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ABSTRACT

Model-based reinforcement learning (RL) methods can be broadly categorized as
global model methods, which depend on learning models that provide sensible
predictions in a wide range of states, or local model methods, which iteratively
refit simple models that are used for policy improvement. While predicting future
states that will result from the current actions is difficult, local model methods only
attempt to understand system dynamics in the neighborhood of the current policy,
making it possible to produce local improvements without ever learning to predict
accurately far into the future. The main idea in this paper is that we can learn
representations that make it easy to retrospectively infer simple dynamics given
the data from the current policy, thus enabling local models to be used for policy
learning in complex systems. We evaluate our approach against other model-based
and model-free RL methods on a suite of robotics tasks, including a manipulation
task on a real Sawyer robotic arm directly from camera images.

1 INTRODUCTION

Model-based reinforcement learning (RL) methods use learned models in a variety of ways, such as
planning (Levine & Abbeel, 2014; Deisenroth et al., 2014) and generating synthetic experience (Sut-
ton, 1990). We can categorize model-based algorithms as either global model methods, where models
are used for planning and trained to give accurate predictions for a wide range of states, or local model
methods, where simple models provide gradient directions that are used for policy improvement.
On simple, low-dimensional tasks, model-based approaches have demonstrated remarkable data
efficiency, learning policies for systems like cart-pole swing-up with under 30 seconds of experi-
ence (Deisenroth et al., 2014; Moldovan et al., 2015). However, for more complex systems, one of
the main difficulties in applying model-based methods is model bias: local models will often underfit
complex systems, but may still be preferred over global models which tend to overfit in the low-data
regime and may be difficult to incorporate into control methods (Deisenroth et al., 2014).

Most global model methods use the model to make forward predictions and then backpropagate
through those predictions. However, this places a heavy burden on the dynamics model, and forward
prediction often suffers from significant drift over longer trajectories. In contrast, local models
are typically only used to provide gradient directions for local policy improvement (Levine &
Abbeel, 2014), and thus a common choice for local model methods is to use linear models, which
can themselves be interpreted as gradients. As illustrated in Figure 1, in our work, we present a
method that automatically encourages learning representations where linear models better fit the
data. From this, we devise an efficient local model method based on the linear-quadratic regulator
(LQR) (Camacho & Bordons, 1997; Todorov & Li, 2005; Levine & Abbeel, 2014) that utilizes linear
models for gradient directions for policy improvement. Our motivation is similar to that of Watter
et al. (2015); Finn et al. (2016); however, as discussed in section 5, our representation learning method
specifically allows us to construct a local model method that performs inference in the latent space in
order to improve the policy, rather than focusing on forward prediction and planning.

Our main contribution is a representation learning and model-based RL procedure, which we term
stochastic optimal control with latent representations (SOLAR), which jointly optimizes a latent
representation and model such that inference produces local linear models that provide good gradient
directions for policy improvement. We demonstrate empirically in section 6 that SOLAR is able
to learn policies directly from raw, high-dimensional observations in several robotic environments
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Figure 1: (a) A pictoral depiction of a trajectory for a one-dimensional system. (b) Global models
may be used for prediction or planning forward through time, as depicted in red, but this can suffer
from trajectory drift for complex systems. (c) Local linear models are fit to trajectories and do not
suffer from drift, but may fit the system poorly for complicated interactions such as contacts, as
illustrated by the poor model fit circled in gray. (d) Our method finds an embedding of observed
trajectories into a latent space where local linear models produce a better fit.

including a simulated nonholonomic car, a simulated two degree-of-freedom (DoF) arm, and a real
7-DoF Sawyer arm, all of which are learned directly from image pixels. We compare to existing
state-of-the-art RL methods and show that SOLAR, while significantly more data efficient than
model-free methods, exhibits superior performance compared to other model-based methods.

2 PRELIMINARIES

We first formalize our problem setting as a Markov decision process (MDP) M = (S,A, p, C, ρ, T ),
where the state space S, action space A, and horizon T are known, but the dynamics function
p(st+1|st,at), cost function C(st,at), and initial state distribution ρ(s0) are unknown. The goal
of reinforcement learning is to optimize a policy π(at|st) to minimize the expected sum of costs
η[π] = Eπ,p,ρ

[∑T
t=0 C(st,at)

]
under the distribution induced by the initial state distribution,

dynamics function, and policy. Model-based methods decompose this problem into policy and model
optimization subproblems, and we discuss each subproblem as it relates to our approach.

2.1 MODEL-BASED POLICY SEARCH

Policy search methods directly optimize parameterized policies with respect to η(θ) , η[πθ] where
the parameters θ may be, for example, weights in a neural network or matrices for a linear policy.
Model-based policy search methods typically build models

(
ρ̂, p̂, Ĉ

)
of the unknown quantities and

compute the gradient of η̂(θ) , Eπθ,p̂,ρ̂
[∑T

t=0 Ĉ(st,at)
]

with this model. One particularly tractable
model is the linear-quadratic system (LQS), which models the initial state distribution as Gaussian,
the dynamics as time-varying linear-Gaussian (TVLG), and the cost as quadratic, i.e.,

p̂(st+1|st,at) = N
(
st+1

∣∣∣∣ Ft [stat
]
,Σt

)
, Ĉ(st,at) =

1

2

[
st
at

]>
C

[
st
at

]
+ c>

[
st
at

]
. (1)

Any deterministic policy operating in an environment with smooth dynamics can be locally modeled
with a time-varying LQS (Boyd & Vandenberghe, 2004), while low-entropy stochastic policies
are modeled approximately. This makes the time-varying LQS a reasonable local model for many
dynamical systems. Furthermore, the optimal policy at any time step given the model is a linear
function of the state and the optimal maximum-entropy policy is linear-Gaussian (Tassa et al., 2012;
Levine & Koltun, 2013). As shown in Jacobson & Mayne (1970); Todorov & Li (2005), these optimal
policies can be computed in closed form using dynamic programming by computing the first and
second derivatives of the Q (cost-to-go) and value functions:

Qs̃,t = cs̃,t + F>s̃,tVs,t+1 , Qs̃s̃,t = Cs̃s̃,t + F>s̃s̃,tVss,t+1Fs̃s̃,t ,

Vs,t = Qs,t −Qsa,tQ
−1
aa,tQa,t , Vss,t = Qss,t −Qsa,tQ

−1
aa,tQas,t .

