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ABSTRACT

Reinforcement learning (RL) has seen great advancements in the past few years.
Nevertheless, the consensus among the RL community is that currently used
model-free methods, despite all their benefits, suffer from extreme data ineffi-
ciency. To circumvent this problem, novel model-based approaches were intro-
duced that often claim to be much more efficient than their model-free counter-
parts. In this paper, however, we demonstrate that the state-of-the-art model-free
Rainbow DQN algorithm can be trained using a much smaller number of samples
than it is commonly reported. By simply allowing the algorithm to execute net-
work updates more frequently we manage to reach similar or better results than
existing model-based techniques, at a fraction of complexity and computational
costs. Furthermore, based on the outcomes of the study, we argue that the agent
similar to the modified Rainbow DQN that is presented in this paper should be
used as a baseline for any future work aimed at improving sample efficiency of
deep reinforcement learning.

1 INTRODUCTION

Producing fully independent agents that learn optimal behavior and develop over time purely by
trial and error interaction with the surrounding environment is one of the prominent dilemmas in
the field of artificial intelligence. A mathematical framework that encapsulates the problem of these
autonomous systems is reinforcement learning. Over the past few years, exceptional progress has
been made in devising artificial agents that can learn and solve problems in a variety of domains
using deep RL methods (Mnih et al., 2015; Schulman et al., 2015; Silver et al., 2016). However,
these algorithms are perceived as extremely data inefficient. They are thought to require an immense
amount of non-optimal interaction with the real environment before they begin to operate acceptably
well (Irpan, 2018).

One of the most popular benchmarks for assessing overall performance and data complexity of deep
RL algorithms is Atari Learning Environment (Bellemare et al., 2013; Machado et al., 2018). The
state-of-the-art model-free approaches, at least in the way they were presented so far, need millions
of frames to learn how to play these games acceptably well (Schulman et al., 2017; Hessel et al.,
2018). It corresponds to days of play experience using the standard frame rate. However, human
players can achieve the same within minutes (Tsividis et al., 2017).

A lot of work has been produced to circumvent these shortcomings. Most successful studies fo-
cus on model-based strategies inspired by the classical Dyna approach (Sutton, 1991) and action-
conditional prediction methods (Oh et al., 2015; Leibfried et al., 2016). Although some of them
manage to drastically reduce the amount of data required by the standard algorithms, they do it by
highly increasing both conceptual and computational complexity of the models.

In this paper, we argue, and experimentally prove, that already existing model-free techniques can
be much more data-efficient than it is assumed. We introduce simple change to the state-of-the-
art Rainbow DQN algorithm. In some environments like Pong or Hero, it can achieve the same
results given only 5% - 10% of the data it is often presented to need. Furthermore, it results in the
same data-efficiency as the state-of-the-art model-based approaches while being much more stable,
simpler, and requiring much less computation.
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Following the introduction, section 2 gives a brief background behind reinforcement learning with
the focus on Q-learning and its deep learning equivalents. Section 3 provides an overview of re-
cent studies aimed at improving data efficiency using model-based approaches. Section 4 argues
that model-free methods can be much more efficient than it tends to be presented and that existing
model-based techniques only give an illusion of efficiency. Then, the description and analysis of
experiments follow in sections 5 and 6. Finally, section 7 concludes this study.

2 BACKGROUND

Reinforcement learning is a problem of learning a policy that maximises the reward signal for a
given task. To define RL setting we need a set of possible environment states S, a set of available
actions A, and relations between those. These relations are described by a transition function T :
S × A → S that defines dynamics of transitions from one state to another, and a reward function
R : S × A → R that defines the real-valued reward signal. Together, T and R constitute the
model of the environment. The goal of reinforcement learning is to find a policy π : S → A that
maximises the total cumulative reward over time. One of the most popular reinforcement learning
algorithms is Q-learning (Watkins & Dayan, 1992). Q-learning decides on an optimal policy based
on the state-action value function Q : S × A → R that maps state and action performed in that
state to the expected total cumulative reward following the action. The algorithm chooses an action
that maximizes Q, i.e. at = argmaxaQ(st, a). Q is learned in the process of interacting with
the environment. At every agent’s step, tuple (st ∈ S, at ∈ A, rt ∈ R, st+1 ∈ S) is obtained
and immediately used to update the Q function. Because state-action combination is often too
big or continuous to represent directly in a tabular manner, Q is commonly approximated using
different supervised learning algorithms. However, using deep learning to approximate Q is not
trivial because Q-learning breaks important assumptions required by neural networks. Namely, Q
update is recursive and experience tuples are highly correlated when used sequentially.

