Under review as a conference paper at ICLR 2020

A KOLMOGOROV COMPLEXITY APPROACH TO
GENERALIZATION IN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep artificial neural networks can achieve an extremely small difference between
training and test accuracies on identically distributed training and test sets, which is
a standard measure of generalization. However, the training and test sets may not be
sufficiently representative of the empirical sample set, which consists of real-world
input samples. When samples are drawn from an underrepresented or unrepresented
subset during inference, the gap between the training and inference accuracies can
be significant. To address this problem, we first reformulate a learning algorithm as
a procedure for searching for a source code that maps input features to classes. We
then derive a necessary and sufficient condition for generalization using a universal
cognitive similarity metric, namely information distance, based on Kolmogorov
complexity. Using this condition, we formulate an optimization problem to learn
a more general classification function. To achieve this end, we extend the input
features by concatenating encodings of them, and then train the classifier on the
extended features. As an illustration of this idea, we focus on image classification,
where we use channel codes on the input features as a systematic way to improve
the degree to which the training and test sets are representative of the empirical
sample set. To showcase our theoretical findings, considering that corrupted or
perturbed input features belong to the empirical sample set, but typically not to the
training and test sets, we demonstrate through extensive systematic experiments
that, as a result of learning a more general classification function, a model trained
on encoded input features is significantly more robust to common corruptions, e.g.,
Gaussian and shot noise, as well as adversarial perturbations, e.g., those found via
projected gradient descent, than the model trained on uncoded input features.

1 INTRODUCTION

Generalization error in deep learning is typically defined as the difference between training and
test errors measured on identically distributed training and test sets. This traditional approach
fails to take into account how representative these sets are of the empirical sample set from which
input samples are drawn at inference time. When the training and test sets are not sufficiently
representative of the empirical sample set, the difference between training and inference errors can be
significant, thus rendering the learned classification function ineffective. The lack of the latter kind
of generalization results in unreliable decisions, raising questions about how robust, fair, and safe a
learned classification function is (Varshney & Alemzadeh [2017).

A natural question then arises: is there a necessary and sufficient condition ensuring that deep learning
classifiers generalize in this broader sense? If so, how can this condition be satisfied in a real-world
setting? To answer these questions, we draw on algorithmic information theory, which proposes
a complexity measure, Kolmogorov complexity, as the absolute information content of any object,
e.g., a computer program, function, or set. After deriving a necessary and sufficient condition for
generalization using the information distance (Bennett et al.,|1998), which is a universal cognitive
similarity metric based on Kolmogorov complexity, and formulating an optimization problem for
generalization, we turn our attention to coding theory in order to learn a more general classification
function by extending the input features to a classifier with systematically generated encodings of the
original features.

Under review as a conference paper at ICLR 2020

1.1 OUR CONTRIBUTIONS

For a classification task, we assume that there exists a true classification function. Given training and
test sets, neither of which are sufficiently representative of the the empirical sample set from which
input samples are drawn during inference, a learning algorithm is asked to find the true classification
function. In this work, we study how well the learned classification function generalizes with respect
to the true classification function. In other words, we study the problem of how to minimize the
generalization error, which we define as the difference between the training error and inference error
measured on the empirical sample set, as opposed to the difference between the training error and
test error. We use robustness to both common corruptions and adversarial robustness to measure
how well a learned classification function generalizes on the empirical sample set, which contains
corrupted or perturbed samples.

Universal cognitive similarity metric. In order to find a necessary and sufficient condition for
generalization in deep learning, we use the normalized information distance. A key finding in
algorithmic information theory is that the normalized information distance is a universal cognitive
similarity metric: the normalized information distance between two objects minorizes any other
admissible distance up to an additive logarithmic term (Bennett et al.,|{1998). In other words, although
different learning algorithms will pick up on different dominating input features, depending on the
classification task that they perform, every such dominating feature will be detected by the normalized
information distance.

Classification function as a source code. We formulate a learning algorithm as a procedure for
searching for a source code based on training examples. We show that the learned classification
function is a lossy compressor: the classifier discards some information. The input features thus
cannot be recovered from the class label. We use the normalized information distance between the
true source code (true classification function) and the learned source code (learned classification
function) to find a necessary and sufficient condition ensuring generalization, and then formulate the
problem of learning a more general classification function as an optimization problem.

Compression-based similarity metric. The normalized information distance provides the theo-
retical tools needed to learn more general source codes, but in practice the normalized information
distance is not effectively computable. We therefore use a compression-based similarity metric (Cili-
brasi & Vitanyi, [2005)) based on a real-world compressor to approximate this theoretical construct.
Specifically, we use the normalized compression distance between the true source code and learned
source code to derive an effectively computable condition on the compressed size of the learned
source code to identify encodings of the input features that help to learn a more general source code.

Encoding input features. In a typical communication system, a source code is followed by a
channel code which is then followed by a physical channel. In this paper, the learned source code
(learned classification function) is preceded by one or more input codes that help ensure the learned
classifier is more general by generating relations between input features that are not captured by the
set of available input features. In order to showcase our findings for a specific classification task,
we use channel codes on the input features for CIFAR-10 image classification. Precisely, we use
a four-dimensional (4-D) five-level pulse-amplitude modulation (5-PAM) trellis-coded modulation
(TCM) scheme (Ungerboeckl 1982 Hatamian et al.l [1998; IEEEL 20135)) to systematically generate
multiple encodings of the set of available input features. In doing so, we enable the deep neural
network (DNN) to learn information from the empirical sample set which it could not learn from the
uncoded input features alone. The generalization error is thereby reduced.

The impact of generalization. Through image classification experiments, we show that a model
trained on arbitrarily encoded input features is significantly more robust to common corruptions, such
as Gaussian noise and shot noise, and to adversarial perturbations, like those generated via projected
gradient descent (PGD) (Madry et al.,|2018)), than a model trained on uncoded input features.

The role of code design. The code used on the input features can be designed in various ways
for a classification task, and designing input codes is an important step to learning a more general
classification function from the set of available input features. We show that merely increasing the

Under review as a conference paper at ICLR 2020

number of input channels of a DNN does not confer any robustness to Gaussian noise or to PGD.
How to design efficient input codes to build encoded DNNss is an intriguing research direction for
achieving generalization in deep learning.

1.2 RELATED WORK

The literature on generalization, e.g. (Zhang et al., 2017; Neyshabur et al.,|2017), is largely concerned
with minimizing the generalization error, defined as the difference between training and test errors
measured on identically distributed training and test sets. Minimizing this form of generalization
error does not address the problem of generalizing to input samples drawn from an empirical sample
set of which the training and test sets are not sufficiently representative, as we do herein.

In this subsection, we compare our work with domain-generalization, domain-adaptation, and data-
augmentation techniques to highlight their differences. There is a substantial body of literature on
domain generalization (Muandet et al.| 2013; |Li et al.l [2017; Motiian et al., 2017 Shankar et al.|
2018)), which aims to better generalize to unknown domains by training on samples drawn from
different domains, not a single source, which is a limitation that our work does not have. In this work,
there is no need to draw training samples from a different domain. We show that encoding the given
training set enables a DNN to learn different relations between features that it could not learn from
the uncoded training set alone.

