Published as a conference paper at ICLR 2019

GENERATIVE CODE MODELING WITH GRAPHS

Marc Brockschmidt, Miltiadis Allamanis, Alexander Gaunt Oleksandr Polozov

Microsoft Research Microsoft Research

Cambridge, UK Redmond, WA, USA

{mabrocks,miallama, algaunt}@microsoft.com polozov@microsoft.com
ABSTRACT

Generative models for source code are an interesting structured prediction problem,
requiring to reason about both hard syntactic and semantic constraints as well as
about natural, likely programs. We present a novel model for this problem that
uses a graph to represent the intermediate state of the generated output. Our model
generates code by interleaving grammar-driven expansion steps with graph aug-
mentation and neural message passing steps. An experimental evaluation shows
that our new model can generate semantically meaningful expressions, outperform-
ing a range of strong baselines.

1 INTRODUCTION

Learning to understand and generate programs is an important building block for procedural artifi-
cial intelligence and more intelligent software engineering tools. It is also an interesting task in the
research of structured prediction methods: while imbued with formal semantics and strict syntactic
rules, natural source code carries aspects of natural languages, since it acts as a means of communi-
cating intent among developers. Early works in the area have shown that approaches from natural
language processing can be applied successfully to source code (Hindle et al., 2012), whereas the
programming languages community has had successes in focusing exclusively on formal semantics.
More recently, methods handling both modalities (i.e., the formal and natural language aspects) have
shown successes on important software engineering tasks (Raychev et al., 2015; Bichsel et al., 2016;
Allamanis et al., 2018b) and semantic parsing (Yin & Neubig, 2017; Rabinovich et al., 2017).

However, current generative models of source code mostly focus on only one of these modalities at
a time. For example, program synthesis tools based on enumeration and deduction (Solar-Lezama,
2008; Polozov & Gulwani, 2015; Feser et al., 2015; Feng et al., 2018) are successful at generating
programs that satisfy some (usually incomplete) formal specification but are often obviously wrong
on manual inspection, as they cannot distinguish unlikely from likely, “natural” programs. On the
other hand, learned code models have succeeded in generating realistic-looking programs (Maddison
& Tarlow, 2014; Bielik et al., 2016; Parisotto et al., 2017; Rabinovich et al., 2017; Yin & Neubig,
2017). However, these programs often fail to be semantically relevant, for example because variables
are not used consistently.

In this work, we try to overcome these challenges for generative code models and present a general
method for generative models that can incorporate structured information that is deterministically
available at generation time. We focus our attention on generating source code and follow the ideas
of program graphs (Allamanis et al., 2018b) that have been shown to learn semantically meaning-
ful representations of (pre-existing) programs. To achieve this, we lift grammar-based tree decoder
models into the graph setting, where the diverse relationships between various elements of the gener-
ated code can be modeled. For this, the syntax tree under generation is augmented with additional
edges denoting known relationships (e.g., last use of variables). We then interleave the steps of the
generative procedure with neural message passing (Gilmer et al., 2017) to compute more precise
representations of the intermediate states of the program generation. This is fundamentally different
from sequential generative models of graphs (Li et al., 2018; Samanta et al., 2018), which aim to
generate all edges and nodes, whereas our graphs are deterministic augmentations of generated trees.

To summarize, we present a) a general graph-based generative procedure for highly structured ob-
jects, incorporating rich structural information;) ExprGen, a new code generation task focused on

Published as a conference paper at ICLR 2019

Algorithm 1 Pseudocode for Expand int iloffsetIdx =
Array.IndexOf (sortedILOffsets, map.ILOffset);

Input: Context ¢, partial AST a, node v to expand ~ int nextILOffsetIdx = iloffsetIdx + 1;
I: h, < getRepresentation(c, a,v) 10T nexthaploffoct -

. . 7 ‘nextILOffsetIdx < sortedILOffsets.Length
2: ThS < pleProductlon(v,hv) ? sortedILOffsets[nextILOffsetIdx]

3: for child node type ¢ € rhs do :_int.MaxValue;

4: (a,u) < insertChild(a, ¢) .

5. if £ is nonterminal type then Figure 1: Example for ExprGen, target ex-
6

7

a < Expand(c, a,u) pression to be generated is . Taken
from BenchmarkDotNet, lightly edited for
formatting.

: return a

generating small, but semantically complex expressions conditioned on source code context; and c) a
comprehensive experimental evaluation of our generative procedure and a range of baseline methods
from the literature.

2 BACKGROUND & TASK

The most general form of the code generation task is to produce a (partial) program in a programming
language given some context information c. This context information can be natural language (as in,
e.g., semantic parsing), input-output examples (e.g., inductive program synthesis), partial program
sketches, efc. Early methods generate source code as a sequence of tokens (Hindle et al., 2012;
Hellendoorn & Devanbu, 2017) and sometimes fail to produce syntactically correct code. More
recent models are sidestepping this issue by using the target language’s grammar to generate abstract
syntax trees (ASTs) (Maddison & Tarlow, 2014; Bielik et al., 2016; Parisotto et al., 2017; Yin &
Neubig, 2017; Rabinovich et al., 2017), which are syntactically correct by construction.

In this work, we follow the AST generation approach. The key idea is to construct the AST a sequen-
tially, by expanding one node at a time using production rules from the underlying programming
language grammar. This simplifies the code generation task to a sequence of classification problems,
in which an appropriate production rule has to be chosen based on the context information and the
partial AST generated so far. In this work, we simplify the problem further — similar to Maddison
& Tarlow (2014); Bielik et al. (2016) — by fixing the order of the sequence to always expand the
left-most, bottom-most nonterminal node. Alg. 1 illustrates the common structure of AST-generating
models. Then, the probability of generating a given AST a given some context c is

pla|e) =] plar|c,az), (1)
t
where a; is the production choice at step ¢ and a; the partial syntax tree generated before step ¢.

Code Generation as Hole Completion We introduce the ExprGen task of filling in code within
a hole of an otherwise existing program. This is similar, but not identical to the auto-completion
function in a code editor, as we assume information about the following code as well and aim to
generate whole expressions rather than single tokens. The ExprGen task also resembles program
sketching (Solar-Lezama, 2008) but we give no other (formal) specification other than the surrounding
code. Concretely, we restrict ourselves to expressions that have Boolean, arithmetic or string type,
or arrays of such types, excluding expressions of other types or expressions that use project-specific
APIs. An example is shown in Fig. 1. We picked this subset because it already has rich semantics
that can require reasoning about the interplay of different variables, while it still only relies on few
operators and does not require to solve the problem of open vocabularies of full programs, where an
unbounded number of methods would need to be considered.

In our setting, the context c is the pre-existing code around a hole for which we want to generate an
expression. This also includes the set of variables vy, ..., v, that are in scope at this point, which
can be used to guide the decoding procedure (Maddison & Tarlow, 2014). Note, however, that our
method is not restricted to code generation and can be easily extended to all other tasks and domains
that can be captured by variations of Alg. 1 (e.g. in NLP).