Recently introduced DQN (Mnih et al., 2015) bypassed this issue by introducing two concepts:
target network and replay buffer. Target network is simply a fixed snapshot of the network that
approximates Q value (online network) taken every τt steps. Instead of updating the online network
towards itself, it is updated towards the target network. This approach maintains the logic of Q-
learning while stopping the online network from diverging due to recursive updates. Replay buffer,
on the other hand, guarantees a much higher level of independence between experience tuples. They
are not used immediately, one after another anymore but stored in the replay buffer instead. Then,
every τu steps, a single training step is performed, i.e. a mini-batch of randomly sampled experience
from the replay buffer is used to update the online network. It reduces the correlation between
experience samples by breaking their ordering.

Rainbow DQN (Hessel et al., 2018) is a combination of several incremental improvements on top
of DQN that increased both sample efficiency and the total performance of the algorithm achieving
state-of-the-art results. It is an architecture that we use as an example that current model-free deep
RL is not as inefficient as it is often stated. Throughout the paper hyperparameters from Hessel et al.
(2018) are employed, unless stated otherwise.

3 MODEL-BASED REINFORCEMENT LEARNING

The most successful approach to improving data efficiency of deep RL is based on the premise of
model-based techniques (Sutton & Barto, 2018). Having access to transition and reward mechanics
of the environment would make it possible to construct an artificial simulation where the agent could
be trained without performing often costly interactions with the real environment. However, in most
scenarios, the agent is not given any prior information about the model of its environment. This
issue is often overcome by learning the model instead. Oh et al. (2015) and Leibfried et al. (2016)
have shown that it is possible with a very high level of accuracy.

Ability to learn the model of the environment was subsequently leveraged to successfully improve
different aspects of deep RL (Racanière et al., 2017; Oh et al., 2017; Buesing et al., 2018; Ha &
Schmidhuber, 2018). Azizzadenesheli et al. (2018), Holland et al. (2018), and Kaiser et al. (2019),
however, focused directly on employing the learned models to increase data efficiency of deep RL
algorithms.
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Azizzadenesheli et al. (2018) proposed Generative Adversarial Tree Search (GATS). Unlike in the
standard approach to learning the environment dynamics, GATS creates two separate models: Gen-
erative Dynamics Model (GDM) based on a modified Pix2Pix (Isola et al., 2017) to learn the transi-
tion model T : S×A→ S; and Reward Predictor (RP), a simple 3-class classification architecture to
learn the reward model R : S×A→ R. Both models learn from experience stored in DQN’s replay
buffer and are then used for bounded Monte Carlo tree search as in (Silver et al., 2016). GATS is
evaluated primarily on the game Pong where it learns an optimal policy using around 42% of the
data required by using standalone model-free agent what is a tiny improvement compared to the
methods described next.

Holland et al. (2018) explored the performance of the model-based approach given either perfect
model, model pretrained on expert data (pretrained model), or model learned alongside the agent’s
value function (online model). Both non-perfect models followed standard architecture for the task
(Oh et al., 2015; Leibfried et al., 2016). These models are then used to generate 100 samples of sim-
ulated experience for every interaction with the real environment. All three variations outperformed
state-of-the-art Rainbow DQN in terms of data efficiency on 5 out of 6 games. Nevertheless, only
the results of the online model are used for further discussion to ensure a fair comparison between
the algorithms.