Here, similar to Tassa et al. (2012), we use subscripts to denote derivatives, and we use s̃ to abbreviate[
s
a

]
. Once these values are computed, the optimal maximum-entropy policy is TVLG, i.e.,

πθ(at|st) = N (Ktst + kt,St) , where Kt = −Q−1
aa,tQas,t , kt = −Q−1

aa,tQa,t , St = −Q−1
aa,t .
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We refer the reader to Appendix A and Levine & Abbeel (2014) for further details. Prior work
assumes access to a compact, low-dimensional state representation (Deisenroth et al., 2014; Levine &
Abbeel, 2014; Nagabandi et al., 2018), and as we show in section 6, this precludes these local model
methods from operating on complex observations such as images. In subsection 2.2 and section 3, we
describe a probabilistic latent variable model and variational inference procedure that, conditioned
on a full trajectory of observations, produces local models that can be used for policy improvement,
enabling us to utilize this local model method in image-based domains.

2.2 LEARNING LATENT DYNAMICS MODELS

The local model-based method described above requires us to learn both a quadratic cost function as
well as a linear dynamical system (LDS). We utilize the Bayesian LDS model, which is given by

µρ̂,Σρ̂ ∼ NIW(Ψ, ν, µ0, κ) , Ft,Σt ∼MNIW(Ψ, ν,M0,V ) for t ∈ [0, . . . , T − 1] ,

s0 | µρ̂,Σρ̂ ∼ N (µρ̂,Σρ̂) , st+1 | st,at ∼ N
(
Ft

[
st
at

]
,Σt

)
for t ∈ [0, . . . , T − 1] ,

Where NIW is the normal-inverse-Wishart distribution andMNIW is the matrix normal-inverse-
Wishart (MNIW) distribution. This probabilistic graphical model (PGM) allows for tractable ap-
proximate inference, i.e., Bayesian linear regression, and also captures uncertainty in the form of
a posterior distribution over the initial state and dynamics. However, for dynamical systems with
complex non-linear dynamics, this model still suffers from significant bias.

Even when the system is poorly modeled by an LDS in the state space, we might be able to find a
latent embedding and model the system as approximately linear in that latent space, which may allow
us to find a better-performing policy that operates in the learned latent space. This shifts our problem
setting to that of a partially observed MDP, as we do not observe the latent state. In particular, our
modeling assumption is that we receive an observation as generated from an underlying unobserved
state, and as discussed in section 3, we address this by training a recognition model to infer the latent
state. In our experiments in section 6, we provide several observations to our recognition model in
order to infer information that cannot be observed from a single observation, such as velocity. We
can jointly train an embedding and model using the SVAE framework (Johnson et al., 2016), which
allows us to combine arbitrary embedding functions, such as neural networks, with PGMs. The model
we build off of is a version of the LDS SVAE presented in Johnson et al. (2016) and is given by

µρ̂,Σρ̂ ∼ NIW(Ψ, ν, µ0, κ) , Ft,Σt ∼MNIW(Ψ, ν,M0,V ) for t ∈ [0, . . . , T − 1] , (2)

z0 | µρ̂,Σρ̂ ∼ N (µρ̂,Σρ̂) , zt+1 | zt,at ∼ N
(
Ft

[
zt
at

]
,Σt

)
for t ∈ [0, . . . , T − 1] , (3)

st | zt ∼ fγ (zt) for t ∈ [0, . . . , T ] , (4)

Where fγ(z) is an observation model, parameterized by neural network weights γ, that outputs a
distribution over s, e.g., Gaussian or Bernoulli, depending on the nature of the data. This is very
similar to the Bayesian LDS, except we are learning the PGM in the latent space.

Though this model does not admit the same efficient approximate inference algorithms when fγ is
nonlinear, an efficient variational inference algorithm has previously been derived by Johnson et al.
(2016). We describe the relevant aspects of this algorithm in the next section.

3 LEARNING AND MODELING THE LATENT SPACE

In this section, we describe how we extend the LDS SVAE for model-based RL, such that we learn
an action-conditioned LQS model in the latent space. This then enables a local model method that
can leverage the LQS to infer the dynamics of sampled trajectories. In this way, our model-based RL
algorithm circumvents the need for forward prediction, in contrast to model-based RL methods that
use model-based rollouts or planning (Nagabandi et al., 2018; Deisenroth et al., 2014). In section 4,
we describe how these components are combined into our final method, SOLAR.

Our goal with this model is to learn a latent representation of the state and a prior over the dynamics
in this latent representation that is suitable for fitting local dynamics models via posterior inference.
Specifically, we are interested in the setting where we have access to trajectories of the form
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Figure 2: Left: The LQS graphical model. Distributions for each node are as specified in
Equation 2-Equation 4, with additional deterministic nodes for observed costs. Right: The vari-
ational family we use for our model learning algorithm, with distributions given in Equation 5.

[s0,a0, c0, . . . , sT−1,aT−1, cT−1, sT ], sampled from the system using our current policy and set of
previous policies. Our aim is to infer local linear dynamics in the neighborhood of these trajectories,
and we learn a model that makes this fitting process more accurate for the observed trajectories, thus
enabling our local model method to find good directions for policy improvement.