Published as a conference paper at ICLR 2019

3 GRAPH DECODING FOR SOURCE CODE

To tackle the code generation task presented in the previous section, we have to make two design
choices: (a) we need to find a way to encode the code context c,vq,...,v, and (b) we need to
construct a model that can learn p(a; | ¢, a<;) well. We do nor investigate the question of encoding
the context in this paper, and use two existing methods in our experiments in Sect. 5. Both these
encoders yield a distributed vector representation for the overall context, representations hy,, . .., by,
for all tokens in the context, and separate representations for each of the in-scope variables vy, . . ., vy,
summarizing how each variable is used in the context. This information can then be used in the
generation process, which is the main contribution of our work and is described in this section.

Overview Our decoder model follows the grammar-driven AST generation strategy of prior work
as shown in Alg. 1. The core difference is in how we compute the representation of the node to
expand. Maddison & Tarlow (2014) construct it entirely from the representation of its parent in the
AST using a log-bilinear model. Rabinovich et al. (2017) construct the representation of a node using
the parents of the AST node but also found it helpful to take the relationship to the parent node (e.g.
“condition of a while”) into account. Yin & Neubig (2017) on the other hand propose to take the
last expansion step into account, which may have finished a subtree “to the left”. In practice, these
additional relationships are usually encoded by using gated recurrent units with varying input sizes.

We propose to generalize and unify these ideas using a graph to structure the flow of information
in the model. Concretely, we use a variation of attribute grammars (Knuth, 1967) from compiler
theory to derive the structure of this graph. We associate each node in the AST with two fresh nodes
representing inherited resp. synthesized information (or attributes). Inherited information is derived
from the context and parts of the AST that are already generated, whereas synthesized information
can be viewed as a “summary” of a subtree. In classical compiler theory, inherited attributes usually
contain information such as declared variables and their types (to allow the compiler to check that
only declared variables are used), whereas synthesized attributes carry information about a subtree
“to the right” (e.g., which variables have been declared). Traditionally, to implement this, the language
grammar has to be extended with explicit rules for deriving and synthesizing attributes.

To transfer this idea to the deep learning domain, we represent attributes by distributed vector
representations and train neural networks to learn how to compute attributes. Our method for
getRepresentation from Alg. 1 thus factors into two parts: a deterministic procedure that turns a
partial AST a; into a graph by adding additional edges that encode attribute relationships, and a
graph neural network that learns from this graph.

Notation Formally, we represent programs as graphs where nodes u, v, ... are either the AST
nodes or their associated attribute nodes, and typed directed edges (u, 7,v) € £ connect the nodes
according to the flow of information in the model. The edge types 7 represent different syntactic
or semantic relations in the information flow, discussed in detail below. We write £, for the set of
incoming edges into v. We also use functions like parent(a,v) and lastSibling(a, v) that look up and
return nodes from the AST a (e.g. resp. the parent node of v or the preceding AST sibling of v).

Example Consider the AST of the expression Algorithm 2 Pseudocode for GomputeEdge
i - 7 shown in Fig. 2 (annotated with at- Input: Partial AST a, node v
tribute relationships) constructed step by step ~ 1: Edgeset& « &
by our model. The AST derivation using the 2¢ if vis inherited then ,
programming language grammar is indicated 3 5 “eu {(parent(a, v), Child, v)}
b . 4: if v is terminal node then
y shaded backgrounds, nonterminal nodes are 5 £
. : + & U {(lastToken(a, v), NextToken,v)}

shown as rounded rectangles, and terminal 6

7

8

—_

. if v is variable then
nodes are shown as rectangles. We additionally £ « £ U {(lastUse(a, v), NextUse, v)}
show the variables given within the context as if v is not first child then
dashed rectangles at the bottom. First, the root & + £ U {{lastSibling(a, v), NextSib, v)}
node, Expr, was expanded using the production 10: else
rule (1) : Expr = Expr - Expr. Thenits 11, ¢, gy {(u, Parent,v) | u € children(a,v)}
two nonterminal children were in turn expanded 13. g . gy {(inheritedAttr(v), Inh ToSyn, v)}
to the set of known variables using the produc- |3

0

. return £

Published as a conference paper at ICLR 2019

Initial State Step 1 Step 2
]
Expr g Expr 2 Expr
3 3
Expr - Expr Expr = Expr
al .
i
1 207 1 207 1 T 207
i j i j i j
Step 3 . Step 4 Step 5
Expr ° Expr 2 Expr
3 5 3 5 6 3 5 6 7
Expr - Expr EXpr —wm* — Expr EXpr —omn > T s > EXPP
4 1 4 1 4 1
1 T 207, 1 T 28 1 T 23
i J 1 J 1 J
Step 6 Step 7 Step 8
e Expr : Expr ° Expr <—‘m o
5 6 7 5 6 7 %7 3 5
EXpr —owe® = —wews . EXpP EXpr —ws ™ = —een | EXpr " Expr == - —mm EXpr

Vi

4

<%
< %en
i
i

4 8

1

Figure 2: Example AST with attribute dependencies, shown constructed step by step in the order of
generation. Each AST node (labeled by a terminal or non-terminal) has either one or two associated
attribute nodes, shown as its left/right parts. The node IDs are highlighted at the corresponding
generation step. Edge color and label indicate edge type. Edges are computed using Alg. 2, but are
only depicted after use in message passing. Best viewed in color.

tion rule (2) : Expr = V, choosing i for the first variable and j for the second variable (cf. below
for details on picking variables).

Attribute nodes are shown overlaying their corresponding AST nodes. For example, the root node
is associated with its inherited attributes node 0 and with node 10 for its synthesized attributes. For
simplicity, we use the same representation for inherited and synthesized attributes of terminal nodes.

Edgesina.; We discuss the edges used in our neural attribute grammars (N/AG) on our example
below, and show them in Fig. 2 using different edge drawing styles for different edge types. Once a
node is generated, the edges connecting this node can be deterministically added to a.; (precisely
defined in Alg. 2). The list of different edge types used in our model is as follows:

e Child (red) edges connect an inherited attribute node to the inherited attributes nodes of its
children, as seen in the edges from node 0. These are the connections in standard syntax-
driven decoders (Maddison & Tarlow, 2014; Parisotto et al., 2017; Yin & Neubig, 2017;
Rabinovich et al., 2017).

e Parent (green) edges connect a synthesized attribute node to the synthesized attribute
node of its AST parent, as seen in the edges leading to node 10. These are the additional
connections used by the R3NN decoder introduced by Parisotto et al. (2017).

e NextSib (black) edges connect the synthesized attribute node to the inherited attribute
node of its next sibling (e.g. from node 5 to node 6). These allow information about the
synthesized attribute nodes from a fully generated subtree to flow to the next subtree.

e NextUse (orange) edges connect the attribute nodes of a variable (since variables are always
terminal nodes, we do not distinguish inherited from synthesized attributes) to their next
use. Unlike Allamanis et al. (2018b), we do not perform a dataflow analysis, but instead just

Published as a conference paper at ICLR 2019

follow the lexical order. This can create edges from nodes of variables in the context c (for
example, from node 1 to 4 in Fig. 2), or can connect AST leaf nodes that represent multiple
uses of the same variable within the generated expressions.

o NextToken (blue) edges connect a terminal node (a token) to the next token in the program
text, for example between nodes 4 and 6.

e InhToSyn edges (not shown in Fig. 2) connect the inherited attributes nodes to its synthe-
sized attribute nodes. This is not strictly adding any information, but we found it to help
with training.

