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Abstract

Conventional object detection methods essentially sup-
pose that the training and testing data are collected from a
restricted target domain with expensive labeling cost. For
alleviating the problem of domain dependency and cum-
bersome labeling, this paper proposes to detect objects in
unrestricted environment by leveraging domain knowledge
trained from an auxiliary source domain with sufficient la-
bels. Specifically, we propose a multi-adversarial Faster-
RCNN (MAF) framework for unrestricted object detection,
which inherently addresses domain disparity minimization
for domain adaptation in feature representation. The pa-
per merits are in three-fold: 1) With the idea that objec-
t detectors often becomes domain incompatible when im-
age distribution resulted domain disparity appears, we pro-
pose a hierarchical domain feature alignment module, in
which multiple adversarial domain classifier submodules
for layer-wise domain feature confusion are designed; 2)
An information invariant scale reduction module (SRM) for
hierarchical feature map resizing is proposed for promot-
ing the training efficiency of adversarial domain adapta-
tion; 3) In order to improve the domain adaptability, the
aggregated proposal features with detection results are feed
into a proposed weighted gradient reversal layer (WGRL)
for characterizing hard confused domain samples. We eval-
uate our MAF on unrestricted tasks including Cityscapes,
KITTI, Sim10k, etc. and the experiments show the state-of-
the-art performance over the existing detectors.

1. Introduction

Object detection is a computer vision task which draws

many researchers’ attentions. Inspired by the development

of CNN [14, 17, 34], object detection has witnessed a great

success in recent years [11, 21, 29, 28].

Although excellent results have been achieved, objec-

t detection in practical application still faces a bottleneck
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Figure 1. Examples of unrestricted object detection. The first row

denotes the pictures from the Cityscapes [4], while pictures of the

last two rows are detected from the Foggy Cityscapes [32]. The

results of the first two rows are detected by the traditional Faster-

RCNN [29] trained on Cityscapes, and we can see that many ob-

jects are missing on the domain shifted Foggy Cityscapes (the sec-

ond row). The third row shows the results of our approach, and the

domain disparity between two datasets can be effectively removed.

challenge, i.e., detecting objects in the wild where domain

shifts always happen. Since the collected datasets [2, 6]

are still domain restricted, the trained detectors are diffi-

cult to adapt to another domain due to the domain discrep-

ancy between the training data and the testing data it will

apply to. Most of conventional detection methods do not

take into account the domain discrepancy, which leads to a

prominent performance degradation in practice. The influ-

ence of domain disparity can be observed in the Figure 1,

where we train a VGG16 based Faster-RCNN [29] with the

Cityscapes [4] and test the model on Foggy Cityscapes [32].

The results in the second row in Figure 1 verify our idea that

a considerable performance drop with many objects missing

when the domain disparity exists.

Generally, it’s difficult to quantitatively remove the do-



main discrepancy, therefore, for addressing unrestricted ob-

ject detection challenge, we exploit the mind of domain

adaptation and transfer learning [23, 25, 31, 38] in our de-

tector. In our paradigm, we train the detector on the com-

pletely unlabeled target domain, by leveraging a semantic

related but distribution different source domain with suffi-

cient labels of bounding boxes. In this way, the domain-

invariant features can be learned and there is no any anno-

tation cast for target domain. An example of our proposed

detector can be observed in Figure 1 (the third row), which

shows much better performance than the results of the sec-

ond row with conventional Faster-RCNN model.

Specifically, we propose a multi-adversarial Faster-

RCNN detector (MAF) for adversarial domain adaptation

for hierarchical domain features and the proposal features.

The hierarchical domain features from the convolutional

feature maps progressively present the object position infor-

mation in the whole image. The proposal features extracted

in fully-connected layers can better characterize the seman-

tic information of the generated proposals. In our MAF, we

propose multiple adversarial submodules for both domain

and proposal features alignment. With similar task, Chen

et al. [3] proposed a domain adaptive Faster-RCNN (DAF)

which demonstrate also that the detector was domain in-

compatible when image-level distribution difference exist-

s. That is, if the domain feature is aligned, the detector

will become domain invariant. Inspired by the wonderful

Bayesian perspectives in [3], we focus on the hierarchical

domain feature alignment module by designing multiple ad-

versarial domain classifier on each block of the convolution

layers for minimizing the domain distribution disparity.