We build upon the variational inference algorithm presented in Johnson et al. (2016), such that we
are maximizing, with respect to both the PGM and neural network parameters, the variational lower
bound (ELBO) of our observed data. This algorithm requires variational factors of the form

q(zt | st) = N (eφ (st)) , q(Ft,Σt) =MNIW(Ψ′t, ν
′
t,M

′
0t,V

′
t ) for t ∈ [0, . . . , T − 1] . (5)

eφ(s) is a recognition model, parameterized by neural network weights φ, that outputs the mean and
diagonal covariance of a Gaussian distribution over z. This recognition model is identical to that
used in Kingma & Welling (2014); Rezende et al. (2014); Gao et al. (2016), however, as with prior
work in the LDS SVAE, we also have variational factors of the form q(Ft,Σt), which represent our
posterior belief about the system dynamics after observing the collected data. We also model this
distribution as MNIW but with updated parameters compared to the prior from Equation 2. Given
this, we can formulate the variational lower bound (ELBO) which is given by

L = Eq

[
log

p
(
{F,Σ}T−1

t=0 , {st}Tt=0, {at}T−1
t=0 , zt}Tt=0

)
q({Ft,Σt}T−1

t=0 , {zt}Tt=0|{st}Tt=0)

]

= Eq

[
log

(
T∏
t=0

pγ(st|zt)

)]

−
T−1∑
t=0

KL (q(Ft,Σt)‖p(F,Σ))−
T∑
t=1

Eq [KL (qφ(zt|st)‖p(zt|zt−1,at−1,Ft,Σt)] .

Prior work has shown that, for conjugate exponential models such as the Bayesian LDS, the variational
model parameters can be updated using natural gradients, which can be computed in closed form
using the variational message passing framework (Winn & Bishop, 2005). Specifically, letting λ
denote the MNIW parameters of the variational factors on {Ft,Σt}t, the natural gradient update is

∇̃λL = λ0 +BEq [tF,Σ(F,Σ)]− λ , (6)

Where B is the number of minibatches in the dataset, λ0 is the parameter for the prior distribution
p(F,Σ), and tF,Σ(F,Σ) is the sufficient statistic function for p(F,Σ). Thus, we can use this equation
to compute the natural gradient update for λ, whereas for γ and φ we use stochastic gradient updates
on Monte Carlo estimates of the ELBO, specifically using the Adam optimization scheme (Kingma
& Ba, 2015). This leads to two simultaneous optimizations for the PGM parameters and the neural
network parameters, and their learning rates are treated as separate hyperparameters. We have found
10−3 and 10−4 to be generally suitable for the natural gradient and Adam updates, respectively.
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Algorithm 1 SOLAR
1: Hyperparameters: # iterations K, # trajectories N , model training buffer size B
2: Initialize policy π(0)

θ , modelM(0)

3: for iteration k ∈ {1, . . . ,K} do
4: Collect rollouts from the real world D(k) = {(s(i)

0 ,a
(i)
0 , . . . , s

(i)
T )}Ni=1

5: M(k) ← MODELUPDATE(M(k−1), {D(i)}ki=k−B) (section 3)

6: π̃
(k−1)
θ ← LINEARIZEPOLICY(D(k),M(k)) (Appendix C)

7: {F(k)
t ,Σ

(k)
t }t ← INFERDYNAMICS(D(k),M(k)) (subsection 4.1)

8: π
(k)
θ ← POLICYUPDATE(π̃

(k−1)
θ , {F(k)

t ,Σ
(k)
t }t,M(k)) (subsection 4.2)

9: end for

Figure 2 details the graphical model presented in Equation 2-Equation 4 along with the variational
family described above. Since we are interested in control and RL, there is the added notion of
observed costs from the environment, and there are many ways we could model these additional
observations. A natural choice is to model costs as a quadratic function of the latent state and action,
such that we arrive at the LQS presented in Equation 1 except in the learned latent space. Specifically,
given trajectories of the form [s0,a0, c0, . . . , sT−1,aT−1, cT−1, sT ], we first embed the observations
{st} using the mean of our recognition model µ(eφ(s)) to obtain a set of latent states {zt}. We
then model our cost samples as ct = 1

2z
>
t LL

>zt + c>zt + α‖at‖22 + b, where we assume that the
action-dependent part of the cost is known and we learn L, c, and b by minimizing the mean-squared
error of the observed costs with stochastic gradient descent. L is a lower-triangular matrix with
strictly positive diagonal entries, and thus by constructing our cost matrix as C = LL> we guarantee
that the learned cost matrix is positive definite, which improves the conditioning of the policy update.

4 POLICY LEARNING IN THE LATENT SPACE

While we could use a variety of model-based policy learning methods in the learned latent space,
the ability to infer local time-varying linear dynamics lends itself naturally to the particular analytic
local solution to the policy described in subsection 2.1. This approach yields a policy that is TVLG
in the latent space, which in general corresponds to a class of nonlinear policies in the original space
formed by the composition of the nonlinear neural network embedding and the TVLG policy.

As discussed in the following sections, we can use the PGM in the previous section to formulate local
model fitting as probabilistic inference, in order to obtain a dynamics estimate that we can then use to
improve the policy. Note that this use of the model is quite different from how dynamics models are
typically used in standard model-based RL algorithms: instead of using the model to predict into
the future, we only use the model to infer local linear dynamics conditioned on real-world trajectory
samples. While local models are not burdened by forward prediction compared to global forward
models, the simplicity of linear local models prevents accurate modeling of complex systems, and our
method mitigates this through a latent representation that is optimized for local linear model fitting.