Kaiser et al. (2019) introduced Simulated Policy Learning (SimPLe). Similarly to the previous two
architectures, it learns the model of the environment using a modified version of Oh et al. (2015).
It differs from previous approaches by employing PPO (Schulman et al., 2017) as its RL agent and
by using the learned model much more exhaustively. It uses the model similarly to Holland et al.
(2018), however it provides at least 800k samples of artificial data after every 6.4k interactions. The
approach is then evaluated on a range of 26 different Atari games. It provides results that highly
outperform both Holland et al. (2018) and Azizzadenesheli et al. (2018) in terms of data efficiency
achieving at least 2x improvement on over half of the games and more than 10x improvement on
Freeway. To the best of our knowledge, SimPLe is the state of the art in terms of data-efficient deep
reinforcement learning; thus, it will be used as a primary baseline throughout the rest of the paper.

4 DATA EFFICIENCY OF STANDARD APPROACHES

We argue that DQN-like model-free methods are not as data inefficient as they are often portrayed.
They are simply used in a very inefficient way. Let us define ratio r describing the number of training
steps to the number of interactions with the environment. In the default setting τu = 4. It means that
the algorithm performs a single update of the network for every 4 interactions with the environment,
i.e., r = 1/4.

As explained in section 3, both the online-model-based algorithm from Holland et al. (2018) and
SimPLe from Kaiser et al. (2019) first learn the approximated model of the environment. Then, this
approximation is used to provide simulated samples of experience alongside the real data. Never-
theless, these samples, in the best case, can only provide as much real signal to the agent as was
provided in the original data. However, as a byproduct of the agent’s interactions with the learned
model, the ratio r significantly increases. Holland et al. (2018) performs 100 simulated steps for
each real step causing r = (1 + 100) ∗ (1/4) = 25.25. SimPLe executes 800k simulated steps after
every 6.4k interactions with the real environment. Thus, if SimPLe was using DQN as its model-free
component ratio r would be even higher (r = (800k + 6.4k)/6.4k/4 = 126/4 = 31.5).

It seems unfair to allow model-based methods to perform more training steps for each gathered
data point without letting model-free baselines to do the same. However, from the studies discussed
above, only Holland et al. (2018) performed tests allowing DQN for extra updates1. GATS was com-
pared solely to the standard version of DQN and SimPLe to the standard version of PPO algorithm
together with the Rainbow DQN that, as stated in the paper, was hypertuned for sample efficiency
(HRainbow). However, hyperparameters for HRainbow were not disclosed. We hypothesize, that
the main reason behind improved data efficiency in the results is essentially increased r.

1Their results showed that indeed model-based approach with the online model does not overperform model-
free approach with extra updates. However, the study was mainly interested in thorough analysis, rather than
improving the state of the art.

3



Under review as a conference paper at ICLR 2020

Table 1: Mean scores produced by each approach in the low-data regime. Scores for OTRainbow,
SimPLe, HRainbow, and Rainbow are obtained after 100k interactions with the real environment.
Values in bold represent the top model for the game (ignores Human).

Game OTRainbow SimPLe HRainbow SRainbow Human Random
Alien 824.7 616.9 290.6 318.7 6875 184.8
Amidar 82.8 74.3 20.8 32.5 1676 11.8
Assault 351.9 527.2 285.7 231 1496 248.8
Asterix 628.5 1128.3 300.3 243.6 8503 233.7
BankHeist 182.1 34.2 34.5 15.55 734.4 15
BattleZone 4060.6 4031.2 3363.5 3285.71 37800 2895
Boxing 2.5 7.8 0.9 -24.8 4.3 0.3
Breakout 9.84 16.4 3.3 1.2 31.8 0.9
ChopperCommand 1033.33 979.4 776.6 120 9882 671
CrazyClimber 21327.8 62583.6 12558.3 2254.5 35411 7339
DemonAttack 711.8 208.1 431.6 163.6 3401 140
Freeway 25 16.7 0.1 0 29.6 0
Frostbite 231.6 236.9 140.1 60.2 4335 74
Gopher 778 596.8 748.3 431.2 2321 245.9
Hero 6458.8 2656.6 2676.3 487 25763 224.6
Jamesbond 112.3 100.5 61.7 47.4 406.7 29.2
Kangaroo 605.4 51.2 38.7 0 3035 42
Krull 3277.9 2204.8 2978.8 1468 2395 1543.3
KungFuMaster 5722.2 14862.5 1019.4 0 22736 616.5
MsPacman 941.9 1480 364.3 67 15693 235.2
Pong 1.3 12.8 -19.5 -20.6 9.3 -20.4
PrivateEye 100 35 42.1 0 69571 26.6
Qbert 509.3 1288.8 235.6 123.46 13455 166.1
RoadRunner 2696.7 5640.6 524.1 1588.46 7845 0
Seaquest 286.92 683.3 206.3 131.69 20182 61.1
UpNDown 2847.6 3350.3 1346.3 504.6 9082 488.4