There has also been much work on domain adaptation (Daumé III & Marcul |2006; |[Saenko et al.,
2010; |Ganin & Lempitsky, 2015; [Tzeng et al., 2017} |Sun & Saenkol [2016; [Morerio et al., 2018
Volpi et al.l [2018a)) that addresses the problem of generalization to a priori fixed target domains,
which is a different approach from ours because these algorithms need to access samples from
the target distributions during an adaptation phase. Importantly, our approach does not require
accessing new samples during an adaptation phase in order to achieve generalization to the empirical
sample set. Similar to the domain adaptation work, there has been some work on adversarial training
(Goodfellow et al.l[2015;|Lee & Raginsky, 2018};Sinha et al.,|2018), which aims to achieve robustness
(Zhang et al.| |2019) to adversarial perturbations by using training samples perturbed by a specific
adversarial-perturbation method. Adversarial training can be computationally costly because it
requires generating adversarially perturbed training samples in each epoch of training, unlike in our
work where input encodings need to be generated only once before training. Furthermore, as there are
numerous adversarial-perturbation methods (Goodfellow et al} 2015} [Kurakin et al., |2017bj Madry
et al.} 2018)), an adversarially trained DNN does not necessarily generalize well to samples subjected
to an adversarial perturbation method that was not used for training (Madry et al., 2018).

There is also a substantial body of work on data-augmentation techniques (LeCun et al., {1995} |Volpi
et al.| [2018b), which perform simple label-preserving transformations of the training samples to
provide a DNN with additional data points to learn from. In this work, we do not generate new
samples to increase the diversity of the training set; instead, we take a theoretically-grounded approach
to extend the input features with their encodings in order to enable a DNN to learn a sufficiently
complex classification function from the set of available input samples.

2 ALGORITHMIC INFORMATION-THEORETIC APPROACH TO DEEP LEARNING

Our goal is to minimize the generalization error (defined in Appendlx) for a classification task,
defined as the difference between training error and inference error, given a training set and a test
set, both of which are not sufficiently representative of the empirical sample set from which input
samples are drawn at inference time. To accomplish this goal, we derive a necessary and sufficient
condition under which a classifier will generalize well, and, based on that condition, cast the search
for a classifier with good generalization (defined in Appendix [B)) as an optimization problem. Our
approach requires that we describe and compute the absolute information content of any object, e.g.,
a computer program, function, or set, in order to determine which of a pair of learned classification
functions contains more information of the true classification function. The appropriate tool here
is a concept in algorithmic information theory: Kolmogorov complexity (defined in Appendix [B].
Defining the amount of information in individual objects in terms of their Kolmogorov complexity has
the advantage that it refers to these objects in isolation, not as outcomes of a known random source. In
contrast, quantifying the amount of information in individual objects based on their Shannon entropy

Under review as a conference paper at ICLR 2020

requires that these objects be treated as members of a set of objects with an associated probability
distribution. This understanding is fundamental to our study because applying Shannon entropy to
“an estimate of the quantity of information contained in a novel or in the translation of a novel into
another language relative to the original” would not be clear (Kolmogorov, |1983). As a DNN may be
employed to learn a classification function from a set of features contained in such an object as, for
example, a document, image, video, or sound, we study the Kolmogorov complexity of the set of
input features, model, and outputs of the DNN.

2.1 NORMALIZED INFORMATION DISTANCE AS UNIVERSAL COGNITIVE SIMILARITY

In our quest to find a condition ensuring our running definition of generalization, we require a distance
function that measures how similar two objects are in any aspect so we can decide which of two
learned classification functions is closer to the true classification function. The closer a learned
classification function is to the true classification function, the better its generalization error. This
distance function should satisfy the metric (in)equalities in order for it to have a meaning in the
context of generalization. For example, this distance function would have to be symmetric; i.e., the
distance from object a to object b must be equal to that from object b to object a.

The normalized information distance (Bennett et al.l [1998)) between objects a and b, defined as

max (K (alb), K(b|a))
max (K (a), K(b))

Di(a,b) =)
where K (a) denotes the Kolmogorov complexity of object a and K (a|b) denotes the Kolmogorov
complexity of object a given b, satisfies the metric (in)equalities and is also a universal cognitive
similarity metric because D;(a,b) minorizes all other normalized admissible distances up to a
negligible additive error term. This means that all effective similarities between a pair of objects
are discovered by the normalized information distance; i.e., two objects that are close according
to some effective similarity are also close according to the normalized information distance. The
main intuition behind normalizing the information distance max (K (a|b), K (b|a)) is that two larger
objects that differ by a small amount are closer than two smaller objects that are different by the same
amount: the absolute difference between two objects does not measure similarity as such, but the
relative difference does (Cilibrasi & Vitanyi, 2005)).

2.2 DEEP-LEARNING CLASSIFIER AS A SOURCE CODE

A successful DNN distills information useful for its classification task 7" from its input features Z. In
doing so, the DNN has to learn a classification function f(.) from the set X" of its input features to
an m-ary alphabet A of classes u in such a way that some information in its input features is given
less weight in determining its relevance to the class decision @, and then entirely discarded by the
arg max operation (Goldfeld et al.L 2019). A deep learning classifier is thus acting as a source code C
(defined in Appendix [B). Proofs of the following mathematical statements are given in Appendix

Lemma 1. For a classification task 7" wherein each n-dimensional input sample & is mapped to a
class u drawn from an m-ary signal alphabet A, the true output function f(-) of a learning algorithm

is a source code C' for a multivariate random variable X.

Lemma 1 reformulates a learning algorithm as a procedure for searching for a source code C' for a
multivariate random variable X , which compresses the values that this random variable takes, namely
the input samples . When a DNN generalizes well with respect to the true classification function
f(), it is able to decide which information in its input features is more relevant to making a particular
class decision. A DNN is a lossy compressor when the absolute information content of any of its
input samples Z is larger than that of the class « to which it is mapped.

Corollary 1. The true source code C' = f(-) of a learning algorithm used for the classification task
T is a lossy compressor when the Kolmogorov complexity K (&) of one of its input samples is larger
than the number of bits required to represent the corresponding class .

Corollary 1 formalizes a deep learning classifier as a lossy compressor, so the source code C' that
corresponds to the true output function f(-) is not uniquely decodable; i.e., its input samples Z cannot

Under review as a conference paper at ICLR 2020

be recovered from the class u to which they are mapped. A DNN can be trained to learn a source
code that generalizes well with respect to the true source code, but first we will analyze the similarity
between these two source codes by using the normalized information distance.

Source codes are designed for the most efficient representation of data (Cover & Thomas} |1991)).
Whether it is designed for a data-transmission or a data-storage system, a source code, whether
lossless or lossy, should retain information about the data necessary to accomplish a given task. The
same consideration applies to a learning system. The information in the input features of a learning
system is represented by the classification function that it learns; thus, a neural network can be
viewed as a source code that encodes inputs features for its classification task. The reformulation of
a learning algorithm as a procedure for searching for a source code allow us to exploit theoretical
results from algorithmic information theory and coding theory for deep learning, thereby avoiding
the necessity to reinvent theory that is already established in these fields. Given that source codes
are designed for the most efficient representation of data (Cover & Thomas) [1991)), we will exploit
the duality of a source code and a channel code to learn a classification function that represents the
input features more efficiently for the classification task 7; i.e., a more general classification function.
Showing that a deep learning classifier is a non-uniquely decodable source code is also fundamental
to understanding that the normalized information distance between the input features and the output
cannot be used to derive a condition for generalization in deep learning. This results from the fact
that deriving such a condition would require finding the conditional Kolmogorov complexity K (Z]y)
of the input features with respect to the output, which is impossible because the source code is not
uniquely decodable; i.e., the program to go from the output to the input features cannot be found. A
necessary and sufficient condition for generalization based on the normalized information distance
can hence be found only between a learned source code and the true source code.

