHAT MAKES BAIKAL WORK?

This section presents a symbolic analysis of the Baikal loss function, followed by experiments that
attempt to elucidate why Baikal works better than the cross-entropy loss. A likely explanation is
that Baikal results in implicit regularization, reducing overfitting.

5.1 BINARY CLASSIFICATION

Loss functions used on the MNIST dataset, a 10-dimensional classification problem, are difficult
to plot and visualize graphically. To simplify, loss functions are analyzed in the context of binary
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Figure 7: Output probabilities of networks trained with cross-entropy loss and BaikalCMA. With
BaikalCMA, the peaks are shifted away from extreme values and more spread out, indicating im-
plicit regularization. The BaikalCMA histogram matches that from a network trained with a confi-
dence regularizer (Pereyra et al., 2017).

classification, with n = 2, the Baikal loss expands to

LBaikal2D = −1

2

(
log(y0)−

x0
y0

+ log(y1)−
x1
y1

)
. (3)

Since vectors x and y sum to 1, by consequence of being passed through a softmax function, for
binary classification x = 〈x0, 1− x0〉 and y = 〈y0, 1− y0〉. This constraint simplifies the binary
Baikal loss to the following function of two variables (x0 and y0):

LBaikal2D ∝ − log(y0) +
x0
y0
− log(1− y0) +

1− x0
1− y0

. (4)

This same methodology can be applied to the cross-entropy loss and BaikalCMA.

Figure 6: Binary classification loss functions at
x0 = 1. Correct predictions lie on the right side
of the graph, and incorrect ones on the left. The
log loss decreases monotonically, while Baikal
and BaikalCMA present counterintuitive, sharp
increases in loss as predictions, approach the true
label. This phenomenon provides regularization
by preventing the model from being too confident
in its predictions.

In practice, true labels are assumed to be correct
with certainty, thus, x0 is equal to either 0 or 1.
The specific case where x0 = 1 is plotted in
Figure 6 for the cross-entropy loss, Baikal, and
BaikalCMA. The cross-entropy loss is shown
to be monotonically decreasing, while Baikal
and BaikalCMA counterintuitively show an in-
crease in the loss value as the predicted label,
y0, approaches the true label x0. This unex-
pected increase allows the loss functions to pre-
vent the model from becoming too confident in
its output predictions, thus providing a form of
regularization. Section 5.2 provides reasoning
for this unexplained result.

As also seen in Figure 6, the minimum for
the Baikal loss where x0 = 1 lies near 0.71,
while the minimum for the BaikalCMA loss
where x0 = 1 lies near 0.77. This minimum,
along with the more pronounced slope around
x0 = 0.5 is likely a reason why BaikalCMA
performs better than Baikal.

5.2 IMPLICIT REGULARIZATION

The Baikal and BaikalCMA loss functions are surprising in that they incur a high loss when the
output is very close to the correct value (as illustrated in Figure 6). Although at first glance this
behavior is counterintuitive, it may provide an important advantage. The outputs of a trained network
will not be exactly correct, although they are close, and therefore the network is less likely to overfit.
Thus, these loss functions provide an implicit form of regularization, enabling better generalization.
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This effect is similar to that of the confidence regularizer (Pereyra et al., 2017), which penalizes
low-entropy prediction distributions. The bimodal distribution of output probabilities that results
from confidence regularization is nearly identical to that of a network trained with BaikalCMA. His-
tograms of these distributions on the test dataset for cross-entropy and BaikalCMA networks, after
15,000 steps of training on MNIST, are shown in Figure 7. The abscissae in Figures 6 and 7 match,
making it clear how the distribution for BaikalCMA has shifted away from the extreme values. The
improved behavior under small-dataset conditions described in Section 4.5 further supports implicit
regularization; less overfitting was observed when using Baikal and BaikalCMA compared to the
cross-entropy loss.

Notably, the implicit regularization provided by Baikal and BaikalCMA complements the different
types of regularization already present in the trained networks. As detailed in Section A.2, MNIST
networks are trained with dropout (Hinton et al., 2012), and CIFAR-10 networks are trained with
L2 weight decay and local response normalization (Krizhevsky et al., 2012), yet Baikal is able to
improve performance further.

6 DISCUSSION AND FUTURE WORK

This paper proposes loss function discovery and optimization as a new form of metalearning, and
introduces an evolutionary computation approach to it. GLO was evaluated experimentally in the
image classification domain, and discovered a surprising new loss function, Baikal. Experiments
showed substantial improvements in accuracy, convergence speed, and data requirements. Further
analysis suggested that these improvements result from implicit regularization that reduces overfit-
ting to the data. This regularization complements the existing regularization in trained networks.

In the future, GLO can be applied to other machine learning datasets and tasks. The approach is
general, and could result in discovery of customized loss functions for different domains, or even
specific datasets. One particularly interesting domain is generative adversarial networks (GANs).
Significant manual tuning is necessary in GANs to ensure that the generator and discriminator net-
works learn harmoniously. GLO could find co-optimal loss functions for the generator and discrim-
inator networks in tandem, thus making GANs more powerful, robust, and easier to implement.