The panels of Fig. 2 show the timesteps at which the representations of particular attribute nodes are
computed and added to the graph. For example, in the second step, the attributes for the terminal
token i (node 4) in Fig. 2 are computed from the inherited attributes of its AST parent Expr (node
3), the attributes of the last use of the variable i (node 1), and the node label i. In the third step, this
computed attribute is used to compute the synthesized attributes of its AST parent Expr (node 5).

Attribute Node Representations To compute the neural attribute representation h,, of an attribute
node v whose corresponding AST node is labeled with ¢,,, we first obtain its incoming edges using
Alg. 2 and then use the state update function from Gated Graph Neural Networks (GGNN) (Li et al.,
2016). Thus, we take the attribute representations h,,, at edge sources u;, transform them according
to the corresponding edge type t; using a learned function f;,, aggregate them (by elementwise
summation) and combine them with the learned embedding emb(¢,,) of the node label £, using a
function g:

(ui ti,)EE,
In practice, we use a single linear layer for f;, and implement g as a gated recurrent unit (Cho et al.,
2014). We compute node representations in such an order that all h,,, appearing on the right of (2)
are already computed. This is possible as the graphs obtained by repeated application of Alg. 2 are
directed acyclic graphs rooted in the inherited attribute node of the root node of the AST. We initialize
the representation of the root inherited attribute to the representation returned by the encoder for the
context information.

Choosing Productions, Variables & Literals We can treat picking production rules as a simple
classification problem over all valid production rules, masking out those choices that do not corre-
spond to the currently considered nonterminal. For a nonterminal node v with label ¢,, and inherited
attributes h,,, we thus define

pickProduction(4,, h,) = argmax P(rule | £,,h,) = argmax[e(h,) +my,] . 3)
Here, my, is a mask vector whose value is 0 for valid productions ¢,, = ... and —oo for all other
productions. In practice, we implement e using a linear layer.

Similarly, we pick variables from the set of variables V' in scope using their representations h,, .

(initially the representation obtained from the context, and later the attribute representation of the last

node in the graph in which they have been used) by using a pointer network (Vinyals et al., 2015).

Concretely, to pick a variable at node v, we use learnable linear function & and define
pickVariable(V, h,) = arg max P(var | h,) = arg max k(h,,h,,,). 4)

varey vareV
Note that since the model always picks a variable from the set of in-scope variables V), this generation
model can never predict an unknown or out-of-scope variable.

Finally, to generate literals, we combine a small vocabulary £ of common literals observed in the
training data and special UNK tokens for each type of literal with another pointer network that can
copy one of the tokens ¢; . .. ¢7 from the context. Thus, to pick a literal at node v, we define
pickLiteral(V,h,) = argmax P(lit | h,). 5)
lite LU{t1...t1}
Note that this is the only operation that may produce an unknown token (i.e. an UNK literal). In
practice, we implement this by learning two functions s, and s.., such that s, (h,) produces a score
for each token from the vocabulary and s..(h,, h¢,) computes a score for copying token ¢; from the
context. By computing a softmax over all resulting values and normalizing it by summing up entries
corresponding to the same constant, we can learn to approximate the desired P(lit | h,).

Published as a conference paper at ICLR 2019

Training & Training Objective The different shapes and sizes of generated expressions compli-
cate an efficient training regime. However, note that given a ground truth target tree, we can easily
augment it with all additional edges according to Alg. 2. Given that full graph, we can compute a
propagation schedule (intuitively, a topological ordering of the nodes in the graph, starting in the root
node) that allows to repeatedly apply (2) to obtain representations for all nodes in the graph. By rep-
resenting a batch of graphs as one large (sparse) graph with many disconnected components, similar
to Allamanis et al. (2018b), we can train our graph neural network efficiently. We have released the
code for thison https://github.com/Microsoft/graph-based-code-modelling.

Our training procedure thus combines an encoder (cf: Sect. 5), whose output is used to initialize the
representation of the root and context variable nodes in our augmented syntax graph, the sequential
graph propagation procedure described above, and the decoder choice functions (3) and (4). We train
the system end-to-end using a maximum likelihood objective without pre-trained components.

Additional Improvements We extend (3) with an attention mechanism (Bahdanau et al., 2014;
Luong et al., 2015) that uses the state h,, of the currently expanded node v as a key and the context
token representations hy, , ..., hy, as memories. Experimentally, we found that extending Eqs. 4, 5
similarly did not improve results, probably due to the fact that they already are highly dependent on
the context information.

Following Rabinovich et al. (2017), we provide additional information for Child edges. To allow
this, we change our setup so that some edge types also require an additional label, which is used
when computing the messages sent between different nodes in the graph. Concretely, we extend (2)
by considering sets of unlabeled edges &, and labeled edges £':

h, = g(emb(&,% Z fti (hul) + Z fti (huwembe(gi))) (6)

(us,ti,0)EE, (wi,ti b, v)EEL

Thus for labeled edge types, f;, takes two inputs and we additionally introduce a learnable embedding
for the edge labels. In our experiments, we found it useful to label Child with tuples consisting of
the chosen production and the index of the child, i.e., in Fig. 2, we would label the edge from O to 3
with (2, 0), the edge from 0 to 6 with (2, 1), efc.

Furthermore, we have extended pickProduction to also take the information about available variables
into account. Intuitively, this is useful in cases of productions such as Expr = Expr.Length,
which can only be used in a well-typed derivation if an array-typed variable is available. Thus, we
extend e(h,,) from (3) to additionally take the representation of all variables in scope into account,
i.e., e(hy,r({h var € V})), where we have implemented r as a max pooling operation.

Vyar

4 RELATED WORK

Source code generation has been studied in a wide range of different settings (Allamanis et al., 2018a).
We focus on the most closely related works in language modeling here. Early works approach the
task by generating code as sequences of tokens (Hindle et al., 2012; Hellendoorn & Devanbu, 2017),
whereas newer methods have focused on leveraging the known target grammar and generate code
as trees (Maddison & Tarlow, 2014; Bielik et al., 2016; Parisotto et al., 2017; Yin & Neubig, 2017;
Rabinovich et al., 2017) (cf. Sect. 2 for an overview). While modern models succeed at generating
“natural-looking” programs, they often fail to respect simple semantic rules. For example, variables
are often used without initialization or written several times without being read inbetween.

Existing tree-based generative models primarily differ in what information they use to decide which
expansion rule to use next. Maddison & Tarlow (2014) consider the representation of the immediate
parent node, and suggest to consider more information (e.g., nearby tokens). Parisotto et al. (2017)
compute a fresh representation of the partial tree at each expansion step using R3NNs (which intu-
itively perform a leaf-to-root traversal followed by root-to-leaf traversal of the AST). The PHOG
model (Bielik et al., 2016) conditions generation steps on the result of learned (decision tree-style)
programs, which can do bounded AST traversals to consider nearby tokens and non-terminal nodes.
The language also supports a jump to the last node with the same identifier, which can serve as syn-
tactic approximation of data-flow analysis. Rabinovich et al. (2017) only use information about the
parent node, but use neural networks specialized to different non-terminals to gain more fine-grained

https://github.com/Microsoft/graph-based-code-modelling

Published as a conference paper at ICLR 2019

control about the flow of information to different successor nodes. Finally, Amodio et al. (2017)
and Yin & Neubig (2017) follow a left-to-right, depth-first expansion strategy, but thread updates
to single state (via a gated recurrent unit) through the overall generation procedure, thus giving the
pickProduction procedure access to the full generation history as well as the representation of the
parent node. Amodio et al. (2017) also suggest the use of attribute grammars, but use them to de-
fine a deterministic procedure that collects information throughout the generation process, which is
provided as additional feature.