2.3 ACHIEVING GENERALIZATION IN DEEP LEARNING

The normalized information distance
max(K(C|C), K(C|C))

Di.6) = max(K (C), K(C))

; 2

between the true source code C' and learned source code C' reveals how general C is with respect to
C. A necessary and sufficient condition ensuring that learned source code Cj is more general than
learned source code C; with respect to the true source code C'is

DI(C, C’o) < DI(C, C’l), Véo 7& C’l. 3)

Equation [3]is a direct result of using the normalized information distance as a universal cognitive
similarity metric to determine whether learned source code Cy or C is more general with respect
to the true source code C. Because the normalized information distance (Bennett et al.l [1998) is a
metric that uncovers all effective similarities between the true source code and a learned source code,
learning a source code that is closer to the true source code C' under this metric ensures achieving
generalization. The normalized information distance Dy (C, C) between the true source code C' and

the learned source code C' must thus be minimized in order to minimize the generalization error.

Theorem 1. When a learning algorithm used for the classification task 7" finds a suboptimal source
code C instead of the true source code C', the optimization problem for the generalization of C'is
mings (D (C, C)) = ming max(K(C|C), K(C|C)).

Theorem 1 has formulated the optimization objective for generalization as the minimization of
Di(C, C) and states that to achieve generalization we should make the learned function sufficiently
complex for the classification task 7". Theorem 1 states that the Kolmogorov complexity K (C|C’) of
the program that computes how to go from the learned source code C' to the true source code C' or
the Kolmogorov complexity K (C’ |C) of the program that computes how to go from the true source
code C to the learned source code é‘, whichever is larger, must be minimized in order to minimize

generalization error. Thus, the goal is to increase the complexity of the learned source code C, but
not beyond the complexity of the true source code C. Therefore, Occam’s first razor (Domingos),
1999) still holds: simpler classifiers generalize better than complex ones. However, a classifier that

Under review as a conference paper at ICLR 2020

Encoded
encoded
input features Model
input features
Ts
Encoder Base Model
d class
ecision
Ei() 5 p
Ce(.)

Figure 1: Encoded model architecture. An uncoded model simply feeds the input features to a base
model, while the encoded model stacks the input features and encoded features and feeds those to a
base model with enough input channels to handle the original and encoded features.

does not perform well on its empirical sample set X" is too simple for its classification task. Ideally,
the learning algorithm would learn the true source code C, achieving the best possible performance
metrics determined by its classification task 7. In practice, because the learning algorithm will see
only a small subset Xg of the possible inputs at training time, the learned source code C will be a
partial function of the true source code C' at perfect training accuracy (that is, when the classifier
has sufficient capacity to memorize the training samples (Zhang et al., 2017)). Whether a model is
over-fit or under-fit is conventionally determined on a cross-validation set and/or test set that are/is
identically distributed with the training set, all of which are subsets of the empirical sample set. Being
more general on such a cross-validation set and/or test set does not as such guarantee generalization
on the empirical sample set X™ because the latter may contain corrupted or perturbed samples and/or
there may be samples in the empirical sample set that are out of distribution of the cross-validation
set and test set. Therefore, whether a model is over-fit or under-fit does not have a consequence for
Theorem 1. Next, we target learning a source code that is more general on the empirical sample
set X”, not only on a cross-validation set and/or test set.

In this work, we increase the complexity of the learned source code C' by generating I encodings
Ey, F4, ... E;_1 of the available input features Z's that capture relations between the features which
are not learned well from the original features, and then append these encodings to the original
features. Note that the available input features are denoted by s, which are drawn from the set Xg
of available features; i.e., Zs € Xg, which is a subset of the empirical sample set X". By providing a
different view of the relations between the features, the encodings E; help the learning algorithm to
learn a more complex source code C'y whose normalized information distance Di(C, C'g) to the true
source code C is less than Dy(C, C). This results in learning a more general source code.

Theorem 2. For classification task 7', a more general suboptimal code Cg is learned from the
concatenation {Zs, F;(Zs) }, where E; : X§ — Y¢ is an encoding of the input sample Z's such that
Y& & Xg.

S S

The effective capacity of several successful DNN architectures is sufficiently large to memorize the
set Xg of available input samples (Zhang et al.,[2017). Any encoding F; : Xg — Yg, where Yg
is the set of available encoded samples such that Y§ ¢ Xg, when concatenated with the uncoded
input samples g, thus increases the Kolmogorov complexity of the learned source code, which is
now called C'g. The task of the source code is to find the most efficient representation of its input
data|Cover & Thomas|(1991). In a typical communication system, the source code compresses the
input, then a channel code adds redundancy to guard against noise in the channel, then the encoded
information is transmitted over the physical channel. The design goal for the source and channel
codes is to achieve the channel capacity (maximum mutual information between the channel input
and output). In contrast, Theorem 2 considers a learning system in which an input code is followed
by a learned source code, the classification function, and the design goal is for the composition of
the input and source codes to generalize as well as possible (see Figure [T). In other words, in a
learning system the “physical channel” precedes the source code, and it can be seen as a process
whereby the empirical sample set X™ is reduced to the set Xg of available input samples and/or
whereby common corruptions, such as Gaussian noise, and adversarial perturbations, such as those

Under review as a conference paper at ICLR 2020

generated by PGD, are applied to the set of available input samples. Because the “physical channel”
comes first in a learning system, there is no access to the set of information bits. Only a subset of
these information bits can be accessed, which may have been subjected to common corruptions or
adversarial perturbations. It is therefore crucial for a learning algorithm to compress its features while
retaining information useful for its classification task. One way to accomplish this is to extend the
input features with encodings that capture relations between features that are useful for classification
and not captured well by the original set of input features. The classification task 7' does not change
when input features are extended by their encodings because it is defined by the mapping between
the input features and the output (Goodfellow et al.,2016), which remains the same because the only
input to the encoded model is the uncoded input features (see Figure[I)). The encoder is simply a new
layer in the encoded model, which is designed from an encoder and an uncoded model.

2.4 APPROXIMATING NORMALIZED INFORMATION DISTANCE BY NORMALIZED
COMPRESSION DISTANCE

The normalized information distance is based on the notion of Kolmogorov complexity, which is not a
partial recursive function; i.e., it is not effectively computable. While we can use normalized informa-
tion distance to analyze whether a source code C'g learned from the concatenation {Zs, E;(Zs)} of
the encoded input samples E;(Z's) with the uncoded input samples Zs is more general with respect to
the true source code C), in practice we may need to approximate the normalized information distance
with the normalized compression distance, so we can determine which of any pair of source codes is
more general with respect to the true source code C.

Based on a real-world compressor, the normalized compression distance (Cilibrasi & Vitanyi, [2005)

Z({C,Cr}) — min(Z(C), Z(Ck))

Dc(C,Cp) = max(Z(C), Z(Cr))

; “4)

approximates the normalized information distance D;(C, Cg), where Z is a real-world compres-
sor. Thus, the generalization condition and minimization of D;(C, C'g) can be cast in effectively
computable forms. Note that neither Equation [2] nor Equation [4]is a training criterion, but they
specify the normalized information distance and the normalized compression distance between the
true source code C' and a learned source code, respectively. They are used to derive theoretical results,
particularly the use of input codes to achieve generalization as illustrated by experiments in Section 3]

Proposition 1. For the classification task T', D1(C, C) < Di(C,C) < Z(Cg) > Z(C).