In the proposed MAF, we take into account three impor-

tant aspects: (1) The multiple domain classifier submod-

ules are learnt to discriminatively predict the domain label,

while the backbone network is trained to generate domain-

invariant features to confuse the classifier. The multiple

two-players adversarial games are implemented by gradient

reversal layer (GRL) [9] based optimization in an end-to-

end training manner. (2) In the hierarchical domain feature

alignment module, the large convolutional feature maps for-

mulate large training sets composed of pixel-wise channel

features, which significantly slower the training efficiency.

To this end, we propose a scale reduction module (SRM)

without domain feature information loss for reducing the s-

cale of the feature maps by increasing channel number in

each convolution block. (3) In the proposal feature align-

ment module, we propose to aggregate the proposal features

with the detection results (i.e., classification scores and re-

gression coordinates) during training of the domain classi-

fier. For further confusing hard samples between domains,

we propose a weighted gradient reversal layer (WGRL) to

down-weight the gradients of easily confused samples and

up-weight the gradients of hard confused samples between

domains. The contributions of this paper can be summa-

rized as follows:

• A multi-adversarial Faster-RCNN (MAF) is intro-

duced for unrestricted object detection tasks. Two fea-

ture alignment modules on both hierarchical domain

features and aggregated proposal features are proposed

with multi-adversarial domain classifier submodules

for domain adaptive object detector.

• In adversarial domain classifier submodule, the scale

reduction module (SRM) is proposed for down-scaling

the feature maps without information loss, and the

training efficiency of our MAF detector is improved.

• In the aggregated proposal feature alignment module,

for improving the domain confusion of proposals, we

propose a weighted gradient reversal layer (WGRL)

which penalizes the hard confused samples with larger

gradient weights and relax the easily confused samples

with smaller gradient weights.

• Exhaustive experiments on Cityscapes [4], KITTI [10],

SIM10K [16], etc. for unrestricted object detection

tasks, which show the superior performance of our

MAF over state-of-the-art detectors.

2. Related Work
Object Detection. The object detection is a basic

task in computer vision and has been widely studied for

many years. The earlier work [5, 7, 27] of the objec-

t detection were implemented with sliding windows and

boost classifiers. Benefited by the success of CNN mod-

els [14, 17, 34], a number of CNN based object detection

methods [1, 8, 20, 24, 33, 39] have been emerged. The

region of interest (ROI) based two-stage object detection

methods attracted a lot of attentions in recent years. R-

CNN [12] is the first two-stage detector which classifies the

ROIs to find the objects. Girshick et al. [11] further pro-

posed a Fast-RCNN with ROI pooling layer that shares the

convolution features, and both the detection speed and ac-

curacy are promoted. After that, Faster-RCNN [29] was in-

troduced by Ren et al., which integrate the Fast-RCNN and

Region Proposal Network (RPN) together in an advanced

structure. Faster-RCNN further improve the speed and ac-

curacy of detection. In this paper, by taking the Faster-

RCNN as backbone, we take into account the mind of do-

main transfer adaptation for exploring unrestricted object

detection task across different domains.

Domain Adaptation. Domain adaptation aims to bridge

different domains or tasks by reducing the distribution dis-

crepancy, which has been a focus in various computer vision

tasks [15, 22, 23, 37, 38]. The domain adaptation has been

recently promoted by the powerful feature representation a-

bility of deep learning. Long et al. [23] implemented the
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Figure 2. The network structure of our MAF. Inspired by the VGG16 based Faster-RCNN [29], our MAF applies the feature alignment

modules on both domain features and proposal features. For the hierarchical domain feature alignment module, multiple adversarial domain

classifier submodules are implemented on the block 3,4,5 of the VGG16. GRL layers [9] are used for the adversarial learning strategy and

the size of the feature maps are reduced by SRMs. At the proposal feature alignment module, we concatenate the classification scores and

bounding box regression results with corresponding features for the domain classifier while the WGRL is introduced for the adversarial

learning strategy. SRM is composed of two parts, the first part is a 1 × 1 convolution layer which is applied to reduce the channel size.