5 EXPERIMENTAL SETUP

To test the above-mentioned hypothesis, we train a standard Rainbow DQN agent, as described in
Hessel et al. (2018), with only a few small differences to increase ratio r. Firstly, we decrease period
between updates as much as possible so τu = 1 (thus r = 1). Then, because it is impossible to
further increase r using existing hyperparameters, we introduce a new parameter k that specifies
how many network updates should be performed every τu steps (similarly to DQN Extra Updates
from Holland et al. (2018)). We find that k = 8 produces the best results (hence r = 8). We
also decrease epsilon decay period to only 50K steps to make it compatible with low data settings.
We will refer to this modified version of Rainbow DQN as ’OTRainbow’ (Overtrained Rainbow)
throughout the rest of the paper.

Existing code for the Rainbow DQN from the Dopamine framework (Castro et al., 2018) was modi-
fied as explained above to obtain OTRainbow. Dopamine was used for two reasons: (i) it allows for
quick and easy prototyping of new RL algorithms; (ii) to ensure the same implementation for each
version of the Rainbow DQN (whether it is OTRainbow, HRainbow, or standard Rainbow). It was
then evaluated on the same range of 26 Atari games from the Atari Learning Environment as used
by SimPLe in the original paper. We then compare the outcomes to multiple different baselines: an
agent that always chooses action uniformly at random (Random), human score as reported by Mnih
et al. (2015) (Human), Rainbow DQN with the original hyperparameters from Hessel et al. (2018)
(SRainbow), and SimPLe and HRainbow scores as reported by Kaiser et al. (2019).

Similarly to Kaiser et al. (2019), sample efficiency is evaluated based on a mean score in the low data
regime of 100k interactions with the real environment (400k frames). This is again motivated by the
fairness of comparison between SimPLe and OTRainbow. On top of that, we compare the overall
performance of all models depending on the amount of available data using median human normal-

4



Under review as a conference paper at ICLR 2020

ized performance. I.e. we normalize agent scores on each game such that 0% is the performance of
the random agent and 100% corresponds to human score.

6 ANALYSIS

Section 6.1 in detail analyzes data efficiency. Then, section 6.2 focuses on the long term perfor-
mance. Overall, OTRainbow and SimPLe prove to be the best models for 100k-interactions-only
settings, without the clear winner between the two. Not surprisingly, SRainbow leads in regards to
the long term performance as it does not sacrifice exploration to achieve the best possible scores
within the first 100k steps. When comparing SimPLe to the variations of Rainbow DQN with re-
spect to computational complexity, SimPLe is orders of magnitude more expensive. As shown in
section 4, using SimPLe increases ratio r 126 times, while the most computationally demanding
variation of Rainbow - OTRainbow - increases r 32 times. Thus, when taking into an account only
the reinforcement learning part, SimPLe already requires almost 4 times more network updates. On
top of that, however, SimPLe has to perform expensive training of the world model. As reported by
Kaiser et al. (2019), a full version of SimPLe takes more than three weeks on 100k data points to
complete the training. Using the same amount of data, OTRainbow is able to finish within the first
24 hours2.

6.1 DATA EFFICIENCY

Figure 1: Comparison of SimPLe with OTRainbow. Bars represent the number of interactions
required by OTRainbow to reach the same score as SimPLe achieves using exactly 100k interactions.
Notice logarithmic scale on X-axis.