Proposition 1 states for classification task 7" that the compressed size Z(C'g) of the source code Cg
learned from the concatenation {Zs, E;(Zs)} of the encoded input samples F;(Zs) and the uncoded
input samples g is larger than the compressed size Z(C') of the source code C learned from the
uncoded input samples alone Z's.

Proposition 2. When a learning algorithm used for classification task 7" finds a suboptimal source
code Cg instead of the true source code C, the effectively computable optimization problem for the
generalization of Cg is ming _ Dc(C,Cg) = maxs Z(Cg),VCr : Z(Cr) < Z(C).

Proposition 2 shows that the compressed size Z(Cg) of the source code C'r learned from the
concatenation {Zs, F;(Zs)} of the encoded input samples E;(Zs) and the uncoded input samples Z's
must be maximized until it reaches the compressed size Z(C) of the true source code C' to learn the
most general source code with respect to the true source code C for the classification task 7'. This
statement is a consequence of the fact that C' is a partial function of C' at perfect training accuracy.
In other words, the source code C'r learned from the concatenation {Zs, F;(Zs)} of the encoded
input samples E;(Zs) and the uncoded input samples &g can be made more general if the encoded
input samples F;(Zs) bear information of relations between input features that are not represented by
its input samples.

Under review as a conference paper at ICLR 2020

flattening input features

«9 %9 encoded
1 1
‘\ ‘\ nput
W W 4-D features
™ ™ . 5-PAM . =
Convolutional TCM Bit |£i(%s)
Encoder Mapper
X2 AKX 2 Symbol
I I Mapper
| LV

Figure 2: Flattening and encoding input features.

2.5 USING CHANNEL CODES ON INPUT FEATURES FOR IMAGE CLASSIFICATION

A channel encoder generates encodings from its input features that enable a classifier to learn relations
between these features not captured by the set of available input samples. Concatenated together,
these features are then input to a model to produce a class decision. For example, we use a 4-D
5-PAM TCM scheme (Ungerboeck, |1982 Hatamian et al.| [1998}; IEEEL 2015) as a systematic way to
generate multiple encodings of input features.

As shown in Figure[2} the channel encoder flattens the input features by them into 2 x 2 patches of
features, then, starting from the upper left feature and ending at the lower left feature, ordering them
in a sequence going in the clockwise direction. The features are traversed twice in order to avoid the
initialization length of the channel code. This particular scheme is used because it focuses on local
relations between features. Exploration of other flattening schemes is left for future research.

The features in the CIFAR-10 dataset are represented by eight bits. The flattened features are fed to
the convolutional encoder, which produces one extra bit out of the two least significant bits of the
eight bits representing each feature. The 4-D 5-PAM TCM symbol mapper then maps each nine bits
into four equidistant 5-PAM symbols, which are then mapped to 12 bits by the bit mapper. The bit
mapper uses different symbol-to-bit mappings to generate different encodings of the input features,
and the matrix used for generating these encodings is given in Appendix Each encoding has the
same size as the original input samples. Figure[5]in Appendix shows three CIFAR-10 images and
four of their encodings, which are arbitrarily chosen. As seen in this figure, each encoding conveys
a different view of the input features, which helps the source code (learned classification function)
model relations between the features that are useful for the image classification task. Note that using
channel codes on the input features is not a data-augmentation technique: the encodings are appended
to the input features, not treated as new input samples. These encodings enable the classifier to learn
from the set of available input samples a source code that is sufficiently complex for its classification
task. As in a data-transmission or data-storage system, the source code is designed for the most
efficient representation of the data, which is the set of available input features for the classification
task at hand, and the channel code is independently designed for the channel. This combination is
key to achieving generalization in deep learning, and how best to design a channel code for a given
classification task is an intriguing future research direction.

3 EXPERIMENTAL RESULTS

Let the set of available input samples subjected to common corruptions and adversarial perturbations
belong to the empirical sample space from which input samples are drawn during inference. To
show that using channel codes on the input features results in learning a more general source code
with respect to the true source code, we conduct experiments on the CIFAR-10 and CIFAR-10-
C (Hendrycks & Dietterich, 2019) datasets to show increased robustness to common corruptions
and adversarial perturbations. For CIFAR-10 and CIFAR-10-C, we train uncoded VGG-11 and
VGG-16 models, encoded VGG-11 and VGG-16 models, and an uncoded ResNet-18 model. The
VGG networks are modified only by adding the encoder and increasing the number of input channels.
The encoded models use the same training criterion as the uncoded models, namely the cross-entropy
loss. The training setup and the achieved test accuracies are given in Appendix [C.2]

Under review as a conference paper at ICLR 2020

Gaussian Noise Shot Noise Impulse Noise
_ 25000
b —— Uncoded
£ ¥ 20000 1 2 encodings
SO | e 8 encodings
; % 150001 —:-— 32 encodings
207 J
,_*;;310000- L
2%
£ 5000 1
3
o
0 T .
1 2 3 4 5 1 2 3 4 5
severity severity severity

Figure 3: The uncoded VGG-11 model and encoded VGG-11 models tested on the corrupted samples
in the CIFAR-10-C dataset.

In all experiments conducted on the encoded models, we use arbitrary encodings. The input samples
are corrupted or perturbed before they are input to the encoded models, as the uncorrupted or
unperturbed input samples would not be accessible by a neural network in a real-world application.
Increasing the number of encodings may reduce the generalization error, but at the expense of
increased run time. However, encoding the training and test samples is a one-time process that can be
done prior to training, unlike adversarial training, which requires generating perturbed input samples
in each epoch. In Appendix[C.6] we show that increasing the number of input channels does not, as
such, confer robustness to Gaussian noise or to PGD. Designing efficient input codes for a given
classification task considering the generalization error and the required number of encodings is a
direction for future research. To the best of the authors’ knowledge, there is no other published
method that can achieve robustness to both common corruptions and adversarial perturbations.

3.1 ROBUSTNESS TO COMMON CORRUPTIONS

The set of available input samples may be subjected to common corruptions before reaching a real-
world image classifier. For example, Gaussian noise can appear in low-lighting conditions, and shot
noise is caused by the discrete nature of light. To show robustness to such corruptions, we conduct
experiments on the CIFAR-10-C and CIFAR-10 datasets. We use four common corruptions in our
experiments, namely Gaussian noise, shot noise, impulse noise, and speckle noise.

The CIFAR-10-C dataset consists of the 10,000-sample CIFAR-10 test set subjected to five different
noise levels, called severity, so it has 50,000 samples in all. As shown in Figure[3] increasing the
number of arbitrary encodings concatenated to the original input features increases robustness to
Gaussian noise, shot noise, and impulse noise. The results for speckle noise is given in Appendix
For example, when test samples are subjected to impulse noise with a severity level of 4, we see a
sharper increase in the number of test errors for the uncoded VGG-11 model than that for the VGG-11
model with 32 encodings. Note that the vertical axis in these plots is cumulative: the number of test
errors made at the previous severity level is added to that at the current severity level. Table [I]in
Appendix [C.4 compares the encoded VGG-11 model with 32 encodings with previously published
methods on the CIFAR-10-C dataset, which shows that the encoded VGG-11 model achieves the
highest inference accuracy (defined in Appendix |B)) against shot noise with a severity level of 5
compared with all the other works listed in this table. Additional experimental results on Gaussian
noise are shown in Figure[6]in Appendix