After that, a scale reduce part is used to concat s× s adjacent features, so that the size of the feature maps is reduced.

domain adaptation by minimizing the maximum mean dis-

crepancy (MMD) between the two domain-specific fully-

connected branches of the CNN. Besides that, domain con-

fusion for feature alignment through two-player game ad-

versarial learning between feature representation and do-

main classifier motivated by GAN [13] was extensive s-

tudied in transfer learning [18, 22, 26, 35, 40]. Tzeng et
al. [36] proposed a two-step training scheme to learn a tar-

get encoder. Zhang et al. [40] take advantages of several

domain classifiers to learn domain informative and domain

uninformative features. These works focus on image classi-

fication tasks, however, for the object detection task, not on-

ly the object categories but also the bounding box location

should be predicted, which makes the domain transfer of

detectors more challenging. In our MAF detector, the mind

of domain adaptation and transfer learning is taken into ac-

count for network design, and the adversarial optimization

is implemented based on the Gradient Reversal Layer (GR-

L) [9]. Li et al. [19] proposed to transmit the knowledge

of the strong categories to the weak categories. In [3], the

domain disparity is tackled in both the image level and in-

stance level. However, both works do not fully characterize

the hierarchical domain feature alignment and the proposal

feature alignment.

3. The Proposed MAF Detector
In this section, we will introduce our MAF detector. The

source domain is marked by Ds, and Dt is used for the tar-

get domain. In unrestricted setting, the source domain is

fully labeled, and Ds = {(xs
i , b

s
i , y

s
i )}ns

i stands for the ns

labeled data in the source domain, where the bsi ∈ Rk×4

stands for the bounding box coordinates of the xs
i , and

ysi ∈ Rk×1 is the category label for corresponding bound-

ing boxes. Dt =
{
(xt

j)
}nt

j
stands for nt completely unla-

beled image samples from target domain.

3.1. Network Structure

The proposed MAF detector is based on the Faster-

RCNN [29] framework, and VGG16 [34] with five blocks

of the convolution layers is utilized as the backbone of our

MAF. The hierarchical domain feature alignment module

is implemented on the convolutional feature maps, where

the multi-adversarial domain classifier submodules are de-

ployed on blocks 3, 4, and 5. On the top of the network,

the aggregated proposal feature alignment module is de-

ployed. With the combination of all feature alignment sub-

modules on both convolution layers and fully collected lay-

er, domain-confused features with domain discrepancy re-

duced are obtained. It’s worth noting that the loss func-

tions including classification loss and smooth L1 loss of the

Faster-RCNN are only applied for the source domain. An

overview of our network structure is illustrated in Figure 2.

Two main modules including 1) hierarchical domain fea-

ture alignment module and 2) aggregated proposal feature

alignment module formulate the MAF for domain adaptive

detection. The former is formulated by multi-adversarial



domain classifier submodules, in which a scale reduction

module (SRM) is designed on the top of the GRL [9] for

down-scaling the feature maps and improving the training

efficiency. The latter is formulated by an adversarial do-

main classifier, in which the aggregated proposal features

with detection results are fed as input. For better charac-

terizing the hard-confused samples between domains, the

weighted GRL (WGRL) that adaptively re-weights the gra-

dients of easily-confused and hard-confused samples is de-

ployed, which can better improve the adversarial domain

adaptation performance.

3.2. Hierarchical Domain Feature Alignment

The hierarchical domain feature alignment module aims

to calibrate the distribution difference between source and

target domain in convolution feature maps, which better

characterize the image distribution than semantic layer. A

intrinsic assumption is that if the image distribution be-

tween domains is similar, the distribution of object-level

in the image between domains is basically similar also [3].

That is, the distribution difference in the whole image is the

primary factor leading to domain discrepancy. In a deep net-

work, the convolutional feature maps in middle level reflec-

t the image information, such as shape, profile, edge, etc.

Therefore, for domain discrepancy minimization between

domains, we propose the hierarchical domain feature align-

ment module which is formulated by multi-adversarial do-

main classifier submodules in different convolution blocks.