As far as we are aware, previous work has not considered a task in which a generative model fills
a hole in a program with an expression. Lanuage model-like methods take into account only the
lexicographically previous context of code. The task of Raychev et al. (2014) is near to our ExprGen,
but instead focuses on filling holes in sequences of API calls. There, the core problem is identifying
the correct function to call from a potentially large set of functions, given a sequence context. In
contrast, ExprGen requires to handle arbitrary code in the context, and then to build possibly complex
expressions from a small set of operators. Allamanis et al. (2018b) consider similar context, but are
only picking a single variable from a set of candidates, and thus require no generative modeling.

5 EVALUATION

Dataset We have collected a dataset for our ExprGen task from 593 highly-starred open-source C*
projects on GitHub, removing any near-duplicate files, following the work of Lopes et al. (2017). We
parsed all C¥ files and identified all expressions of the fragment that we are considering (i.e., restricted
to numeric, Boolean and string types, or arrays of such values; and not using any user-defined func-
tions). We then remove the expression, perform a static analysis to determine the necessary context
information and extract a sample. For each sample, we create an abstract syntax tree by coarsening
the syntax tree generated by the C* compiler Roslyn. This resulted in 343 974 samples overall with
4.3 (£3.8) tokens per expression to generate, or alternatively 3.7 (& 3.1) production steps. We split
the data into four separate sets. A “test-only” dataset is made up from ~ 100k samples generated from
114 projects. The remaining data we split into training-validation-test sets (3 : 1 : 1), keeping all
expressions collected from a single source file within a single fold. Samples from our dataset can be
found in the supplementary material. Our decoder uses the grammar made up by 222 production rules
observed in the ASTs of the training set, which includes rules such as Expr = Expr + Expr
for binary operations, Expr = Expr.Equals (Expr) for built-in methods, efc.

Encoders We consider two models to encode context information. Seq is a two-layer bi-directional
recurrent neural network (using a GRU (Cho et al., 2014)) to encode the tokens before and after the
“hole” in which we want to generate an expression. Additionally, it computes a representation for
each variable var in scope in the context in a similar manner: For each variable var it identifies
usages before/after the hole and encodes each of them independently using a second bi-directional
two-layer GRU, which processes a window of tokens around each variable usage. It then computes a
representation for var by average pooling of the final states of these GRU runs.

The second encoder G is an implementation of the program graph approach introduced by Allamanis
et al. (2018b). We follow the transformation used for the Varmisuse task presented in that paper,
i.e., the program is transformed into a graph, and the target expression is replaced by a fresh dummy
node. We then run a graph neural network for 8 steps to obtain representations for all nodes in the
graph, allowing us to read out a representation for the “hole” (from the introduced dummy node) and
for all variables in context. The used context information captured by the GNN is a superset of what
existing methods (e.g. language models) consider.

Baseline Decoders We compare our model to re-implementations of baselines from the literature.
As our ExprGen task is new, re-using existing implementations is hard and problematic in compari-
son. Most recent baseline methods can be approximated by ablations of our model. We experimented
with a simple sequence decoder with attention and copying over the input, but found it to be substan-
tially weaker than other models in all regards. Next, we consider 7 ree, our model restricted to using
only Child edges without edge labels. This can be viewed as an evolution of Maddison & Tarlow
(2014), with the difference that instead of a log-bilinear network that does not maintain state during
the generation, we use a GRU. ASN is similar to abstract syntax networks (Rabinovich et al., 2017)
and arises as an extension of the 7 ree model by adding edge labels on Child that encode the chosen

Published as a conference paper at ICLR 2019

Table 1: Evaluation of encoder and decoder combinations on predicting an expression from code
context. T: PHOG (Bielik et al., 2016) is only conditioned on the tokens on the left of the expression.

Model Test (from seen projects) Test-only (from unseen projects)
Perplexity Well-Typed Acc@1 Acc@5 Perplexity Well-Typed Acc@1 Acc@5
PHOG' - - 348% 42.9% - - 280% 37.3%
Seq — Seq 87.48 324% 21.8% 28.1% 130.46 23.4% 10.8% 16.8%
Seq — NAG 6.81 532% 17.7% 33.7% 8.38 40.4% 8.4% 15.8%
G — Seq 93.31 409% 27.1% 34.8% 28.48 363% 172% 25.6%
G — Tree 4.37 493% 268% 48.9% 5.37 412% 199% 36.8%
G — ASN 2.62 787% 45.7% 62.0% 3.03 747% 32.4% 48.1%
G — Syn 2.71 849% 50.5% 66.8% 3.48 84.5% 36.0% 52.7%
G — NAG 2.56 86.4% 523% 69.2% 3.07 84.5% 388% 57.0%

production and the index of the child (corresponding to the “field name” Rabinovich et al. (2017)).
Finally, Syn follows the work of Yin & Neubig (2017), but uses a GRU instead of an LSTM. For
this, we extend 7 ree by a new NextEzrp edge that connects nodes to each other in the expansion
sequence of the tree, thus corresponding to the action flow (Yin & Neubig, 2017).

In all cases, our re-implementations improve on prior work in our variable selection mechanism,
which ensures that generated programs only use variables that are defined and in scope. Both Rabi-
novich et al. (2017) and Yin & Neubig (2017) instead use a copying mechanism from the context. On
the other hand, they use RNN modules to generate function names and choose arguments from the
context (Yin & Neubig, 2017) and to generate string literals (Rabinovich et al., 2017). Our ExprGen
task limits the set of allowed functions and string literals substantially and thus no RNN decoder
generating such things is required in our experiments.

The authors of the PHOG (Bielik et al., 2016) language model kindly ran experiments on our data
for the ExprGen task, to provide baseline results of a non-neural language model. Note, however,
that PHOG does not consider the code context to the right of the expression to generate, and does no
additional analyses to determine which variable choices are valid. Extending the model to take more
context into account and do some analyses to restrict choices would certainly improve its results.

5.1 QUANTITATIVE EVALUATION

Metrics We are interested in the ability of a model to generate valid expressions based on the
current code context. To evaluate this, we consider four metrics. As our ExprGen task requires a
conditional language model of code, we first consider the per-token perplexity of the model; the
lower the perplexity, the better the model fits the real data distribution. We then evaluate how often
the generated expression is well-typed (i.e., can be typed in the original code context). We report
these metrics for the most likely expression returned by beam search decoding with beam width 5.
Finally, we compute how often the ground truth expression was generated (reported for the most
likely expression, as well as for the top five expressions). This measure is stricter than semantic
equivalence, as an expression j > 1 will not match the equivalent 1 < 7.