Our overall algorithm, SOLAR, is presented in algorithm 1. At every iteration, we collect N rollouts
from the real world (line 4). Then, we update our model using data from the last B iterations (line 5),
we linearize our policy given the updated model (line 6, see Appendix C for details), we perform
inference within our model to get the dynamics estimates (line 7), and we update our policy using the
rollouts from our current iteration and our updated model (line 8). The following subsections detail
the modules of our method that are involved in policy learning and improvement.

4.1 DYNAMICS INFERENCE UNDER THE MODEL

To obtain a TVLG dynamics model, we could directly use linear regression to fit Ft and Σt to
the observed latent trajectories τ = [z0,a0, . . . , zT−1,aT−1, zT ]. However, this may be poorly
conditioned in the low-data regime. Instead, we can perform inference within our model to obtain
dynamics estimates for policy improvement. As described in section 3, our model provides us with
variational approximations to the posterior over dynamics models, i.e., {q(Ft,Σt)}T−1

t=0 , which are
MNIW. We can use these as a prior and condition on the data to obtain new variational posteriors
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{q(Ft,Σt|{τ}Ni=0)}T−1
t=0 , which are also MNIW. Writing the parameters of these posteriors – for

which the closed form solutions are given in Appendix B– as {Ψt,M0t,Vt, νt}t, we compute a
maximum a posteriori estimate of the dynamics parameters at time step t as: Ft = M0t ,Σt = Ψt

νt
.

This inference procedure corresponds to Bayesian linear regression and can be interpreted as resolving
the uncertainty in the global dynamics model conditioned on a real-world rollout. In essence,
{q(Ft,Σt)}T−1

t=0 captures uncertainty over the latent system dynamics by acting as a global model
over all observed data, but in order to accurately model the system within the local region around
the current policy, we condition on trajectories collected from the policy in order to resolve the
uncertainty and obtain dynamics estimates {Ft,Σt}T−1

t=0 that allow us to improve the policy.

4.2 POLICY UPDATE

As described in subsection 2.1, once we have our TVLG dynamics estimates {Ft,Σt}t and quadratic
cost fit C, c, we can use dynamic programming on the Q and value functions to compute the optimal
policy in closed form. However, doing so is typically undesirable as the resulting policy will overfit
to the model and likely will not perform well in the real environment. Since our modeling assumption
is not that our model will be globally valid, but rather that our model will be valid close to the
data distribution of the previous policy, we utilize a constrained policy update such that our new
policy does not drastically change the induced trajectory distribution. Specifically, similar to prior
work, we impose a KL-divergence constraint on the policy update such that the shift in the induced
trajectory distributions before and after the update, which we denote as p̄(τ) and p(τ), respectively,
is bounded by a step size ε (Levine & Abbeel, 2014). This leads to a constrained optimization
of the form maxθ η̂(θ) s.t. DKL(p(τ)‖p̄(τ)) ≤ ε. As shown in Levine & Abbeel (2014), this
constrained optimization can be solved by augmenting the cost function to penalize the deviation
from the previous policy πθ̄, i.e., C̃(zt,at) = 1

λC(zt,at)− log πθ̄(at|zt). Note that this augmented
cost function is still quadratic, since the policy is TVLG, and thus we can still compute the optimal
policy under this cost function in closed form using the procedure described in subsection 2.1. λ is a
dual variable that trades off between optimizing the cost function and staying close in distribution to
the previous policy, and the weight of this term can be determined through a dual gradient descent
procedure. Combined with the model learning from section 3, we arrive at the SOLAR algorithm.

5 RELATED WORK

Model-based RL methods have achieved significant efficiency benefits compared to model-free RL
methods (Chebotar et al., 2017; Nagabandi et al., 2018; Deisenroth et al., 2014). Many of these
prior methods learn global models of the system that are then used for planning, generating synthetic
experience, or policy search (Atkeson & Schaal, 1997; Peters et al., 2010). These methods require
an accurate and reliable model and will typically suffer from modeling bias, hence these models are
still limited to short horizon prediction in more complex domains (Mishra et al., 2017; Nagabandi
et al., 2018; Gu et al., 2016; V.Feinberg et al., 2018). Another class of model-based methods rely
only on local system models to compute the gradient for a policy update (An et al., 1988; Kolter &
Ng, 2005; Heess et al., 2015; Levine & Abbeel, 2014; Bansal et al., 2017). These methods do not use
models for long-term forward prediction, allowing for the use of simple models that enable policy
improvement (Montgomery et al., 2017; Levine et al., 2016). As we show in section 6, modeling
bias for prior methods can be severely limiting in systems with complex observations such as images,
whereas we are able to learn representations that mitigate the effects of modeling bias.

Utilizing representation learning within model-based RL has been studied in a number of previous
works (Lesort et al., 2018), including using embeddings for state aggregation (Singh et al., 1994),
dimensionality reduction (Nouri & Littman, 2010), self-organizing maps (Smith, 2002), value predic-
tion (Oh et al., 2017), and deep auto-encoders (Lange & Riedmiller, 2010; Finn et al., 2016; Watter
et al., 2015; Higgins et al., 2017). Within these works, deep spatial auto-encoders (DSAE) (Finn et al.,
2016) and embed to control (E2C) (Watter et al., 2015; Banijamali et al., 2017) are the most closely
related to our work in that they consider local model methods combined with representation learning.
The key difference in our work is that, rather than using a learning objective for reconstruction and
forward prediction, we formulate a Bayesian latent variable model such that inference corresponds to
fitting local models within the learned representation. As such, our objective enables local model
methods by directly encouraging learning representations where fitting local models accurately
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(a) (b)

Figure 3: (a) Top: Visualizing a trajectory in the car navigation environment, with the target denoted
by the black dot, and the corresponding image observation. Bottom: An illustration of the 2-DoF
arm environment, with the target denoted by the red dot, and the corresponding image observation.
Note that we use sliding windows of past observations when learning both tasks. (b) Top: Illustration
of the architecture we use for learning Lego block stacking. Bottom: Example trajectory from our
learned policy stacking the yellow Lego block on top of the blue block.

explains the observed data. We also do not assume a known cost function, goal state, or access to the
underlying system state as in DSAE and E2C, thus SOLAR is applicable even when the underlying
states and cost function are unknown.1 We find that our approach tends to produce better results on a
number of complex image-based tasks, as we discuss in the next section.