The adversarial domain classifier aims to confuse the do-

main features, with minimax optimization between the do-

main classifiers and the backbone network. We consider

multi-adversarial domain classifiers instead of general sin-

gle adversarial domain classifier, because hierarchical fea-

ture alignment is helpful to the final domain alignment.

Given an image xi from the source domain or target do-

main, the domain features from the convolution layers of

the mth block are represented as Cm(xi, wm), where wm

stands for the network parameters. The adversarial classi-

fier submodule at the mth block is denoted as Dm, which

is learned to predict the domain label of xi. Following the

the adversarial learning strategy, the minimax learning of

the adversarial classifier submodule in the mth convolution

block can be written as:

min
θm

max
wm

Lm (1)

where Lm =
∑

u,v Lc(Dm(Cm(xi, wm)(u,v), θm), di), in

which Lc is the cross entropy loss, the Cm(xi, wm)(u,v) s-

tands for the channel-wise feature at pixel (u, v) of the fea-

ture maps, and θm is the domain classifier parameters in the

mth block. di is the domain label of sample xi, which is la-

beled as 1 for the source domain and 0 for the target domain.

In the Eq. (1), the parameters of the backbone network are

learned to maximize the cross-entropy loss Lc, while the

parameters of the domain classifier submodule struggle to

minimize the loss function. By adversarial learning of the

domain classifier with backpropagated gradient reverse (i.e.

GRL [9]), the feature representations are characterized to be

domain-invariant.

In order to efficiently train the hierarchical domain fea-

ture alignment module, inspired by [41], we introduce a s-

cale reduction module (SRM) which aims at down-scaling

the feature maps without information loss. Specifically, SR-

M contains two steps: 1) A 1×1 convolution layer is imple-

mented to reduce the number of channels of feature maps in

each block. This step can achieve domain informative fea-

tures and reduce the dimensions of domain features for the

effective training. 2) Re-align the features by reducing the

scale while increasing channel number of the feature maps.

This step aims to reduce the size of training set and increase

feature dimensionality. In detail, the s × s adjacent pixels

from the feature maps are collected end-to-end to generate

a new pixel for the re-shaped feature maps. Obviously, this

step is parameterless and easy to compute. The second step

is formulated as follows.

FS
(u,v,c) = FL

(u×s+c%s2%s,v×s+�c%s2/s�,�c%s2�) (2)

where the FL stands for feature maps before the second

component. The (u, v, c) presents the element on the cth
feature map located at (u, v) and count from 0. FS stands

for the scale reduced feature maps, and s is the sampling

factor, which means the adjacent s× s pixels of the feature

maps are merged into one feature. % stands for the oper-

ation of mod and the �.� presents the round down. Since

SRM only has parameters in the first component, the num-

ber of parameters is reduced while the training efficiency is

improved. The two components of our SRM can be clearly

observed on the bottom of the Figure 2.

3.3. Aggregated Proposal Feature Alignment

The object classifier and bounding box regressor trained

with the source domain samples can also not be domain

adaptive. Therefore, the aggregated proposal feature align-

ment module aims to achieve semantic alignment while p-

reserving the information for classification and regression.

The proposals are obtained from the region proposal net-

work (RPN), which represent the local parts of an image. In

order to improve the semantic discriminative of the proposal

features, we propose to aggregate the proposal features with

the detection results, i.e., classification scores and bounding

box regression coordinates, by using concatenation opera-

tor. The aggregation brings two kinds of advantages. First,

the classification results enrich the information about the

categories while the regression results are endowed with

position knowledge of the bounding box. Second, the clas-

sification and the bounding box regression results improve



the discrimination of the features for easily and effectively

training the domain classifier.

Given an input image xi, the proposal features with re-

spect to the image are represented as F (xi, w), where w is

the CNN model parameters. Dp is the domain discriminator

of the proposal feature alignment module. The loss function

of the proposal feature alignment module can be written as

min
θp

max
w

Lp (3)

where Lp =
∑

k Lc(Dp(F
k(xi, w) ⊕ ck ⊕ bk, θp), di), in

which F k(xi, w) is the feature of the kth proposal, and ck

and bk are the softmax classification scores and the bound-

ing box regression results of the F k(xi, w), respectively.

Lc(·) is the cross-entropy loss, θp is the domain classifier

parameters, and ⊕ stands for the concatenation operation.