Results We show the results of our evaluation in Tab. 1. Overall, the graph encoder architecture
seems to be best-suited for this task. All models learn to generate syntactically valid code (which is
relatively simple in our domain). However, the different encoder models perform very differently on
semantic measures such as well-typedness and the retrieval of the ground truth expression. Most of the
type errors are due to usage of an “UNK” literal (for example, the G — AAG model only has 4% type
error when filtering out such unknown literals). The results show a clear trend that correlates better
semantic results with the amount of information about the partially generated programs employed by
the generative models. Transferring a trained model to unseen projects with a new project-specific
vocabulary substantially worsens results, as expected. Overall, our A/AG model, combining and
adding additional signal sources, seems to perform best on most measures, and seems to be least-
impacted by the transfer.

Published as a conference paper at ICLR 2019

‘ G — NAG:
int methParamCount = 0; c S hp c 34.4%
if (paramCount > 0) { paramCount methParamCount (34.4%)
IParameterTypeInformation[] moduleParamArr = paramCount == methParamCount (11.4%)
GetParamTypeInformations (Dummy.Signature, paramCount); paramCount < methParamCount (10.0%)
methParamCount = moduleParamArr.Length;
}
if (|paramCount > methParamCount|) { g - ASN
IParameterTypeInformation[] moduleParamArr = paramCount == 0 (12.7%)
GetParamTypeInformations (Dummy.Signature, paramCount < 0 (11.5%)

_ hP .
paramCount methParamCount) ; paramCount > 0 (8.0%)

; : ; , ; g = NAG:
public static String URItoPath(String uri) { T
if (System.Text.RegularExpressions uri.Contains (UNK_STRING_LITERAL) (32.4%)
.Regex.IsMatch (uri, "~file:\\\\[a-z,A-Z]:")) {|uri.StartsWith (UNK_STRING_LITERAL) (29.2%)
return uri.Substring(6); uri.HasValue () (7.7%)
}
if | uri.Star.tswith(@."file:")) | G — Syn:
return uri.Substring(5); R EE—
} uri == UNK_STRING_LITERAL (26.4%)
return uri; uri == "" (8.5%)

} uri.StartsWith (UNK_STRING_LITERAL) (6.7%)

Figure 3: Two lightly edited examples from our test set and expressions predicted by different models.
More examples can be found in the supplementary material.

5.2 QUALITATIVE EVALUATION

As the results in the previous section suggest, the proposed ExprGen task is hard even for the
strongest models we evaluated, achieving no more than 50% accuracy on the top prediction. It is also
unsolvable for classical logico-deductive program synthesis systems, as the provided code context
does not form a precise specification. However, we do know that most instances of the task are (easily)
solvable for professional software developers, and thus believe that machine learning systems can
have considerable success on the task.

Fig. 3 shows two (abbreviated) samples from our test set, together with the predictions made by the
two strongest models we evaluated. In the first example, we can see that the G — AAG model cor-
rectly identifies that the relationship between paramCount and methParamCount is important
(as they appear together in the blocked guarded by the expression to generate), and thus generates
comparison expressions between the two variables. The G — ASN model lacks the ability to rec-
ognize that paramCount (or any variable) was already used and thus fails to insert both relevant
variables. We found this to be a common failure, often leading to suggestions using only one variable
(possibly repeatedly). In the second example, both G — AAG and G — Syn have learned the com-
mon if (var.StartsWith(...)) { ... var.Substring(num) ... } pattern, but
of course fail to produce the correct string literal in the condition. We show results for all of our
models for these examples, as well as for as additional examples, in the supplementary material B.

6 DISCUSSION & CONCLUSIONS

We presented a generative code model that leverages known semantics of partially generated pro-
grams to direct the generative procedure. The key idea is to augment partial programs to obtain a
graph, and then use graph neural networks to compute a precise representation for the partial pro-
gram. This representation then helps to better guide the remainder of the generative procedure. We
have shown that this approach can be used to generate small but semantically interesting expressions
from very imprecise context information. The presented model could be useful in program repair
scenarios (where repair proposals need to be scored, based on their context) or in the code review
setting (where it could highlight very unlikely expressions). We also believe that similar models
could have applications in related domains, such as semantic parsing, neural program synthesis and
text generation.

Published as a conference paper at ICLR 2019

REFERENCES

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine learning for
big code and naturalness. ACM Computing Surveys, 2018a.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with graphs.
In International Conference on Learning Representations (ICLR), 2018b.

Matthew Amodio, Swarat Chaudhuri, and Thomas W. Reps. Neural attribute machines for program generation.
arXiv preprint arXiv:1705.09231, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. In International Conference on Learning Representations (ICLR), 2014.

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation of android
applications. In Conference on Computer and Communications Security (CCS), 2016.

Pavol Bielik, Veselin Raychev, and Martin Vechev. PHOG: probabilistic model for code. In International
Conference on Machine Learning (ICML), 2016.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder—decoder approaches. Syntax, Semantics and Structure in Statistical Translation,
2014.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-driven learning. In
Programming Languages Design and Implementation (PLDI), 2018.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations from input-output
examples. In Programming Languages Design and Implementation (PLDI), 2015.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry. In International Conference on Machine Learning (ICML), 2017.

Vincent J. Hellendoorn and Premkumar Devanbu. Are deep neural networks the best choice for modeling source
code? In Foundations of Software Engineering (FSE), 2017.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness of software.
In International Conference on Software Engineering (ICSE), 2012.

Donald E. Knuth. Semantics of context-free languages. Mathemtical Systems Theory, 2(2):127-145, 1967.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. In
International Conference on Learning Representations (ICLR), 2016.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative models of
graphs. CoRR, abs/1803.03324, 2018.

Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek.
DéjaVu: a map of code duplicates on GitHub. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2017.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based neural
machine translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2015.

Chris J Maddison and Daniel Tarlow. Structured generative models of natural source code. In International
Conference on Machine Learning (ICML), 2014.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli.
Neuro-symbolic program synthesis. In International Conference on Learning Representations (ICLR), 2017.

Oleksandr Polozov and Sumit Gulwani. FlashMeta: a framework for inductive program synthesis. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2015.

Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code generation and semantic
parsing. In Annual Meeting of the Association for Computational Linguistics (ACL), 2017.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language models. In
Programming Languages Design and Implementation (PLDI), 2014.

10

Published as a conference paper at ICLR 2019

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties from Big Code. In
Principles of Programming Languages (POPL), 2015.

Bidisha Samanta, Abir De, Niloy Ganguly, and Manuel Gomez-Rodriguez. Designing random graph models
using variational autoencoders with applications to chemical design. CoRR, abs/1802.05283, 2018.

Armando Solar-Lezama. Program synthesis by sketching. University of California, Berkeley, 2008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, 2015.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation. In Annual
Meeting of the Association for Computational Linguistics (ACL), 2017.

11

Published as a conference paper at ICLR 2019

A DATASET SAMPLES

Below we list some sample snippets from the training set for our ExprGen task. The highlighted

expressions are to be generated.

for (int i=0; 1 < 3xtimeSpanUnits + 1 ; ++1i) {
consolidator.Update (new TradeBar { Time = refDateTime });

if (i < timeSpanUnits) { // before initial consolidation happens
Assert.IsNull (consolidated);
}

else {
Assert.IsNotNull (consolidated);
\ if (i % timeSpanUnits == \) {//i=3, 6,9

}

refDateTime = refDateTime.AddMinutes(1l);

Assert.AreEqual (refDateTime.AddMinutes (-timeSpanUnits), consolida

ted.Time) ;

Figure 4: Sample snippet from the Lean project. Formatting has been modified.