6 EXPERIMENTS

We aim to answer the following questions through our experiments: (1) How does SOLAR compare
to state-of-the-art model-free and model-based RL algorithms? (2) How do local and global model
methods compare when operating in our learned representations? (3) How much benefit do we
derive from our particular representation learning method? To answer (1), we compare SOLAR to
trust region policy optimization (TRPO) (Schulman et al., 2015) and proximal policy optimization
(PPO) (Schulman et al., 2017), two state-of-the-art model-free methods, and LQR with fitted linear
models (LQR-FLM) (Levine & Abbeel, 2014), a state-of-the-art model-based method. To answer (2),
we test an ablation of our method where we learn a neural network dynamics model with which
we perform model-predictive control (MPC) in the latent space. We refer to this as the “global
model ablation”. To answer (3), we replace our LDS SVAE model with a variational auto-encoder
(VAE) (Kingma & Welling, 2014; Rezende et al., 2014) and with the robust locally-linear controllable
embedding (RCE) model (Banijamali et al., 2017), an improved version of the E2C model (Watter
et al., 2015). We refer to these as the “VAE ablation” and “E2C-like ablation”, respectively. We
additionally compare to a pixel space model similar to Finn & Levine (2017) that utilizes no
representation learning and instead learns both a dynamics and cost model on images in order to run
MPC in pixel space. Videos of the learned policies are available on the project website.2

6.1 EXPERIMENTAL TASKS

We set up simulated image-based robotic domains for a 2-dimensional navigation task, a nonholo-
nomic car, and a 2-DoF arm, as shown in Figure 3a. We also learn a block stacking task directly from
camera images on a real Sawyer robotic arm, as shown in Figure 3b. Details regarding experimental
setup and training hyperparameters are provided in Appendix D.

1In principle, these methods can be extended to unknown underlying states and cost functions, though the
authors do not experiment with this and it is unclear how well these approaches would generalize.

2https://sites.google.com/view/iclr19solar
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(a) (b) (c)

Figure 4: (a) Our method, the VAE ablation, and the global model ablation consistently solve 2D
navigation from images, whereas LQR-FLM and the E2C-like ablation are unable to make progress.
The final performance of PPO is plotted as the dashed line, though PPO requires 1000 times more
samples than our method to reach this performance. (b) On the car from images, both our method
and the global model ablation are able to reach the goal, however, we encode prior information into
the global model ablation by biasing the control to select positive actions. The VAE ablation is less
consistent across random seeds, and the E2C-like ablation once again is unsuccessful at the task.
PPO requires over 25 times more episodes to learn a successful policy. (c) For reacher from images,
we perform worse than PPO but need about 40 times fewer episodes to learn, whereas the ablations
performs noticeably worse. Here we plot reward, so higher is better.

2D navigation. We consider a 2-dimensional navigation task similar to Watter et al. (2015); Bani-
jamali et al. (2017) except we move the goal every episode rather than fixing it to the bottom right.
Observations consist of two 32-by-32 images indicating the positions of the agent and goal.

Nonholonomic car. The nonholonomic car starts in the bottom right of the 2-dimensional space and
controls its acceleration and steering velocity in order to reach the target in the top left. We use a
sliding window of four 64-by-64 images as the observation to capture velocity information.

Reacher. We experiment with the reacher environment from OpenAI Gym (Brockman et al., 2016),
where a 2-DoF arm has to reach a target denoted by a red dot, which we specify to be in the bottom
left. For observations, we directly use 64-by-64-by-3 images of the rendered environment, which
provides a top-down view of the reacher and target, and we use a sliding window of four images.

Sawyer Lego block stacking. To demonstrate a challenging task in the real world, we use our
method to learn Lego block stacking with a real 7-DoF Sawyer robotic arm, as depicted in Figure 3b.
The observations used are raw 84-by-84-by-3 images from a camera pointed at the robot, and the
controller only receives images as the observation, without joint angles or other information.

6.2 SIMULATION RESULTS

Figure 4 details our results on the simulated image-based experimental domains, where each method
is tested on three random seeds and the mean and standard deviation of the performance is reported.
For the 2D navigation and car tasks from images, we plot the average final distance to the goal as
a function of the number of episodes, so lower is better.3 On the reacher task, we plot the reward
function as defined by Gym since this is the standard metric used to evaluate performance on this task,
and as shown by the videos on our project website, achieving high Gym reward correlates strongly
with solving the task in terms of distance to the goal.

On 2D navigation from images, our method, the VAE ablation, and the global model ablation are all
able to learn very quickly, converging to high-performing policies within 200 episodes. LQR-FLM
struggles to learn the task, likely because the images are too complex for local linear model fitting,
and makes no progress at all. In fact, LQR-FLM fails to learn on all of the simulated tasks, and we
note that this precludes the guided policy search (GPS) method from solving these tasks (Levine
et al., 2016), as GPS uses LQR-FLM as a subroutine. For the sake of clarity in the plots, we omit the

3We plot the ground truth distance for the 2D navigation, car, and Sawyer block stacking tasks for evaluation
purposes only, and this information is not available to the learning algorithms.
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LQR-FLM results, which are qualitatively similar to the E2C-like ablation results. PPO eventually
learns a successful policy, as indicated by the dashed line depicting this method’s final performance,
but this requires roughly three orders of magnitude more samples than our method. We present
log-scale plots that illustrate the full learning progress of model-free methods in Appendix E.