3.2 ROBUSTNESS TO ADVERSARIAL PERTURBATIONS

To show robustness to adversarial perturbations without adversarial training, we conduct experiments
on the CIFAR-10 dataset. We use the white-box PGD attack (Madry et al.,2018)) and transfer attacks
from an uncoded VGG-16 and an uncoded ResNet-18 model to evaluate the adversarial robustness of
the encoded VGG-16 models. The results for the black-box boundary attack (Brendel et al., 2018)
are given in Appendix [C.3] The white-box PGD attacks use the gradient of the loss function with
respect to the uncoded input features in the encoded VGG-16 models because the channel encoder is
part of the encoded VGG-16 models; i.e., the only input to the encoded model is the uncoded input
features. The encoder is simply a new layer of the neural network architecture, whose outputs are
computed directly from the uncoded input features. Changing the outputs of the encoder layer is

Under review as a conference paper at ICLR 2020

10000

7500

5000 oot

Uncoded 1

&/ 2 encodings /‘

25004 8 encodings 1 .o
—-= 32 encodings et 8

cumulative number of
successful attacks

0.00 0.01 0.02 0.03 0.04 0.05 00 01 02 03 04 05 00 01 02 03 04 0.5
€ (L-inf distance) € (L-inf distance) € (L-inf distance)

Figure 4: Robustness is tested with samples perturbed by the white-box PGD attack (left), transfer
PGD attack generated on the uncoded VGG-16 model (middle), transfer PGD attack generated on
ResNet-18 model (right).

tantamount to changing the outputs of any other layer of the model, which is a threat model that falls
out of the scope of our work.

For the CIFAR-10 experiments, we use different numbers of encodings, and robustness to all
adversarial perturbations in our experiments systemically increased with an increasing number of
arbitrary encodings concatenated to the input features. Figure 4] shows the results for the white-box
PGD and transfer PGD attacks. The plot on the left shows the increase in robustness to white-box
PGD starting from a random perturbation around the natural example and using 20 iterations and a
step size of 0.003. For example, at an ¢, distance of 0.031, the inference accuracy of the VGG-16
model with 32 encodings is 30.19% while keeping a test accuracy of 87.38%. To test the robustness
of the encoded VGG-16 models against transfer attacks using the same PGD settings, we generate
adversarial examples on the uncoded VGG-16 model and uncoded ResNet-18 model. As before, the
encoded VGG-16 models show more robustness with an increasing number of encodings as shown in
the middle and right plots of Figure 4| For example, when adversarial examples generated on the
ResNet-18 model are used to test the robustness of the uncoded VGG-16 model and the encoded
VGG-16 models, at an epsilon of 0.2 (¢,), the inference accuracy of the uncoded VGG-16 model is
12.25%, whereas that of the VGG-16 model with 32 encodings is 63.87%.

Table 2]in Appendix [C.5]compares the encoded VGG-16 model with previously published defenses
on the CIFAR-10 dataset (Zhang et al., 2019). The adversarial attack type used for all the works
listed in this table is the white-box PGD starting from a random perturbation around the natural
example, using 20 iterations, a step size of 0.003, and an epsilon of 0.031 (¢,). It can be observed
that this work achieves a sizable inference accuracy Ajpference Of 30.19% while keeping the highest
test accuracy Agest Of 87.38% among all the works listed in this table, and importantly does not use
adversarial training. Generating input encodings can be done just once prior to training, whereas
adversarial training requires generating adversarial examples in each epoch, which is expensive when
an iterative method such as PGD is used (Madry et al., [2018)). The difficult problem of achieving
adversarial robustness in a real-world application requires a holistic approach. Our approach, which
does not depend on adversarial training, can be readily used in combination with adversarial training
and other known methods to achieve greater robustness to adversarial perturbations.

4 CONCLUSION

We presented a theoretical and experimental framework for defining and understanding generalization
in deep learning, defined as the difference between training and inference errors. The theoretical
findings and experimental results show that a learned classification function must be sufficiently
complex for a classification task in order to be closer to the true classification function. Another
insight from this study is that concatenating encodings of input features to the original input features
helps to achieve generalization in deep learning by enabling the classifier to learn relations between
features not captured by the original inputs. Experiments demonstrate that a model trained on
arbitrarily encoded input features is more robust to common corruptions and adversarial perturbations
and that using more encodings may be beneficial to minimize the generalization error. Designing
input codes to help a DNN learn a more general classification function with a minimum number of
encodings is an intriguing research direction to achieve reliability in machine learning.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Charles H. Bennett, Péter Gacs, Ming Li, Paul M. B. Vitanyi, and Wojciech H. Zurek. Information
distance. IEEE Transactions on Information Theory, 44(4):1407-1423, 1998.

Vighnesh Birodkar, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. A closed-form learned
pooling for deep classification networks. arXiv preprint arXiv:1906.03808, 2019.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In Proceedings of the International Conference
on Learning Representations, 2018.

Rudi Cilibrasi and Paul M. B. Vitdnyi. Clustering by compression. IEEE Transactions on Information
Theory, 51(4):1523-1545, 2005.

Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley & Sons, New
York, New York, 1991.

Hal Daumé III and Daniel Marcu. Domain adaptation for statistical classifiers. Journal of Artificial
Intelligence Research, 26:101-126, 2006.

Pedro Domingos. The role of Occam’s razor in knowledge discovery. Data Mining and Knowledge
Discovery, 3(4):409-425, 1999.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
Proceedings of the International Conference on Machine Learning, 2015.

Ziv Goldfeld, Ewout Van Den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kings-
bury, and Yury Polyanskiy. Estimating information flow in deep neural networks. In Proceedings
of the International Conference on Machine Learning, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.oraq.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Proceedings of the International Conference on Learning Representations, 2015.

Mehdi Hatamian, Oscar E. Agazzi, John Creigh, Henry Samueli, Andrew J. Castellano, David Kruse,
Avi Madisetti, Nariman Yousefi, Klaas Bult, Patrick Pai, Myles Wakayama, Mike M. McConnell,
and Marty Colombatto. Design considerations for Gigabit Ethernet 1000Base-T twisted pair
transceivers. In IEEE Custom Integrated Circuits Conference, 1998.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In Proceedings of the International Conference on Learning
Representations, 2019.

IEEE. Physical coding sublayer, physical medium attachment (PMA) sublayer and baseband medium,
type 1000BASE-T. IEEE Standard 802.3ab, 2015.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 2017.

Andrei N. Kolmogorov. Combinatorial foundations of information theory and the calculus of
probabilities. Russian Mathematical Surveys, 38(4):29-40, 1983.

Liu Kuang. Train CIFAR10 with PyTorch. https://github.com/kuangliu/
pytorch-cifar, 2019.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
Proceedings of the International Conference on Learning Representations, 2017a.

11

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

Under review as a conference paper at ICLR 2020

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Proceedings of the International Conference on Learning Representations Workshops, 2017b.

Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon, U. Muiller,
E. Sackinger, P. Simard, and V. Vapnik. Comparison of learning algorithms for handwritten digit
recognition. In International Conference on Artificial Neural Networks, 1995.

Jaeho Lee and Maxim Raginsky. Minimax statistical learning with Wasserstein distances. In Advances
in Neural Information Processing Systems, 2018.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proceedings of the International
Conference on Learning Representations, 2018.

Pietro Morerio, Jacopo Cavazza, and Vittorio Murino. Minimal-entropy correlation alignment for
unsupervised deep domain adaptation. In Proceedings of the International Conference on Learning
Representations, 2018.

Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. Unified deep supervised
domain adaptation and generalization. In Proceedings of the IEEE International Conference on
Computer Vision, 2017.