T
‘var words = (from word in ‘phrase.Split(’ ’)‘

‘ where word.Length > 0 select word.ToLower()) .ToArray();

Figure 5: Sample snippet from the BotBuilder project. Formatting has been modified.

‘ _hasHandle = _mutex.WaitOne (|timeOut < 0| ? Timeout.Infinite

timeOut,
exitContext: false);

Figure 6: Sample snippet from the Chocolatey project. Formatting has been modified.

public static T retry<T>(int numberOfTries, Func<T> function,

int waitDurationMilliseconds = 100,
int increaseRetryByMilliseconds = 0) {
if (function == null) return default (T);

if (numberOfTries == 0)
throw new ApplicationException ("You must specify a number"
+ " of retries greater than zero.");
var returnValue = default (T);

var debugging = log_is_in_debug_mode () ;
var logLocation = ChocolateyLoggers.Normal;

for (int i = 1; ‘i <= numberOfTries|; i++)

{

Figure 7: Sample snippet from the Chocolatey project. Formatting has been modified and the snippet

has been abbreviated.

12

Published as a conference paper at ICLR 2019

while (‘count >= startlndexb

{

c = s[count];
if (‘c =7 7 g&& ¢c = ’n") break;
count——;

Figure 8: Samples snippet in the CommonMark.NET project. Formatting has been modified.

private string GetResourceForTimeSpan (TimeUnit unit, int count)

{

var resourceKey = ResourceKeys.TimeSpanHumanize.GetResourceKey (unit,

return ? Format (resourceKey) : Format (resourceKey, count)

@

Figure 9: Sample snippet from the Humanizer project. Formatting has been modified.

var indexOfEquals = ‘segment.IndexOf(’=’);
if ((indexOfEquals == -1|) f
var decoded = UrlDecode (segment, encoding);

return new KeyValuePair<string, string>(decoded, decoded);

Figure 10: Samples snippet from the Nancy project. Formatting has been modified.

private bool ResolveWritableOverride (bool writable)

{
if (!Writable && writable)

throw new StoragelnvalidOperationException ("Cannot open writable st

+ " in readonly storage.");

bool openWritable = Writable;

if (|openWritable && !writable])

openWritable = writable;
return openWritable;

Figure 11: Sample snippet from the OpenLiveWriter project. Formatting has been modified.

char ¢ = html[7j];

|

ount) ;

orage"

if (‘c == ;' || (!(c > 'a’ && c <= "z') && !(c >= 'A’ && c <= '2') && !(c >= "0’ §&& c <= ’9’))M

{

break;

}

Figure 12: Sample snippet from the OpenLiveWriter project. Formatting has been modified.

13

Published as a conference paper at ICLR 2019

T
‘ string entityRef = |html.Substring(i + 1, j - (1 + 1)) |;
L

Figure 13: Sample snippet from the OpenLiveWriter project. Formatting has been modified.

B SAMPLE GENERATIONS

On the following pages, we list some sample snippets from the test set for our ExprGen task, together
with suggestions produced by different models. The highlighted expressions are the ground truth
expression that should be generated.

14

Published as a conference paper at ICLR 2019

Sample 1

if (context.Context == _MARKUP_CONTEXT_TYPE.CONTEXT_TYPE_Text &&
!'String.IsNullOrEmpty (text)) {
‘ idx = ‘originalText.IndexOf(text);
if (idx == 0) {
// Drop this portion from the expected string
originalText = originalText.Substring(text.Length);

// Update the current pointer
beginDamagePointer.MoveToPointer (currentRange.End) ;
}
else if (idx > 0 &&
originalText.Substring (0, idx)
.Replace ("\r\n", string.Empty) .Length == 0)

// Drop this portion from the expected string
originalText = originalText.Substring(text.Length + idx);
// Update the current pointer
beginDamagePointer.MoveToPointer (currentRange.End) ;

}

else

{

return false;

}

Sample snippet from OpenLiveWriter. The following suggestions were made:
Seq — Seq:

UNK_TOKEN [1] (0.6%)

input [inputOffset + 1] (0.3%)

UNK_TOKEN & UNK_NUM_LITERAL (0.3%)

Seq — NAG:

MarshalUrlSupported.IndexOf (UNK_CHAR_LITERAL) (0.9%)
IsEditFieldSelected.IndexOf (UNK_CHAR_LITERAL) (0.8%)
marshalUrlSupported.IndexOf (UNK_CHAR_LITERAL) (0.7%)

g — Seq:

UNK_TOKEN . IndexOf (UNK_CHAR_LITERAL) (21.6%)
UNK_TOKEN . Last IndexOf (UNK_CHAR_LITERAL) (14.9%)
UNK_TOKEN.GetHashCode () (8.1%)

g — Tree:

UNK_CHAR_LITERAL.IndexOf (UNK_CHAR_LITERAL) (8.1%)
UNK_CHAR_LITERAL.IndexOf (originalText) (8.1%)
originalText.IndexOf (UNK_CHAR_LITERAL) (8.1%)

G — ASN:

originalText.GetHashCode () (37.8%)
originalText.IndexOf (UNK_CHAR_LITERAL) (14.8%)
originalText.LastIndexOf (UNK_CHAR_LITERAL) (6.2%)

g — Syn:

text.IndexOf (UNK_CHAR_LITERAL) (20.9%)
text.LastIndexOf (UNK_CHAR_LITERAL) (12.4%)
originalText.IndexOf (UNK_CHAR_LITERAL) (11.6%)

g — NAG:

originalText.IndexOf (UNK_CHAR_LITERAL) (32.8%)
originalText.LastIndexOf (UNK_CHAR_LITERAL) (12.4%)
originalText.IndexOf (text) (8.7%)

15

Published as a conference paper at ICLR 2019

Sample 2

caretPos——;
if (caretPos < 0) {
caretPos = 0;

int len = inputString.Length;
if (caretPos >= len) {

}

Sample snippet from acat. The following suggestions were made:

Seq — Seq:

UNK_TOKEN+1 (2.1%)
UNK_TOKEN+UNK_TOKEN] (1.8%)

UNK_TOKEN. IndexOf (UNK_CHAR_LITERAL) (1.3%)

Seq — NAG:

wordToReplace - 1 (3.2%)
insertOrReplaceOffset - 1(2.9%)
inputString - 1 (1.9%)

g — Seq:

len + 1(35.6%)

len - 1(11.3%)

len >> UNK_NUM_LITERAL (3.5%)

g — Tree:
len + len (24.9%)
len - len (10.7%)
1 + len(3.7%)

g — ASN:
Ten + 1(22.8%)
len - 1(10.8%)
len + len (10.3%)

g — Syn:

len + 1(13.7%)
len - 1(11.5%)
len - len (11.0%)

G = NAG:
len++ (33.6%)
len-1 (21.9%)
Ten+1 (14.6%)

16

Published as a conference paper at ICLR 2019

Sample 3

public static String URItoPath(String uri)

if (System.Text.RegularExpressions

{

.Regex.IsMatch (uri, "~file:\\\\[a-z,A-Z]:"))

return uri.Substring(6);