In order to apply the adversarial domain transfer strate-

gy, in the proposal feature alignment module, we propose

a weighted gradient reversal layer (WGRL) to relax the

easily-confused samples and simultaneously penalize the

hard-confused samples, such that better domain confusion

can be achieved. An illustration of the proposed WGRL

can be viewed in Figure 3. The samples close to the domain

classifier decision boundary are recognised as the easily-

confused samples, i.e., they are not distinguishable by the

classifier, while samples far from the decision boundary

are hard-confused samples, i.e., the domain discrepancy be-

tween these samples in both domains is still large. Thus, we

should pay more attention to the distinguishable samples by

penalizing these samples with larger weights on their gradi-

ents. Specifically, the proposed WGRL regards the scores

of the domain classifier as the weights for the correspond-

ing samples. Suppose the probability of one proposal in an

image belonging to source domain predicted by the domain

classifier to be p, the probability belonging to target domain

is 1− p, the gradient before reversal to be G, and the gradi-

ent after reversal to be Grev , then WGRL is written as

Grev = −λ(d · p+ (1− d)(1− p))G (4)

where the λ is a hyper-parameter for the WGRL and d
is the domain label of the image. According to the Eq.

(4), the predicted scores are used as the weights for the

gradients. The higher confidence of the domain classifier

means that domain adaptation needs to be further improved,

and the samples are automatically up-weighted. Otherwise,

those samples with lower confidence of the domain clas-

sifier are considered to be indistinguishable and therefore

down-weighted. Note that the minus of −λ in Eq. (4) de-

notes the gradient reverse in optimization.

3.4. Overview of the MAF Detector

The overview of our model can be seen in the Figure 2.

Besides the detection loss Ldet of Faster-RCNN, i.e., clas-

sification loss and regression loss, our MAF have another

Source Samples

Target Samples

Domain Classifier

SSSource SSamplles

Target Samples

s
Easily-confused 

samples

Hard-confused 
samples

Ds Dt

Figure 3. Illustration of WGRL. The blue color stands for the sam-

ples from source domain, while the yellow samples stand for the

target domain. The samples close to the decision boundary of the

domain classifier in the shadow region are recognised as easily-

confused samples and up-weighted by our WGRL. The samples

outside the shadow region are recognised as hard-confused (i.e.,

distinguishable) samples that need to be down-weighted.

two extra minimax loss functions Lm and Lp, i.e., Eq.(1)

and Eq.(3) for adversarial domain alignment.

Detection loss minimization. In training of the MAF

detector, we utilize the source domain that are full of bound-

ing box labels to train the Faster-RCNN detection loss for

the object detection task. The features from the last block of

the VGG16 [34] are fed into the RPN to generate a number

of proposals for further detection. After that, the ROI pool-

ing layer is used to generate the features with respect to the

proposals. The fully-connected layers are trained to get the

category labels of the proposals while refining the bounding

box coordinates. Note that only the source domain has the

annotations for the bounding boxes, the detection loss of the

Faster-RCNN is trained on the source domain data.

Adversarial domain alignment loss. The domain align-

ment loss includes hierarchical domain feature alignment

and aggregated proposal feature alignment, which is opti-

mized in an adversarial manner. By jointly considering the

Eq.(1) and Eq.(3), the proposed adversarial domain align-

ment loss in MAF can be written as:

Lt = Lp +
5∑

m=3

Lm (5)

Overall loss of MAF detector. With the combination of

the detection loss and domain alignment loss, the final loss

function of the proposed MAF detector can be written as:

LMAF = Ldet + αLt (6)

where Ldet is the loss of Faster-RCNN [29] including soft-

max loss function and smooth l1 loss [11], and α is a hyper-

parameter between the detection loss and domain adapta-

tion loss. The MAF is trained end-to-end with the Eq. (6).