Krikamol Muandet, David Balduzzi, and Bernhard Scholkopf. Domain generalization via invariant
feature representation. In Proceedings of the International Conference on Machine Learning, 2013.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In Advances in Neural Information Processing Systems, 2017.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In Proceedings of the European Conference on Computer Vision, 2010.

Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita
Sarawagi. Generalizing across domains via cross-gradient training. In Proceedings of the Interna-
tional Conference on Learning Representations, 2018.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with
principled adversarial training. In Proceedings of the International Conference on Learning
Representations, 2018.

Baochen Sun and Kate Saenko. Deep CORAL: Correlation alignment for deep domain adaptation.
In Proceedings of the European Conference on Computer Vision, 2016.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time
training for out-of-distribution generalization. arXiv preprint arXiv:1909.13231, 2019.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

Gottfried Ungerboeck. Channel coding with multilevel/phase signals. IEEE Transactions on Infor-
mation Theory, 28(1):55-67, 1982.

Kush R. Varshney and Homa Alemzadeh. On the safety of machine learning: Cyber-physical systems,
decision sciences, and data products. Big Data, 5(3):246-255, 2017.

Riccardo Volpi, Pietro Morerio, Silvio Savarese, and Vittorio Murino. Adversarial feature augmenta-

tion for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018a.

12

Under review as a conference paper at ICLR 2020

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John Duchi, Vittorio Murino, and Silvio Savarese.
Generalizing to unseen domains via adversarial data augmentation. In Advances in Neural
Information Processing Systems, 2018b.

Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable adversarial
defenses. In Advances in Neural Information Processing Systems, pp. 8400-8409, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In Proceedings of the International Conference
on Learning Representations, 2017.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I.
Jordan. Theoretically principled trade-off between robustness and accuracy. In Proceedings of the
International Conference on Machine Learning, 2019.

A PROOF OF MATHEMATICAL STATEMENTS

Proof of Lemma 1. For classification task 7', a learning algorithm is asked to produce the true
output function f(-) : X™ — A. There exists a source code C' for a random variable X, which is also
a mapping from the sample space X" of X to the m-ary signal alphabet A from which a class u is

drawn. The true output function f(-) is equivalent to the source code C for the random variable X
because their domain X" and codomain A are equal and the image of both functions is the same for
each input sample 7 in the domain X".

Proof of Corollary 1. If the Kolmogorov complexity K (&) of an input sample & is larger than the
number of bits required to describe the class u to which it is mapped, which is at most [log, m] bits,
then some information about the input sample Z is lost. Satisfying this condition, the true source code
C is a lossy compressor.

Proof of Theorem 1. The normalized information distance
max(K(C|C), K(C|C))
max(K(C), K(C))

Dy(C,C) = (5)

is a universal cognitive similarity metric that minorizes all other admissible distances up to a negligible
additive error term. This means that decreasing the normalized information distance Dy (C, C') ensures
that the true source code C' and the learned source code C are more similar; i.e., the learned source
code C' is more general with respect to the true source code C. In a real-world setting, because the
empirical sample space X" may be too large, the learning algorithm sees an input sample Z's drawn
from a subset Xg of X"; i.e., X§ C X". Put differently, the set Xg of available input samples on
which a neural network is trained and tested is a subset of the empirical sample set X" which the
trained neural network sees during inference. This means that true source code C bears information
of all possible relations between input features that are useful for the classification task 7', whereas
the learned source code C' bears information of a subset of all possible relations between the input
features. The Kolmogorov complexity of the true source code is thus larger than that of a source code
learned from the set of available input samples by a sufficiently high-capacity neural network, which

can memorize its input samples (Zhang et al., 2017); i.e., K(C) > K(C). Therefore,
min(Dy(C, C)) = min max(K (C|C), K(C|C)) (6)
C C

is an optimization problem for the generalization of the learned source code C' with respect to the
true source code C.

Proof of Theorem 2. Any encoding F; : Xg — Yg that bears information useful for the classifica-
tion task 7" that is not entirely represented by the subset Xg of uncoded input samples; i.e., Y§ ¢ Xg,
when concatenated with the uncoded input samples Zs, increases the Kolmogorov complexity of the

learned source code, which is now called C';, because a sufficiently high-capacity neural network

13

Under review as a conference paper at ICLR 2020

can memorize its input samples (Zhang et al.| 2017). Put differently, the Kolmogorov complexity
K (Cg) of the source code C; learned from a concatenation {Zs, F;(Zs)} of uncoded and encoded
input samples is larger than that of the source code C learned from uncoded input samples alone if
the encodings bear information of relations between input features that are not represented by the
uncoded input samples. As the the true source code C bears information of all possible relations
between input features, the Kolmogorov complexity K (é‘E) of the source code Cf;, learned from
a concatenation {Zs, F;(Zs)} of uncoded input samples and their encodings bearing information
of a subset of all possible relations between input features is upper bounded by the Kolmogorov
complexity K (C) of the true source code C; i.e., K(C) > K(Cg). In other words, a sufficiently
high-capacity neural network can memorize its input samples (Zhang et al.l [2017) without being
assisted by encodings F;. However, the encodings F; bear information of relations between input
features, which help to increase the Kolmogorov complexity of the learned source code if they are
useful for the classification task 77; i.e., they are contained in the empirical sample set X", of the
neural network and if the information in the mappings contained in the input code, which is used to
generate the encodings £, is not represented in the set Xg of available input samples. The conditional
Kolmogorov complexities { K (C|C), K (C|C)} are thus both larger than { K (C|Cg), K (Cg|C)},
respectively, because the program that computes how to go from Cg to C is shorter in length than the
program that computes how to go from C' to C. The same holds in the reverse direction. Therefore,
max(K (C|Cg), K(Cg|C)) < max(K (C|C), K(C|C)), which results in Di(C, Cr) < Di(C,C).
The source code C'g learned from the concatenation {Zs, E;(Zs)} is thus more general than the
source code C learned from Zs.

Proof of Proposition 1. As the normalized information distance D;(C,Cg) is not effectively
computable, it can be approximated for practical purposes by the normalized compression distance

2({C.Cr}) ~ min(Z(C). Z(C)
max(Z(C), Z(Cg))

Dc(C,Cg) = : (7)

where Z is a real-world compressor. The learning algorithm sees an input sample s drawn from
a subset Xg of X" as the empirical sample space X" may be too large. Because a sufficiently
high-capacity neural network can memorize its input samples (Zhang et al., [2017), the compressed
size of the true source code is larger than that of the learned source code; i.e., Z(C) > Z(Cg). At
perfect training accuracy, the compressed size Z({C, Cz}) of the concatenation {C, C'z} is equal to
Z(C), as Cpisa partial function of C'. For a sufficiently high training accuracy, we can consider
|Z({C,CE}) — Z(C)] to be negligible for the purposes of generalization. As the generalization
condition D;(C, Cg) < Di(C, C) is not effectively computable, an equivalent effectively computable
condition is useful for practical purposes. As Di(C,Cy) < Di(C,C) <= Dg(C,Cg) <
D¢ (C, C) for the purposes of generalization, the effectively computable condition

2({C,Cp}) — min(2(C), Z(Ck)) < 246 C}) —min(2(C), Z(C))
max(Z(C), Z(Cr)) max(Z(C), Z(C))

®)

is equivalent to
Z(Cg) > Z(C). 9)

Proof of Proposition 2. By the Proof of Proposition 1, the effectively computable optimization
problem for the generalization of C'p with respect to C'is

min Do (C, Cp) = max Z(Cg), VCg:Z(Cg) < Z(C). (10)
Cg

E

B DEFINITIONS

Inference Accuracy. The classification accuracy measured on a subset of the empirical sample set
X", which may be subjected to common corruptions or adversarial perturbations and which may be
out of distribution of the training set, is defined as inference accuracy.