}

if (Juri.StartsWith(Q@"file:") |) {
return uri.Substring(5);

}

return uri;

}

{

Sample snippet from acat. The following suggestions were made:

Seq — Seq:

| UNK_TOKEN (11.1%)
UNK_TOKEN == 0 (3.6%)
UNK_TOKEN != 0 (3.4%)

Seq — NAG:
luri (7.6%)
'MyVideos (4.7%)
!MyDocuments (4.7%)

g — Seq:
action == UNK_STRING_LITERAL (22.6%)
label == UNK_STRING_LITERAL (14.8%)

file.Contains (UNK_STRING_LITERAL) (4.6%)

g — Tree:
uri == uri (7.4%)
uri.StartsWith (uri) (5.5%)

uri.Contains (uri) (4.3%)

G — ASN:

uri == UNK_STRING_LITERAL (11.7%)
uri.Contains (UNK_STRING_LITERAL) (11.7%)
uri.StartsWith (UNK_STRING_LITERAL) (8.3%)

g — Syn:
uri == UNK_STRING_LITERAL (26.4%)
uri == "" (8.5%)

uri.StartsWith (UNK_STRING_LITERAL) (6.7%)

G — NAG:

uri.Contains (UNK_STRING_LITERAL) (32.4%)
uri.StartsWith (UNK_STRING_LITERAL) (29.2%)
uri.HasValue () (7.7%)

17

Published as a conference paper at ICLR 2019

Sample 4

startPos = index + 1;

int count = endPos - startPos + 1;

\word = (count > 0) ? |input.Substring(startPos, count) | : String.Empty;

Sample snippet from acat. The following suggestions were made:
Seq — Seq:

UNK_TOKEN. Trim () (3.4%)

UNK_TOKEN.Replace (UNK_STRING_LITERAL, UNK_STRING_LITERAL) (2.1%)
UNK_TOKEN.Replace (‘UNK_CHAR", ‘UNK_CHAR") (3.4%)

Seq — NAG:

input [index] (1.4%)
startPos [input] (0.9%)
input [count] (0.8%)

g — Seq:

val.Trim() (6.6%)

input.Trim() (6.5%)

input.Substring (UNK_NUM_LITERAL) (4.0%)

g — Tree:

UNK_STRING_LITERAL + UNK_STRING_LITERAL (84%)
UNK_STRING_LITERAL + startPos (7.8%)

startPos + UNK_STRING_LITERAL (7.8%)

G = ASN:

input.Trim() (15.6%)

input.Substring(0) (6.4%)

input.Replace (UNK_STRING_LITERAL, UNK_STRING_LITERAL) (2.8%)

g — Syn:

input.Trim() (7.8%)

input.ToLower () (6.4%)

input + UNK_STRING_LITERAL (5.6%)

G — NAG:

input+StartPos (11.8%)

input+count (9.5%)

input.Substring(startPos, endPos - count) (6.3%)

18

Published as a conference paper at ICLR 2019

Sample 5

‘protected virtual void CrawlSite () {

| while (| !_crawlComplete |)

{

RunPreWorkChecks () ;

if (_scheduler.Count > 0) {
_threadManager.DoWork (
() => ProcessPage (_scheduler.GetNext ()));
}
else if (!_threadManager.HasRunningThreads()) {
_crawlComplete = true;
} else {

Thread.Sleep (2500) ;

}

_logger.DebugFormat ("Waiting for links to be scheduled.

")

Sample snippet from Abot. The following suggestions were made:
Seq — Seq:

| UNK_TOKEN (9.4%)

UNK_TOKEN > 0 (2.6%)

UNK_TOKEN != value (1.3%)

Seq — NAG:

! _maxPagesToCrawlLimitReachedOrScheduled (26.2%)
! _crawlCancellationReported (26.0%)

! _crawlStopReported (21.8%)

g — Seq:

| UNK_TOKEN (54.9%)
!'done (18.8%)
!throwOnError (3.3%)

G — Tree:

! _crawlCancellationReported (23.6%)

! _crawlStopReported (23.3%)

! _maxPagesToCrawlLimitReachedOrScheduled (18.9%)

G — ASN:

! _crawlStopReported (26.6%)

! _crawlCancellationReported (26.5%)

! _maxPagesToCrawlLimitReachedOrScheduled (25.8%)

g — Syn:

! _crawlStopReported (19.6%)

! _maxPagesToCrawlLimitReachedOrScheduled (19.0%)
! _crawlCancellationReported (15.7%)

G — NAG:
! _crawlStopReported (38.4%)

! _crawlCancellationReported (31.8%)
! _maxPagesToCrawlLimitReachedOrScheduled (27.0%)

19

Published as a conference paper at ICLR 2019

Sample 6

char character = originalName[i];

if (‘character == <’) {
++startTagCount;

builder.Append(’ ‘') ;
} else if (startTagCount > 0) {
if (character == ">’") {
—-—startTagCount;
}

Sample snippet from StyleCop. The following suggestions were made:

Seq — Seq:
x == UNK_CHAR_LITERAL (5.9%)
UNK_TOKEN == 0 (3.3%)

UNK_TOKEN > 0 (2.7%)

Seq — NAG:

i == 0(5.1%)
character < 0(2.7%)
character (2.2%)

g — Seq:

character == UNK_CHAR_LITERAL (70.8%)

character == UNK_CHAR_LITERAL || character == UNK_CHAR_LITERAL (5.8%)
character != UNK_CHAR_LITERAL (3.1%)

G — Tree:

character == character (9.9%)

UNK_CHAR_LITERAL == character (8.2%)

character == UNK_CHAR_LITERAL (8.2%)

g — ASN:

character == UNK_CHAR_LITERAL (43.4%)

character || character (3.3%)

character == UNK_CHAR_LITERAL == UNK_CHAR_LITERAL (3.0%)
g — Syn:

character == UNK_CHAR_LITERAL (39.6%)

character || character == UNK_STRING_LITERAL (5.2%)
character == UNK_STRING_LITERAL (2.8%)

G — NAG:

character == UNK_CHAR_LITERAL (75.5%)

character == "’ (2.6%)

character != "UNK_CHAR (2.5%)

20

Published as a conference paper at ICLR 2019

Sample 7

public void AllowAccess (string path)
{
if (path == null) throw new ArgumentNullException ("path");
if (| !path.Startswith ("™ /") |)
throw new ArgumentException (
string.Format (
"The path \"{0}\" is not application relative."
+ " It must start with \"~/\".",
path),
"path") ;

paths.Add (path);
}

Sample snippet from cassette. The following suggestions were made:
Seq — Seq:

UNK_TOKEN < 0 (14.6%)

| UNK_TOKEN (7.5%)

UNK_TOKEN == 0 (3.3%)

Seq — NAG:

path == UNK_STRING_LITERAL (18.1%)
path <= 0(5.6%)

path == "" (4.8%)

G — Seq:

| UNK_TOKEN (48.0%)
'discardNulls (6.3%)
I first (2.7%)

G — Tree:
Ipath (67.4%)
path && path (8.4%)
!''path (5.5%)

G — ASN:

!'path (91.5%)

!path && !path (0.9%)