Standard SGD algorithm is implemented to optimize the pa-

rameters of the network.



df. pf. person rider car truck bus train mcycle bicycle mAP

Faster-RCNN × × 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8

DAF
√ √

25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

MAF*
√ √

25.3 36.7 41.9 23.5 38.2 36.4 18.3 28.0 30.9

MAF

× √
25.6 36.8 39.9 18.8 32.0 24.1 21.3 29.2 28.5√ × 29.0 38.8 43.9 23.2 39.6 36.4 26.7 31.6 33.6√ √
28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0

Table 1. Results on the validation set of the Foggy Cityscapes. df. denotes domain feature alignment and pf. denotes proposal feature

alignment. MAF* means that only one domain feature alignment in the block 5 and the proposal feature alignment are considered.

4. Experiments
In evaluation, we conduct unrestricted object detection

experiments on several datasets including Cityscapes [4],

Foggy Cityscapes [32], KITTI [10] and SIM10K [16]. We

compare our results with the state-of-the-art domain adap-

tive Faster-RCNN [3] that we call DAF in experiments and

the standard Faster-RCNN. To the best of our knowledge,

DAF is the first work on the similar object detection task.

4.1. Implementation Details

The experiments in this paper follow the same setting

in [3]. The source domain of our experiments is sufficient-

ly annotated with bounding boxes and corresponding cate-

gories, while the target domain is completely unlabeled. In

order to evaluate the performance of the unrestricted object

detection, the testing performance of mean average preci-

sion (mAP) on the target domain is compared. The trade-

off parameter α in Eq. (6) is set as 0.1 during the training

phase. Besides that, for the detection part, we set the hyper-

parameters by following [29]. We utilize the ImageNet [30]

pre-trained VGG16 model for the initializing our MAF de-

tector. Our model is trained for 50k iterations with the learn-

ing rate 0.001 and dropped to 0.0001 for another 20k itera-

tions. Totally, 70k iterations are trained. The minibatch size

is set as 2 and the momentum is set as 0.9.

4.2. Datasets

Four datasets including Cityscapes [4], Foggy C-

ityscapes [32], KITTI [10] and SIM10K [16] are adopted to

evaluate the performance of our approach by following [3].

The details of these datasets are provided.

Cityscapes: Cityscapes [4] is designed to capture high

variability of outdoor street scenes from different cities. The

dataset is captured in common weather conditions and has

5000 images with dense pixel-level labels. These images

are collected from 27 cities in different seasons which in-

cludes various scenes. Note that the dataset is not originally

collected for the object detection task but semantic segmen-

tation, therefore the bounding boxes were generated by the

pixel-level annotations as shown in [3].

Foggy Cityscapes: All the images in the Cityscapes [4]

were collected from good weather, the Foggy C-

ityscapes [32] are derived from the Cityscapes to simulate

the foggy scenes and constitutes the images with the fog

weather. The inherited pixel labels from Cityscapes are

used for generation bounding boxes in experiments. Some

examples of the Cityscapes and Foggy Cityscapes are illus-

trated in Figure 1.

KITTI: The KITTI [10] is a dataset produced based on

an autonomous driving platform. The images of the dataset

are captured in a mid-sized city. Totally 14999 images and

80256 bounding boxes are contained in the dataset for the

object detection task. In our experiments, 7481 images in

the training set are used for both adaptation and evaluation

by following [3].

SIM10K: SIM10K [16] is a simulated dataset generated

by the engine of the Grand Theft Auto V (GTA V). This

dataset contains 10000 images with 58071 bounding boxes

of the car. All images of the SIM10k are used as the source

domain for training.

4.3. Experimental Results

In this section, we evaluate our approach on different

datasets to simulate different domain shift scenes. Special-

ly, we evaluate the influence of weather by the first. After

that, SIM10k and Cityscapes are implemented to search the

domain disparity of synthetic data and real data. Finally, the

domain shift caused by different scenes is explored.

4.3.1 Detection From Cityscapes to Foggy Cityscapes

We implemented our approach on the Cityspaces [4] and

Foggy Cityspaces [32] to evaluate our MAF under foggy

weather condition. We take the Cityscapes as the source

domain and the Foggy Cityscapes as the target domain.

The VGG16 based Faster-RCNN [29] is implemented as

the baseline of the experiments. The DAF [3], as a cross-

domain detection method, is implemented as the competi-

tor of our MAF. All categories in the Cityscapes are used

for the experiments, including the person, rider, car, truck,

bus, train, motorcycle and bicycle. The models are tested on

the validation set of the Foggy Cityscapes. The results are

shown in Table 1, where the df. stands for the hierarchical



domain feature alignment module and the pf. represents the

proposal feature alignment module in all experiments.