Despite using code directly from the authors of RCE, we were unable to get the E2C-like ablation
to learn a good model for this task, and thus the learned policy does not improve over the initial
policy. In fact, we were unable to learn successful policies for any of the simulated tasks, though
in Appendix E, we demonstrate that this ablation can learn a more successful policy on the 2D
navigation domain used by Watter et al. (2015); Banijamali et al. (2017), where the target is fixed to
the bottom right. This highlights the difficulty of the tasks we consider.

On the image-based car, our method is able to learn a good policy with about 1500 episodes of
experience. The global model ablation is competitive with our method, however, we obtained this
result by biasing the mean of the MPC random action selection to be positive, effectively encoding
prior information that the car should move forward. We also noticed that, even with more data, the
variance of the MPC performance remained higher than the policy learned by our method. These
observations indicate that forward prediction using the learned global models may be inaccurate,
leading to inconsistent control performance. In contrast, our method does not heavily rely on an
accurate model and can achieve consistently good behavior on this task. The VAE ablation is able
to solve this task for some random seeds, however this method’s performance is less consistent
compared to our method. PPO eventually learns a successful policy for this task that performs better
than our method, however it uses over 25 times more data than our method.

Finally, on the image-based reacher task, our method achieves worse final policy performance than
PPO, though we do so with about 40 times fewer episodes, i.e., we use under 700 episodes whereas
PPO uses about 30000. This gain in data efficiency compared to model-free methods is typical of
model-based methods, however, SOLAR is able to handle this domain directly from raw image
observations, which is challenging for other model-based methods. The VAE ablation also makes
progress toward the goal, however, the performance is noticeably worse compared to our method.
The global model ablation makes very little improvement over its initial behavior, which is better
than the other methods as it learns both a dynamics and cost model from the pretraining data and
uses these models right away for planning. This performance drop compared to the previous tasks
indicates the difficulty in forward prediction for this domain, coupled with the failure of short-horizon
control for this task as greedily minimizing distance to the goal often simply leads to collapsing the
arm. As it is also less intuitive to encode prior information into this task compared to biasing the
actions in the car domain to drive forward, we could not get this ablation to succeed on this task.

6.3 REAL ROBOT RESULTS

Figure 5: Performance on the real-world
Sawyer block stacking task. Our method
learns to successfully stack the block in
about half an hour of interaction time.
The VAE and global model ablations are
also competitive on this task, while the
pixel space model performs worse.

Figure 5 details performance on the Lego block stacking
tasks in terms of the average final distance in centimeters
to the goal, where we test on three random seeds and
report the mean and standard deviation of the performance.
We define the goal position of the end effector such that
reaching the goal leads to successful stacking of the block.
Not only is our method able to solve this task directly from
raw, high-dimensional camera images within 200 episodes,
corresponding to about half an hour of interaction time,
our method is also successful at handling the complex,
contact-rich dynamics of block stacking. As seen in the
video on our project website, our method learns a policy
that can react to slightly different contacts, due to the
bottom block shifting between episodes, and is ultimately
successful in stacking the block in most episodes.4

We compare to the VAE and global model ablations, as
these proved to be the most successful and data efficient
baselines in simulation. These ablations are competitive

4https://sites.google.com/view/iclr19solar
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with our method for this real world task, though our method still achieves a better final policy that is
able to more consistently stack the block. The pixel space model is significantly worse than the other
methods that learn a latent representation, and given prior work on pixel space global models (Finn &
Levine, 2017), we suspect that this method would need more data in order to learn this task.

7 DISCUSSION AND FUTURE WORK

We presented SOLAR, a model-based RL algorithm that is capable of learning policies in a data-
efficient manner directly from raw high-dimensional observations. The key insights in SOLAR
involve learning latent representations where simple models are more accurate and utilizing PGM
structure to infer dynamics from data conditioned on entire real-world trajectories. Our experimental
results demonstrate that SOLAR is competitive in sample efficiency, while exhibiting superior final
policy performance, compared to other model-based methods. Furthermore, SOLAR is significantly
more data-efficient compared to state-of-the-art model-free RL methods.

There are several interesting directions for future work. First, the ability to learn representations lends
itself naturally to multi-task and transfer settings, where new tasks could potentially be learned much
more quickly by starting from a latent embedding that has been learned from previous tasks. We can
also in principle share dynamics models, where the PGM we learn from solving previous tasks can
be used as a global prior when inferring local dynamics fits for a new task. Second, our model is
designed for and tested on continuous action domains as we focus on robotic applications. Extending
our model to discrete actions would necessitate some type of continuous relaxation or learned action
representation, and we believe that this is another interesting direction for future work.
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A POLICY LEARNING DETAILS

Given a TVLG dynamics model and quadratic cost approximation, we can approximate our Q and
value functions to second order with the following dynamic programming updates, which proceed
from the last time step t = T to the first step t = 1:

Qs,t = cs,t + F>s,tVs,t+1 , Qss,t = css,t + F>s,tVss,t+1Fs,t ,

Qa,t = ca,t + F>a,tVs,t+1 , Qaa,t = caa,t + F>a,tVss,t+1Fa,t ,

Qsa,t = csa,t + F>s,tVss,t+1Fa,t ,

Vs,t = Qs,t −Qsa,tQ
−1
aa,tQa,t ,

Vss,t = Qss,t −Qsa,tQ
−1
aa,tQas,t .

It can be shown (e.g., by Tassa et al. (2012)) that the action at that minimizes the second-order
approximation of the Q-function at every time step t is given by

at = −Q−1
aa,tQas,tst −Q−1

aa,tQa,t .