14

Under review as a conference paper at ICLR 2020

The definition of inference accuracy can be contrasted with that of test accuracy by considering that
the former is measured on a subset of the empirical sample set X™ which consists of corrupted or
perturbed samples which may be out of distribution of the training set and that the latter is measured
on the test set which consists of uncorrupted and unperturbed samples that are presumed to come
from the same distribution as the training set.

Generalization Error. The difference between the training error measured on the training set and
inference error measured on a subset of the empirical sample set X", which may be subjected to
common corruptions or adversarial perturbations and which may be out of distribution of the training
set, is defined as the generalization error.

This definition is different from that of prior works (Neyshabur et al., 2017; |Kawaguchi et al., 2017),
which define generalization error as the difference between the training error measured on the training
set and test error measured on the test set.

Generalization. A learned classification function is said to be more general with a decreasing
generalization error.

This definition is different from that of prior works (Neyshabur et al., 2017} [Kawaguchi et al., 2017),
which define a learned classification function to be more general with a decreasing difference between
the training error measured on the training set and test error measured on the test set.

Source Code. A source code C' for a random variable X is a mapping from the sample space X"
of X to an m-ary signal alphabet A.

Source codes can be designed for the most efficient representation of the data (Cover & Thomas,
1991). Channel codes appropriate for a channel can be designed separately and independently.
This combination is as efficient as any other method that can be designed by considering both
problems together. We refer the reader to a textbook such as (Cover & Thomas) [1991)) for a detailed
understanding of source codes.

Kolmogorov Complexity. The Kolmogorov complexity Ky (x) of a string = with respect to a
universal computer U is defined as

Ky(x) ZP:%?:IZ(}?), (1)

where p denotes a program, and [(p) denotes the length of the program p.

Thus, Ky () is the shortest description length of = over all descriptions interpreted by computer U.
We fix such a universal computer U as reference and write Ky (x) = K (x). We refer the reader to a
textbook such as (Cover & Thomas, |1991)) and (Bennett et al., 1998} [Cilibrasi & Vitanyi, 2005)) for a
detailed understanding of Kolmogorov complexity.

C SUPPLEMENTARY EXPERIMENTAL INFORMATION

C.1 ENCODED CIFAR-10 IMAGES

Figure 5| shows three CIFAR-10 images and four of their encodings, which are arbitrarily chosen.
This figure shows that each encoding conveys a different view of the input features, which helps the
learned source code model relations between the features that are useful for the image classification
task.

C.2 TRAINING SETUP

All models are trained in PyTorch with 16 random initializations. We train the networks over 450
epochs with a batch size of 128 and with a dynamic learning rate equal to 0.1 until epoch 150, 0.01
until epoch 250, and 0.001 until epoch 450 (Kuang}, 2019)). A test accuracy of 92.54% is achieved for
the uncoded VGG-11 model, and 92.12%, 91.45%, and 90.19% for the VGG-11 model with 2, 8, and
32 encodings, respectively. A test accuracy of 94.15% is achieved for the uncoded VGG-16 model,

15

Under review as a conference paper at ICLR 2020

Uncoded Encoding 1 Encoding 2

Figure 5: CIFAR-10 uncoded and encoded images. Top, middle, and bottom rows correspond to red,
green, blue channels, respectively.

» 10000 _ 25000
2 T B —— Gaussian noise
E) 8000 /f' “'/ g g 20000 1 --= Shot noise
& 6000 //.. / 5
Y= A eras S
© 4000 R Uncoded =
@ ,/.’ +? -~~~ 2encodings Ls
£ 20001 1_‘,‘:/ ------ 8 encodings go
€ : —-= 32 encodings 5
2 o
< 0 ‘ : : ;

25 20 15 10 5 0

signal-to-noise ratio (dB) severity

Figure 6: The uncoded VGG-11 model and encoded VGG-11 models tested on the CIFAR-10 test set
corrupted by Gaussian noise (left) and the VGG-16 model with 32 encodings tested on the samples in
the CIFAR-10-C dataset corrupted by Gaussian noise and shot noise (right).

and 91.11%, 88.93%, and 87.38% for the VGG-16 model with 2, 8, and 32 encodings, respectively.
The uncoded ResNet-18 model, which is used for transfer attacks, achieves 95.20% test accuracy.

Speckle Noise

150001 10000 o — — — —

—— Uncoded

—-——— %encogings
------ encodings
100001 —.- 32 encodings

7500 /7

5000 1 ./
5000 1

N
w
o
o

successful attacks

cumulative number
of test errors

\

\
.

.
\

cumulative number of

[
0.00 0.02 0.04 0.06 0.08 0.10
severity € (normalized L2 distance)

-
N
w
I
(4]

Figure 7: The uncoded VGG-11 model and encoded VGG-11 models tested on the samples in the
CIFAR-10-C dataset corrupted by speckle noise (left) and the uncoded VGG-16 model and encoded
VGG-16 model tested on the samples in the CIFAR-10 dataset perturbed by the black-box boundary
attack (right).

16

Under review as a conference paper at ICLR 2020

C.3 ADDITIONAL EXPERIMENTS

To show the robustness of the encoded VGG-11 models to Gaussian noise beyond the noise levels
included in the CIFAR-10-C dataset, we apply Gaussian noise with zero mean and variance o2 to the
CIFAR-10 test set. The average input-feature energy equals

kn—1

LS
— D (12)

=0

where Z; is a feature of the input sample %, k is the number of input samples in the test set, and n is
the number of features in an input sample. We define the signal-to-noise ratio to be

kn—1

1 =2
) D (13)
W i=0

In Figure[6] we show on the left plot that increasing the number of arbitrary encodings concatenated
to the input features significantly increases robustness to Gaussian noise applied to the CIFAR-10 test
set with signal-to-noise ratios from 25 to 0 dB. For example, at a signal-to-noise ratio of 12 dB, the
inference accuracy of the VGG-11 model with 32 encodings is 61.15%, whereas that of the uncoded
VGG-11 model is 21.49%. On the right plot, the experimental results for the VGG-16 model with
32 encodings tested on the samples in the CIFAR-10-C dataset corrupted by Gaussian noise and
shot noise are given. The results indicate that using a larger encoded model does not necessarily
confer more robustness to such common corruptions as Gaussian noise and shot noise than a smaller
encoded model.

In Figure[7] the results of the experiments conducted on the CIFAR-10-C dataset corrupted by speckle
noise and black-box boundary attack experiments on the CIFAR-10 dataset are shown. On the
right plot, as with the other type of common-corruption experiments, we see that increasing the
number of encodings increases robustness to speckle noise. On the left plot, we see that the encoded
model is significantly more robust to the boundary attack than the uncoded model. For example, at
a normalized ¢> distance of 0.01, an inference accuracy of approximately 50% is achieved by the
model with 32 encodings, whereas the inference accuracy of the uncoded model already drops to 0%
at an /5 distance much closer to 0.

C.4 PERFORMANCE COMPARISON: COMMON CORRUPTIONS

Table [T|compares the encoded VGG-11 model with 32 encodings with previously published methods
on the CIFAR-10-C dataset.