According to the Table 1, our MAF achieves the best

results among all compared methods. MAF with both do-

main and proposal feature alignment modules outperforms

the DAF by 6.4%, which shows the significant effectiveness

of our approach. Note that MAF with only proposal feature

alignment module (i.e., pf.) achieves 28.5% in mAP, which

also outperforms the DAF and the performance of propos-

al feature alignment module is testified. Besides that, there

are some other interesting conclusions can be observed with

the results of the MAF* and our approach with only hierar-

chical domain feature alignment module used. MAF* is a

model which contains only one adversarial domain classifi-

er submodule on the block 5, with the submodules on block

3 and 4 removed. Obviously, multi-adversarial domain clas-

sifiers on more blocks of convolution layers can significant-

ly improve the domain adaptation performance for better

domain-invariant feature representation. With well-aligned

domain features, our model achieves much better result-

s and it also verifies our idea that the image distribution

calibration in convolutional feature maps is more impor-

tant than proposal feature alignment in the ultimate domain

alignment for the unrestricted object detection task.

4.3.2 Detection from Synthetic Data to Real Data

The SIM10k [16] is a dataset composed of the synthetic da-

ta. In this experiment, the SIM10k is used as the source

domain, while the Cityscapes is used as the target domain.

Note that only the category of car is used for the unrestricted

object detection task in the experiment. The results are test-

ed on the validation set of the Cityscapes, which are shown

in the Table 2.

df. pf. AP of Car

Faster-RCNN × × 30.1

DAF
√ √

39.0

MAF

× √
40.1√ × 40.7√ √
41.1

Table 2. The results on validation set of target domain Cityscapes,

with the SIM10k as the source domain. The average precision

(AP) of car is reported. Our MAF with different feature alignment

modules (df. and pf.) added is analyzed in the experiment.

From the results of the Table 2, our MAF obtains the

best results by comparing to others. Notably, our MAF un-

der different settings can always achieve better performance

than the classic Faster-RCNN [29]. Our approach also out-

performs the DAF [3] by 2.1% in AP. The superiority of the

proposed MAF is fully demonstrated for unrestricted object

detection. Also, the proposed hierarchical domain feature

alignment (df.) can effectively promote the detection per-

formance.

4.3.3 Detection from One Scene to Another

Although the weather conditions are similar between C-

ityscapes and KITTI, there still exists domain disparity

caused by different scenes, such as background, view, res-

olution, camera, etc. In this experiment, we apply the C-

ityscapes [4] and KITTI [10] as the datasets to study the

cross-scene object detection. Specifically, the two datasets

are implemented as source domain and target domain, al-

ternately. We implement our MAF, DAF [3] and Faster-

RCNN [29] in this experiment. The AP of car is reported

for performance comparison. The results of the experiment

is shown in Table 3.

df. pf. K → C C → K

Faster-RCNN × × 30.2 53.5

DAF
√ √

38.5 64.1

MAF

× √
38.9 69.9√ × 39.7 71.4√ √
41.0 72.1

Table 3. The results of the unrestricted object detection task

on the Cityspaces and KITTI. The performances of Cityscapes

(C)→KITTI (K) and KITTI (K)→Cityspaces (C) are tested. The

AP of car is reported for comparison.

In the Table 3, the K→C means that the KITTI [10] is

used as the source domain while the Cityscapes [4] is the

target domain and vice versa. Obviously, our MAF mod-

el gains the best performance under all conditions. The

best performance is 8.1% higher than state-of-the-art DAF

method. At this time, the performance of our MAF has been

fully verified from hierarchical domain feature alignment to

proposal feature alignment.

4.4. Analysis of Proposal Feature Alignment

In this section, we analyze the impact of the aggregated

proposal feature and WGRL in the proposal feature align-

ment module. For fair comparison with DAF [3] that used

one adversarial domain classifier for image-level adapta-

tion, we also use one adversarial domain classifier in do-

main feature alignment, i.e. the MAF* with three settings.