This action is a linear function of the state st, thus we can construct an optimal linear policy by setting
Kt = −Q−1

aa,tQas,t and kt = −Q−1
aa,tQa,t. We can also show that the maximum-entropy policy that

minimizes the approximate Q-function is given by

π(at|st) = N (Ktst + kt, Qaa,t).

Furthermore, as in Levine & Abbeel (2014), we can impose a constraint on the total KL-divergence
between the old and new trajectory distributions induced by the policies through an augmented cost
function c̄(st,at) = 1

λc(st,at) − log π(i−1)(at|st), where solving for λ via dual gradient descent
can yield an exact solution to a KL-constrained LQR problem.

B DYNAMICS INFERENCE

Here we provide the closed form parameter computations for the posteriors of our dynamics given
observed trajectories, as described in Section 4.1 of the main paper. Given variational factors from
our model of the form

q(Ft,Σt) =MNIW(Ψ′t, ν
′
t,M

′
0t,V

′
t ) for t ∈ [0, . . . , T − 1] ,

We can condition on observed trajectories τ to obtain new variational posteriors
{q(Ft,Σt|{τ}Ni=0)}T−1

t=0 . These posteriors are also MNIW, and the parameters of these pos-
teriors can be computed in closed form as

Ψt = Ψ′t + M ′
0tV

′−1
t M ′>

0t +

N∑
i=1

z
(i)
t+1z

(i)>
t+1 −M0tV

−1
t M>

0t , κt = κt +N ,

M0t =

M ′
0tV

′−1
t +

N∑
i=1

z
(i)
t+1

[
z

(i)
t

a
(i)
t

]>Vt , Vt =

V ′−1
t +

N∑
i=1

[
z

(i)
t

a
(i)
t

][
z

(i)
t

a
(i)
t

]>−1

.

Then, a maximum a posteriori estimate gives us the TVLG dynamics parameters as described in the
main paper.

C POLICY LINEARIZATION

The policy update described in Section 4.2 of the main paper requires us to compute the KL-divergence
between the trajectory distributions before and after the policy update, denoted as p̄(τ) and p(τ),
respectively. We compute p(τ) = ρ̂(z0)

∏T−1
t=0 πθ(at|zt)p̂(zt+1|zt,at), and analogously for p̄(τ)

with the previous policy, and we are able to compute these analytically because the policies and
dynamics model are TVLG, thus the induced trajectory distributions are also Gaussian. However, this
operates under the assumption that z is fixed, which does not hold since the model update changes
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(a) (b) (c)

Figure 6: (a) An illustration of the 2D navigation task, with the agent depicted as the black dot and
the target depicted as the blue dot. (b) We use as observations two 32-by-32 images stacked on top
of each other, where the first observation indicates the position of the agent the second observation
indicates the position of the target. (c) Visualization of the 4-dimensional latent space for an example
random trajectory of the 2D-navigation task. Note that the range of values in the latent space is very
narrow, and the bottom two dimensions seemingly capture information about the target which does
not move.

the latent representation. Since our overall policy is a combination of the model embedding, given
by eφ(s), and the TVLG policy πθ(at|zt), training eφ(s) will change the behavior of the policy
even if πθ(at|zt) stays fixed. In some cases, this may lead to a policy with worse performance, and
constraining against this policy for the policy update may lead to poor results. In fact, what we want
to do is to account for the model update by changing πθ(at|zt) accordingly, so that the overall policy
does not change in its distribution. Thus, using (st,at) pairs from the previous data collection phase,
we embed zt = µ(eφ(st)) with our updated model and use linear regression to find the TVLG policy
π̃θ(at|zt) that best explains the data collected from the policy This is line 6 of the SOLAR algorithm
presented in the main paper, and after this, we can perform the policy update constrained against the
trajectory distribution induced by π̃θ(at|zt).

D EXPERIMENT SETUP

Image-based 2D navigation. Our recognition model architecture for the 2D navigation domain
consists of two convolution layers with 2-by-2 filters and 32 channels each, with no pooling layers
and ReLU non-linearities, followed by another convolution with 2-by-2 filters and 2 channels. The
output of the last convolution layer is fed into a spatial softmax layer (Finn et al., 2016), which then
outputs a Gaussian distribution with a fixed diagonal covariance of 10−4 for the latent distribution.
Our observation model consists of two fully-connected (FC) hidden layers with 256 ReLU activations,
and the last layer outputs a categorical distribution over pixels. We initially collect 200 episodes
which we use to train our model, and for every subsequent iteration we collect 20 episodes to fine
tune our model. The cost function we use is the sum of the L2-norm squared of the distance to the
target and the commanded action, with weights of 1 and 0.001, respectively.

Image-based nonholonomic car. The image-based car domain consists of 64-by-64 image observa-
tions. We include a window of the 3 previous 64-by-64 images in our observation to preserve velocity
information. Our recognition model is a convolutional neural network that operates on each image
in the sliding window independently. Its architecture is four convolutional layers with 4-by-4 filters
with 4 channels each, and the first two convolution layers are followed by a ReLU non-linearity.
The output of the last convolutional layer is fed into three FC ReLU layers of width 2048, 512, and
128, respectively. Our final layer outputs a Gaussian distribution with dimension 8. This leads to
a final latent dimension of 32. Our observation model consists of four FC ReLU layers of width
256, 512, 1024, and 2048, respectively, followed by a Bernoulli distribution layer that models the
image. Like the recognition model, the observation model only operates on each section of the latent
representation corresponding to the image window independently. For this domain, we collect 100
episodes initially to train our model, and we collect 100 episodes per iteration after this. The cost
function we use is the sum of the L2-norm squared of the distance from the center of the car to the
target and the commanded action, with weights of 1 and 0.001, respectively.