At a severity level of 5, the encoded VGG-11 model achieves the highest inference accuracy against
shot noise compared with all the other works listed in this table, which use a ResNet-18 or ResNet-26
model. The highest inference accuracy (77.30%) against Gaussian noise is attained by the adversarial
logit pairing (ALT) method published in|Kannan et al.| (2018), but the test accuracy of this method
is 83.50%, whereas the encoded VGG-11 model achieves the second highest inference accuracy
(75.22%) against Gaussian noise with a test accuracy of 90.19%. Our results seem to indicate that
using a larger number of encodings improves robustness to common corruptions, so the inference
accuracy achieved by the channel-coding method may be improved by merely increasing the number
of encodings or designing higher performance codes.

C.5 PERFORMANCE COMPARISON: ADVERSARIAL PERTURBATIONS

Table [2] compares the encoded VGG-16 model with previously published defenses on the CIFAR-10
dataset. The experimental results do not imply that encoded input features are more robust to common
corruptions and adversarial perturbations than uncoded features. The encoded input features simply
bear information of relations between input features that are not represented by the uncoded input
features, so a source code learned from a concatenation of uncoded and encoded input features bears
more information of the true source code than a source code learned from uncoded input features
alone. A source code learned from a concatenation of uncoded and encoded input features is thus
more robust than a source code learned from uncoded input features alone.

17

Under review as a conference paper at ICLR 2020

Table 1: Comparison of the inference accuracy of the encoded model with that of prior methods on
the CIFAR-10-C dataset corrupted by Gaussian noise, shot noise, and impulse noise with a severity
level of 5.

Reference Method Network Atest Ainference Ainference Ainference
Gaussian Shot Impulse
Noise Noise Noise
Birodkar et al.| (2019) RPO ResNet-18 95.70% 25.00% 32.70% 21.90%
Sun et al.{(2019) JT ResNet-26 91.90% 50.60% 54.70% 46.60%
Sun et al.|(2019) TTT ResNet-26 92.10% 54.40% 58.20% 50.00%
Sun et al.[(2019) TTTO ResNet-26 91.80% 74.20% 77.40% 69.40%
Kannan et al. (2018) ALP ResNet-26 83.50% 77.30% 77.10% 71.70%
This work CcC VGG-11 90.19% 75.22% 77.58 % 60.18%

RPO: replacing pooling operator; JT: joint training; TTT: test-time training; TTTO: test-time training
online; ALP: adversarial logit pairing; CC: channel coding.

Table 2: Comparison of the encoded model with prior defense models under white-box PGD attacks
with 20 iterations, a step size of 0.003, and an epsilon of 0.031 (¢,) on the CIFAR-10 dataset.

Reference Defense type Adversarial training Atest Ajnference
Kurakin et al.| (2017a) regularization Yes 85.25% 45.89%
Madry et al.| (2018) robust optimization Yes 87.30% 47.04%
Wong et al.| (2018) robust optimization Yes 27.07% 23.54%
/Zhang et al.| (2019) regularization Yes 84.92% 56.61%
This work channel coding No 87.38% 30.19%

C.6 IMPACT OF INCREASING THE NUMBER OF INPUT CHANNELS OF A DNN ON ITS
ROBUSTNESS

To study the impact of increasing the number of input channels of the uncoded VGG-11 and VGG-16
models, we conducted experiments on the encoded VGG-11 and and VGG-16 models that use
identical encodings; i.e., the input features are replicated across additional input channels (the
“encoders” are just identity functions). In Figure[8] we see on the left that increasing the number of
input channels of the uncoded VGG-11 model confers no robustness to Gaussian noise whatsoever.
The plot on the right shows that increasing the number of input channels of the uncoded VGG-16
model does not confer robustness to white-box PGD either.

€ (L-inf distance)

g 10000 i 1 S » 10000 S ———
S ———) P
£ 8000+ 8¢
o £8 7500 jr/"
& 60004 2; /
S 40001 5 50001/
o y —— Uncoded F-R] /
g 20004 g 1 replica s 9 2500-,
5 . I 32 replicas g 7 f
T T T T o T T T T
25 20 15 10 5 0 0.00 0.01 0.02 0.03 0.04 0.05

signal-to-noise ratio (dB)

Figure 8: Impact of increasing the number of input channels in the uncoded models on robustness.
Robustness to Gaussian noise (left) and the PGD attack (right) is tested by providing identical samples
from the CIFAR-10 test set to the increased number of input channels.

18

Under review as a conference paper at ICLR 2020

C.7 SYMBOL-TO-BIT MAPPING

The bit mapper in Figure 2] uses the matrix
0

—HOROOORMFFMFHFOFHROOORRFREFEMFEF OO, OOORR O, OOO -
RO OOF,ROFFRFOHR OO, OOOHMFHEFOFRFOORREFEFOFEFOOFO
OO R FEFOORMFEFEFEFRFEMFEFOOOFRFHEFERFEPEPODODODODODODODODODDODODODODOO O
OO OHHROHFRHROFRHFHRPOORHRRFRPROORrRFOOFRHFHFOFRFEFOOHF,OOO
R OOrRORrRORFRORrROORFRP PR OHROOHR,RPFRPROOREH,ORFROO
O MFHEFEFFRF OO HFFEFFRFOOOOHRHFHERFFOOOOHFHRFERFEFEFOOO

H)RR R OO0 HEFRFOFHERFRFOFERFRERFERFRRFREOOO
O P OORFOFRF OO OO O OO, OFRFPFOORRFEO
—ROrROOFRHRRFROORRHROFROOHRRFROROOROROROORRFRH
OO OO oo OO OO R FRFOOOFHRFORFRPR R OOOFRFOHFRRFERFEOO
HHEFOOHOOOOOOHRMHFOREFEFOOORRFEFOFREFEFOOORRFEOM -
O ORHRORrROOHrROORrROHORHPOOHRORRORPFRPROORROR O
RPOoOrRORROR,RRFRPPRPROROHRROFH,PFPPFPOROROHR PP ORPRORORF—
—HO O OO, OOHRFROROHOORHEFOFROROOHRRFRORO

O R FORFOOFFFHEFFPFOFRPFPFOOODODODODDODOOOHFFEORF

to map four 5-PAM symbols into 12 bits. In this symbol-to-bit mapping matrix, the i'" row cor-
responds to the encoding E;, where 0 < ¢ < 31. Each symbol in the 5-PAM symbol alphabet is
converted into three bits by using the corresponding three columns in this matrix. For example, the
first symbol in the 5-PAM symbol alphabet for the encoding F’5 is converted to [1 0 0] by drawing
the bits from the third row and third, fourth, and fifth columns of the symbol-to-bit mapping matrix.
After all four of the 5-PAM symbols are converted into their respective three bits, these bits are
concatenated to each other, determining the value of the corresponding feature in the encoded sample.

19

	Introduction
	Our Contributions
	Related Work

	Algorithmic Information-Theoretic Approach to Deep Learning
	Normalized Information Distance as Universal Cognitive Similarity
	Deep-Learning Classifier as a Source Code
	Achieving Generalization in Deep Learning
	Approximating Normalized Information Distance by Normalized Compression Distance
	Using Channel Codes on Input Features for Image Classification

	Experimental Results
	Robustness to Common Corruptions
	Robustness to Adversarial Perturbations

	Conclusion
	Proof of Mathematical Statements
	Definitions
	Supplementary Experimental Information
	Encoded CIFAR-10 Images
	Training Setup
	Additional Experiments
	Performance Comparison: Common Corruptions
	Performance Comparison: Adversarial Perturbations
	Impact of Increasing the Number of Input Channels of a DNN on Its Robustness
	Symbol-to-Bit Mapping