In this analysis, the Cityscapes [4] is used as the source do-

main and the Foggy Cityspaces [32] is the target domain,

by following the same setting as Section 4.3.1. The analy-

sis results of the experiments are shown in the Table 4.

In Table 4, the WGRL and proposal feature aggregation

can be helpful to the final domain adaptation. The concate-

nation of the proposal features with the classification scores

and regression results brings more semantic information for

the proposal features, such that the domain classifier can be



person rider car truck bus train mcycle bicycle mAP

DAF 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

MAF* (w/o WGRL) 25.4 36.2 41.4 22.1 36.9 31.8 19.9 28.8 30.3

MAF* (w/o Aggregate) 25.5 35.6 42.5 20.7 38.1 31.0 19.5 29.0 30.2

MAF* 25.3 36.7 41.9 23.5 38.2 36.4 18.3 28.0 30.9

Table 4. Analysis of the proposal feature alignment module. The w/o WGRL denotes that the standard GRL is used in MAF* and w/o

Aggregate denotes that the detection results are not concatenated with the proposal feature.
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Figure 4. The mAP with different IOU thresholds. MAF, DAF and

Faster-RCNN are tested and compared with different IOU thresh-

olds and shown in different colors.

easily trained for feature confusion. WGRL assigns differ-

ent weights for easily-confused and hard-confused samples,

such that the model pays more attention to the samples that

are hard to be confused and gains better training effect. Al-

so, the combination of aggregated proposal feature and W-

GRL achieves the best mAP, therefore, the performance of

the proposed proposal feature alignment module is testified.

4.5. Influence of IOU Threshold

The IOU threshold that controls the predicted bounding

boxes can also impact the detection results of the testing

data. In the previous experiments, the IOU threshold is

set as 0.5. In this part, we tune the IOU threshold in the

testing phase to study its impact. The Faster-RCNN [29],

DAF [3], MAF and MAF with single feature alignment

module are implemented with the Cityscapes as source do-

main and Foggy Cityscapes as target domain. The analysis

results of all models are presented in the Figure 4.

From Figure 4, the mAP drops with the increasing of the

IOU threshold for all models. The reason is explicit that a

larger IOU threshold means that more predicted bounding

boxes are excluded, such that insufficient bounding boxes

results in a quick drop of the recall and accuracy. The s-

lope of the curves approximately represents the number of

predicted bounding boxes in the corresponding IOU range.

Benefit from the multi-adversarial domain adaptation strat-

egy with two feature alignment modules, our MAF achieves

the best results under different IOU values. Besides, MAF

with only hierarchical feature alignment module, i.e., MAF

(only df.) ranks the second place and the importance and

effectiveness of the multi-adversarial domain feature align-

ment is shown. From Figure 4, our MAF gets the highest

slope on the IOU range 0.8-0.9, the DAF gets the highest s-

lope on range 0.75-0.85, and the Faster-RCNN achieves the

highest slope at 0.7-0.8 of IOU range. With the comparison

of the slopes, the results reveal that with the domain adapta-

tion, the IOU for unrestricted object detection is increased

on the target domain and our MAF with multi-adversarial

domain feature alignment achieves the best IOU.

5. Conclusion

In this paper, we propose a multi-adversarial Faster-

RCNN (MAF) detector for addressing unrestricted object

detection problem. Our approach includes two importan-

t modules, i.e., hierarchical domain feature alignment and

aggregated proposal feature alignment. With an idea that

the domain-adaptive object detection depends much on the

alignment of image distribution between domains, we there-

fore propose multi-adversarial domain classifiers in differ-

ent convolutional blocks for domain confusion of feature

maps. For reducing the scale of the feature maps, we pro-

pose a SRM for improving the training efficiency of the

adversarial domain classifiers. For domain-adaptive detec-

tor, we further deploy a proposal feature alignment module

by aggregating the detection results for semantic alignment.

The aggregated features are feed into the domain classifi-

er with a weighted gradient reversal layer (WGRL), which

can automatically focus on the hard confused samples. Our

MAF detector can be trained end-to-end by optimizing the

domain alignment loss function and the detection loss of

Faster-RCNN. We test our model on several datasets with

different domains and achieves state-of-the-arts results. The

experiments testify the effectiveness of our model.
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