Results presented in this section are obtained after running 100k training interactions of the agent
with the real environment (excluding Human). This setting is unfair towards SRainbow as it does not
finish epsilon decay in that time. Nevertheless, its results are still provided as one of the baselines
so it is clearly visible that although SRainbow is more likely to produce the best results in the long
run, it achieves very poor performance during the first few iterations. Numerical results for this

2When running on 8 cores of Intel Haswell CPU.

5



Under review as a conference paper at ICLR 2020

setting are shown in Table 1. Moreover Figure 1 compares OTRainbow and SimPLe directly, using
graphical convention similar to Kaiser et al. (2019). However, in this study, we use a logarithmic
scale to denote the number of data samples needed to reach SimPLe’s score. Doing so ensures that
whether OTRainbow requires n times more experience or n times less, the visual absolute deviation
from the SimPLe baseline is the same. Also, results are clipped to the absolute maximum deviation
of 5x (i.e., 20k - 500k) as OTRainbow was evaluated on a maximum of 500k interactions due to
computational constraints.

We can see that both OTRainbow and SimPLe outperform Random on all 26 games, interestingly
neither HRainbow nor SRainbow managed to do the same. However, HRainbow falls behind Ran-
dom only when playing Kangaroo. OTRainbow produces better scores than HRainbow on all games,
it is a much better result than SimPLe’s that manages to beat HRainbow only on 20 out of 26 games.
In terms of direct comparison between OTRainbow and SimPLe, they perform very evenly. OTRain-
bow outperforms SimPLe on exactly half of the games but is dominated by SimPLe on the remaining
half. Interestingly, the original paper behind SimPLe reported that efficiency on Freeway benefits
most from the model-based approach, with SimPLe being 10x more efficient than HRainbow. How-
ever, this result is improved even further by OTRainbow as it manages to score over 8 points higher.
We also calculate the median human normalized performance for each algorithm. Full numerical
results of these calculations can be seen in Table 3 in Appendix A. Median human performance of
OTRainbow beats SimPLe by over 10pp, however, SimPLe achieves super-human performance on
3 games (Pong, CrazyClimber, Boxing), while OTRainbow manages to do that only on Krull.

Overall, although both OTRainbow and SimPLe can learn much more optimal policies than all other
models in the low-data regime, none of them visibly outperforms the other. These results show, that
even the state-of-the-art model-based approach, highly tuned for achieving best scores given a small
number of interactions with the real environment, is not significantly more data-efficient than slightly
modified existing techniques.

6.2 DIFFERENT NUMBERS OF ITERATIONS

Figure 2: Median human normalized performance across all 26 games. Labels on the Y-axis specify
the type of the algorithm used. Values in the brackets inform about the number of interactions before
the method was evaluated. Bars represent the median result achieved by each of the approaches
accordingly and are colorized depending on the type of algorithm used.

In addition to the score in the low data-regime, it is important that the agent can continue improving
when performing any future interactions with the environment. To evaluate that, we tested OTRain-
bow in a settings with up to 500k interactions and provided SRainbow baseline for 500k, 1M, and
2M interactions. We were not able to execute experiments with a different number of real experience
for SimPLe or HRainbow, the reasons being computational requirements of the former and undis-
closed hyperparameters for the latter. However, we try to draw a comparison with SimPLe based on
the analysis provided in the original paper.

Figure 2 shows the median human normalized performance for each of the evaluated methods.
OTRainbow in both data settings scores surprisingly high, with its low-data regime version (100k)
achieving better median result than SRainbow after full 1M steps. We hypothesize, however, that
improvement of the performance of OTRainbow quickly slows down after the initial 500k steps,
similarly to what was observed in SimPLe by Kaiser et al. (2019). This hypothesis is based on the
change in performance between the 2 evaluations of OTRainbow, relatively to the standard algo-
rithm. I.e., improvement between OTRainbow (100k) and OTRainbow (500k) is barely over 1.6x,
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despite 5x more data. SRainbow, between the same data regimes, improves over 100x, which is
followed by 5x improvement given only 2x more data twice (from 500k to 1M, and from 1M to
2M). Nevertheless, it should be confirmed empirically in future work.