Reacher. The reacher domain consists of 64-by-64-by-3 image observations. Similar to the car,
we include a window of the 3 previous 64-by-64-by-3 images in our observation. Our recognition
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model is a convolutional neural network that again operates on each image in the sliding window
independently. Its architecture is three convolutional layers with 2-by-2 filters with 64, 32 and 16
channels respectively. Each layer has a ReLU non-linearity followed by a 2-by-2 max-pooling. The
output of the last convolutional layer is fed into an FC ReLU layer of width 200, followed by another
FC ReLU layer of width 200. Our final layer outputs a Gaussian distribution with dimension 10,
leading to a final latent dimension of 40. Our observation model consists of three FC ReLU layers
of width 256, followed by a Bernoulli distribution layer and separately models each image in the
sliding window. We collect 200 episodes initially to train our model, and we collect 100 episodes
per iteration after this. The cost function we use is the sum of the L2-norm of the distance from the
fingertip to the target and the L2-norm squared of the commanded action.

Sawyer Lego block stacking. The image-based Sawyer block-stacking domain consists of
84-by-84-by-3 image observations. The policy outputs velocities on the end effector in order to
control the robot. Our recognition model is a convolutional neural network with the following
architecture: a 5-by-5 filter convolutional layer with 16 channels followed by two convolutional
layers using 5-by-5 filters with 32 channels each. The first two convolutional layers are followed by
ReLU activations and the last by a FC ReLU layer of width 256 leading to a 16 dimensional Gaussian
distribution layer. Our observation model consists of a FC ReLU layer of width 128 feeding into
three deconvolutional layers, the first with 5-by-5 filters with 32 channels and the last two of 6-by-6
filters with 16 and 3 channels respectively. These are followed by a final Bernoulli distribution layer.
For this domain, we collect 50 episodes initially to train our model, 20 episodes per iteration for the
first 5 iterations, then 10 episodes per iteration for the remainder. The cost function is the sum of
the L1-norm of a weighted displacement vector between the end-effector and the target in 3D-space
(weighted 1, 2, 1 for x, y, z), the L2-norm in the same space, and the angle of rotation required to
reach a valid wrist orientation, with weights of 1, .1, and .15, respectively.

E ADDITIONAL EXPERIMENTS

E.1 E2C-LIKE ABLATION ON SIMPLIFIED 2D NAVIGATION

Figure 7: On 2D navigation with the goal fixed to
the bottom right, our E2C-like ablation is able to
make progress toward the goal.

As mentioned in Section 6, our E2C-like abla-
tion was unable to make progress for the 2D
navigation task, though we were able to get
more successful results by fixing the position
of the goal to the bottom right as is done in the
image-based 2D navigation task considered in
E2C (Watter et al., 2015) and RCE (Banijamali
et al., 2017). Figure 7 details this experiment,
which we ran for three random seeds and report
the mean and standard deviation of the average
final distance to the goal as a function of the
number of training episodes. It is clear that the
policy is improving, and two of the seeds are
able to make substantial progress, though the fi-
nal seed is less successful and significantly wors-
ens the average performance of the method. This
indicates that the latent representation learned
through RCE is less suitable for local model
fitting, as accurate local model fitting is not ex-
plicitly encouraged by their representation learning objective.
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(a) (b) (c)

Figure 9: (a) Comparison of our method to PPO on the 2D navigation task presented in the paper.
Our method uses roughly three orders of magnitude fewer samples to solve the task compared to
PPO. (b) On the car from images task, our method achieves slightly worse performance than PPO
though with about 25 times fewer samples. (c) Comparison of our method to TRPO and PPO for the
reacher task. Our method achieves slightly worse final performance but uses about 40 times fewer
samples than these methods.

E.2 MODEL-BASED COMPARISONS ON STATE-BASED NONHOLONOMIC CAR

Figure 8: On the car from states, our method is
competitive with LQR-FLM, demonstrating that
we maintain the sample efficiency of model-based
methods for simple tasks.

To provide a point of comparison to model-
based RL methods, we consider the car domain
where the underlying state is observed. The
states for the car domain include the position
of the center of mass, orientation, forward and
angular velocity of the car, and the position of
the target, making for a 9-dimensional system.
Since this observation is already quite simple,
we use a single linear layer for our recognition
and observation models that output Gaussian dis-
tributions, and we use the same dimensionality
for our latent representation as the state.

We plot the performances of our method, LQR-
FLM (Levine & Abbeel, 2014), and Nagabandi
et al. (2018), which we refer to as model-
predictive control with neural networks (MPC-
NN), again based on the average final distance
to the target, in Figure 8. In this setting, our
method is competitive with LQR-FLM, learning a policy with similar performance in 200 episodes.
MPC-NN performs the best for this task, learning a policy that consistently reaches the target in just
20 episodes, though it is given the true cost function whereas our method and LQR-FLM are not. For
this simple setup where modeling bias is not an issue, we expect model-based methods to perform
very well and learn efficiently. However, when we make the problem more challenging by using
image observations, model-based methods will fail quickly: LQR-FLM is unable to fit complex pixel
transitions using local linear models, as shown through the 2D navigation experiment, and MPC-NN
has never been used with images, as forward video prediction and defining a cost function on images
are both very difficult. We extend MPC-NN to the image-based task, and we term this the “global
model ablation” of our method – as shown in the paper, this approach is able to make progress toward
the goal, though our method is still significantly better at solving this difficult task.

E.3 FULL PERFORMANCE OF TRPO ON 2D NAVIGATION AND REACHER

In Figure 9 we include the plots for the simulated tasks comparing SOLAR, PPO, and TRPO. Note
that the x-axis is on a log scale, i.e., though our method is sometimes worse in final policy performance
to PPO and TRPO, we do so with one to three orders of magnitude fewer samples. This demonstrates
our method’s sample efficiency compared to model-free methods, while being able to solve complex
image-based domains that are difficult for model-based methods.
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