!'path.Contains (UNK_STRING_LITERAL) (0.7%)

g — Syn:

!path (89.6%)

!path && !path (1.5%)

Ipath.Contains (UNK_STRING_LITERAL) (0.5%)

G — NAG:

Ipath (42.9%)

Ipath.StartsWith (UNK_STRING_LITERAL) (23.8%)
!path.Contains (UNK_STRING_LITERAL) (5.9%)

21

Published as a conference paper at ICLR 2019

Sample 8

int methodParamCount = 0;
IEnumerable<IParameterTypeInformation> moduleParameters =
Enumerable<IParameterTypeInformation>.Empty;
if (paramCount > 0) {
IParameterTypeInformation[] moduleParameterArr =
this.GetModuleParameterTypeInformations (Dummy.Signature, paramCou
methodParamCount = moduleParameterArr.Length;
if (methodParamCount > 0)
moduleParameters = IteratorHelper.GetReadonly (moduleParameterArr);
}
IEnumerable<IParameterTypeInformation> moduleVarargsParameters =
Enumerable<IParameterTypeInformation>.Empty;

if (‘paramCount > methodParamCount |) {

IParameterTypeInformation[] moduleParameterArr =
this.GetModuleParameterTypeInformations (
Dummy.Signature, paramCount - methodParamCount) ;
if (moduleParameterArr.Length > 0)
moduleVarargsParameters = IteratorHelper.GetReadonly (moduleParameter

}

nt);

Arr) ;

Sample snippet from Afterthought. The following suggestions were made:
Seq — Seq:

| UNK_TOKEN (10.9%)

UNK_TOKEN == UNK_TOKEN (4.6%)

UNK_TOKEN == UNK_STRING_LITERAL (3.3%)
Seq — NAG:

dummyPinned != 0 (2.2%)

paramCount !'= 0 (2.1%)

dummyPinned == 0 (1.5%)

G — Seq:

newValue > 0(9.7%)
zeroes > 0 (9.0%)
paramCount > 0 (6.0%)

G — Tree:

methodParamCount == methodParamCount (3.4%)
0 == methodParamCount (2.8%)
methodParamCount == paramCount (2.8%)

G — ASN:

paramCount == 0 (12.7%)
paramCount < 0 (11.5%)
paramCount > 0 (8.0%)

g — Syn:
methodParamCount > 0 (10.9%)
paramCount > 0 (7.9%)
methodParamCount != 0 (5.6%)

G — NAG:
paramCount > methodParamCount (34.4%)
paramCount == methodParamCount (11.4%)

paramCount < methodParamCount (10.0%)

22

Published as a conference paper at ICLR 2019

Sample 9

public Codelocation (int index, int endIndex, int indexOnLine,
int endIndexOnLine, int lineNumber, int endLineNumber)
{
Param.RequireGreaterThanOrEqualToZero (index, "index");
Param.RequireGreaterThanOrEqualTo (endIndex, index, "endIndex");
Param.RequireGreaterThanOrEqualToZero (indexOnLine, "indexOnLine");

Param.RequireGreaterThanOrEqualToZero (endIndexOnLine, "endIndexOnLine")}

Param.RequireGreaterThanZero (lineNumber, "lineNumber");

Param.RequireGreaterThanOrEqualTo (endLineNumber, lineNumber, "endLineNu

// If the entire segment is on the same line,
// make sure the end index is greater or equal to the start index.

if (| lineNumber == endLineNumber |) {
Debug.Assert (endIndexOnLine >= indexOnLine,
"The end index must be greater than the start index,"
+ " since they are both on the same line.");

this.startPoint = new CodePoint (index, indexOnLine, lineNumber);

this.endPoint = new CodePoint (endIndex, endIndexOnLine, endLineNumber) ;

}

mber") ;

Sample snippet from StyleCop. The following suggestions were made:
Seq — Seq:

| UNK_TOKEN (14.0%)

UNK_TOKEN == 0 (4.4%)

UNK_TOKEN > 0 (3.5%)

Seq — NAG:

endIndex < 0 (3.8%)
endIndex > 0 (3.4%)
endIndex == 0(2.2%)

g — Seq:
lineNumber < 0 (9.4%)
lineNumber == 0 (7.4%)

lineNumber <= 0 (5.1%)

g — Tree:
lineNumber == lineNumber (3.4%)
== lineNumber (2.5%)

lineNumber > lineNumber (2.5%)

G — ASN:
endLineNumber == 0 (9.6%)
endLineNumber < 0 (7.9%)
endLineNumber > 0 (6.1%)

g — Syn:
lineNumber > 0 (11.3%)
lineNumber == 0 (7.3%)
lineNumber != 0 (6.7%)
G — NAG:

lineNumber > endLineNumber (20.7%)
lineNumber < endLineNumber (16.5%)

lineNumber == endLineNumber (16.2%)

23

Published as a conference paper at ICLR 2019

Sample 10

public static Bitmap RotateImage (Image img, float angleDegrees,

/7
if

/7
/7

bool upsize, bool clip) {
Test for zero rotation and return a clone of the input image
(angleDegrees == 0f) return (Bitmap)img.Clone();

Set up old and new image dimensions, assuming upsizing not wanted
and clipping OK

int oldWidth = img.Width; int oldHeight = img.Height;
int newWidth = o0ldWidth; int newHeight = oldHeight;

float scaleFactor = 1f;
// If upsizing wanted or clipping not OK calculate the size of the
// resulting bitmap
if qupsize || 'clip|) |
double angleRadians = angleDegrees x Math.PI / 180d;
double cos = Math.Abs (Math.Cos (angleRadians));
double sin = Math.Abs (Math.Sin(angleRadians));
newWidth = (int)Math.Round((oldWidth x cos) + (oldHeight * sin));
newHeight = (int)Math.Round((oldWidth » sin) + (oldHeight * cos));
}
// If upsizing not wanted and clipping not OK need a scaling factor
if (lupsize && !clip) {

}

scaleFactor = Math.Min((float)oldWidth / newWidth,
(float)oldHeight / newHeight);
newWidth = oldWidth; newHeight = oldHeight;

Sample snippet from ShareX. The following suggestions were made:
Seq — Seq:

UNK_TOKEN > 0 (8.3%)

| UNK_TOKEN (4.4%)

UNK_TOKEN == 0 (2.6%)

Seq — NAG:
newHeight > 0 (5.1%)
clip > 0(3.2%)
oldWwidth > 0 (2.9%)

g — Seq:
UNK_TOKEN && UNK_TOKEN (15.0%)
UNK_TOKEN || UNK_TOKEN (13.6%)

trustedForDelegation && !appOnly (12.1%)

g — Tree:

upsize && upsize (21.5%)
upsize && clip (10.9%)
clip && upsize (10.9%)

G — ASN:

upsize && clip (13.9%)
upsize && !clip (9.8%)
clip && clip(9.3%)

g — Syn:
upsize && !upsize (6.9%)
clip && !upsize (6.3%)

upsize || upsize (5.7%)
g — NAG:
upsize || clip (19.1%)

upsize && clip (18.8%)
upsize && ! clip (12.2%)

24

	Introduction
	Background & Task
	Graph Decoding for Source Code
	Related Work
	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion & Conclusions
	Dataset Samples
	Sample Generations