GAN optimization is an example of co-evolution, where multiple interacting solutions are devel-
oped simultaneously. GLO could leverage co-evolution more generally: for instance, it could be
combined with techniques like CoDeepNEAT (Miikkulainen et al., 2019) to learn jointly-optimal
network structures, hyperparameters, learning rate schedules, data augmentation, and loss functions
simultaneously. Such an approach requires significant computing power, but may also discover and
utilize interactions between the design elements that result in higher complexity and better perfor-
mance than is currently possible.

7 CONCLUSION

This paper proposes Genetic Loss-function Optimization (GLO) as a general framework for dis-
covering and optimizing loss functions for a given task. A surprising new loss function, Baikal,
was discovered in the experiments, and shown to outperform the cross-entropy loss on MNIST and
CIFAR-10 in terms of accuracy, training speed, and data requirements. Further analysis suggested
that Baikal’s improvements result from implicit regularization that reduces overfitting to the data.
GLO can be combined with other aspects of metalearning in the future, paving the way to robust
and powerful AutoML.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Due to the large number of partial training sessions that are needed for both the discovery and
optimization phases, training is distributed across the network to a cluster of dedicated machines
that use Condor (Thain et al., 2005) for scheduling. Each machine in this cluster has one NVIDIA
GeForce GTX Titan Black GPU and two Intel Xeon E5-2603 (4 core) CPUs running at 1.80GHz
with 8GB of memory. Training itself is implemented with TensorFlow (Abadi et al., 2016) in Python.
The primary components of GLO (i.e., the genetic algorithm and CMA-ES) are implemented in
Swift. These components run centrally on one machine and asynchronously dispatch work to the
Condor cluster over SSH.

A.2 EXPERIMENTAL SETUP

The following two sections detail the experimental setup that was used for the evaluation presented
in this paper.

A.2.1 MNIST

The first target task used for evaluation was the MNIST Handwritten Digits dataset (LeCun et al.,
1998), a widely used dataset where the goal is to classify 28 × 28 pixel images as one of ten dig-
its. The MNIST dataset has 55,000 training samples, 5,000 validation samples, and 10,000 testing
samples.
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(a) Log Loss (b) Baikal Loss

Figure 8: Loss function surface plots for binary classification. y is the prediction for one class, and
x is the true label for that class. Baikal is channel-shaped, while the log loss has a saddle-like shape.

A simple CNN architecture with the following layers is used: (1) 5× 5 convolution with 32 filters,
(2) 2×2 stride-2 max-pooling, (3) 5×5 convolution with 64 filters, (4) 2×2 stride-2 max-pooling,
(5) 1024-unit fully-connected layer, (6) a dropout layer (Hinton et al., 2012) with 40% dropout
probability, and (7) a softmax layer. ReLU (Nair & Hinton, 2010) activations are used. Training
uses stochastic gradient descent (SGD) with a batch size of 100, a learning rate of 0.01, and, unless
otherwise specified, occurred over 20,000 steps.

Several experiments tested various learning rate values across a handful of orders-of-magnitude to
arrive at the step size used in the paper. For the baseline, this step size provided the highest accuracy.

A.2.2 CIFAR-10

To further validate GLO, the more challenging CIFAR-10 dataset (Krizhevsky & Hinton, 2009),
a popular dataset of small, color photographs in ten classes, was used as a medium to test the
transferability of loss functions found on a different domain. CIFAR-10 consists of 50,000 training
samples, and 10,000 testing samples.

A simple CNN architecture, taken from (Gonzalez et al., 2019) (and itself inspired by AlexNet
(Krizhevsky et al., 2012)), with the following layers is used: (1) 5 × 5 convolution with 64 filters
and ReLU activations, (2) 3 × 3 max-pooling with a stride of 2, (3) local response normalization
(Krizhevsky et al., 2012) with k = 1, α = 0.001/9, β = 0.75, (4) 5× 5 convolution with 64 filters
and ReLU activations, (5) local response normalization with k = 1, α = 0.001/9, β = 0.75, (6)
3× 3 max-pooling with a stride of 2, (7) 384-unit fully-connected layer with ReLU activations, (8)
192-unit fully-connected, linear layer, and (9) a softmax layer.

Inputs to the network are sized 24 × 24 × 3, rather than 32 × 32 × 3 as provided in the dataset;
these smaller sized inputs enable more sophisticated data augmentation. To force the network to
learn better spatial invariance, random 24 × 24 croppings are selected from each full-size image,
randomly flipped longitudinally, randomly lightened or darkened, and their contrast is randomly
perturbed. Furthermore, to attain quicker convergence, an image’s mean pixel value and variance are
subtracted and divided, respectively, from the whole image during training and evaluation. CIFAR-
10 networks were trained with SGD, L2 regularization with a weight decay of 0.004, a batch size of
1024, and an initial learning rate of 0.05 that decays by a factor of 0.1 every 350 epochs.

Several experiments tested various initial learning rate values across a handful of orders-of-
magnitude to arrive at the step size used in the paper. For the baseline, this initial learning rate
provided the highest accuracy.

A.3 BINARY CLASSIFICATIONS SURFACE PLOTS

When plotted in three-dimensions, as in Figure 8, the binary cross-entropy and Baikal loss functions
can be observed to have characteristic surfaces. The shape of Baikal’s surface, and its similarity to
the bathymetry of Lake Baikal, is where it gets its name. Note that the case plotted in Figure 6 is
equivalent to the front “slice” of the surface plots in Figure 8.
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