7 CONCLUSION

We presented an intuition why the previous research did not use fair baselines when comparing
new advancements with currently existing methods. We suggested the way of using state-of-the-art
Rainbow DQN, namely OTRainbow, that leverages Rainbow’s actual capabilities in terms of data
efficiency. We experimentally proved that model-free OTRainbow is no worse than the state-of-the-
art model-based approaches when given limited data while requiring an order of magnitude fewer
computations. It shows that the recent work in sample efficient deep reinforcement learning does not
produce significant improvements over the existing methods upholding the position of model-free
algorithms as the state of the art, both in terms of data efficiency and total performance. Through
these results, we aim to underline the importance of using appropriate model-free baselines, such as
OTRainbow, in the future research that tries to improve data efficiency of deep RL approaches.
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Table 2: Mean raw scores for each approach. Value in brackets after the name of the method
indicates the number of training interactions performed before the evaluation.

OTRainbow (100k) OTRainbow (500k) SimPLe (100k) HRainbow (100k) SRainbow (100k)
Alien 824.7 834.9 616.9 290.6 318.7
Amidar 82.8 215.3 74.3 20.8 32.5
Assault 351.9 549.3 527.2 285.7 231
Asterix 628.5 930.9 1128.3 300.3 243.6
BankHeist 182.1 223.9 34.2 34.5 15.5
BattleZone 4060.6 11093.8 4031.2 3363.5 3285.7
Boxing 2.5 8.4 7.8 0.9 -24.8
Breakout 9.84 29.8 16.4 3.3 1.2
ChopperCommand 1033.33 1344 979.4 776.6 120
CrazyClimber 21327.8 28863.5 62583.6 12558.3 2254.5
DemonAttack 711.8 1303 208.1 431.6 163.6
Freeway 25 25.2 16.7 0.1 0
Frostbite 231.6 255.6 236.9 140.1 60.2
Gopher 778 748.5 596.8 748.3 431.2
Hero 6458.8 12461.3 2656.6 2676.3 487
Jamesbond 112.3 202.9 100.5 61.7 47.4
Kangaroo 605.4 3398 51.2 38.7 0
Krull 3277.9 3718.1 2204.8 2978.8 1468
KungFuMaster 5722.2 7261.7 14862.5 1019.4 0
MsPacman 941.9 1803.1 1480 364.3 67
Pong 1.3 19.9 12.8 -19.5 -20.6
PrivateEye 100 100 35 42.1 0
Qbert 509.3 8346.2 1288.8 235.6 123.4
RoadRunner 2696.7 6887.5 5640.6 524.1 1588.4
Seaquest 286.92 323.9 683.3 206.3 131.6
UpNDown 2847.6 4067 3350.3 1346.3 504.6

SRainbow (500k) SRainbow (1M) SRainbow (2M) Human Random
Alien 481.5 766.3 1134.3 6875 184.8
Amidar 70.6 132.6 249.2 1676 12
Assault 468.6 630.1 1230.4 1496 249
Asterix 352.6 1038.7 2320.1 8503 234
BankHeist 17.5 304 872.1 734.4 15
BattleZone 3346.3 3453.7 11894.8 37800 2895
Boxing -29.5 8.3 47.1 4.3 0
Breakout 4.5 15.6 32.4 31.8 1
ChopperCommand 433.5 915.6 1810.1 9882 671
CrazyClimber 26090.9 66577.2 98461.7 35411 7339
DemonAttack 213.6 487.8 1748 3401 140
Freeway 8.2 27.45 31.9 29.6 0
Frostbite 275.2 512.3 2408.9 4335 74
Gopher 426.6 2119.2 3649.9 2321 246
Hero 326.6 3216 7875 25763 225
Jamesbond 50.2 236.1 472.2 406.7 29
Kangaroo 153.7 567.4 4252.9 3035 42
Krull 4714.2 6187.9 6136 2395 1543
KungFuMaster 596.7 10544.3 16284.5 22736 617
MsPacman 1244.2 1918.6 2301.5 15693 235
Pong -20.6 -16.5 10.6 9.3 -20
PrivateEye 692.8 169.1 92.5 69571 27
Qbert 450.6 1189 4046.9 13455 166
RoadRunner 1261.9 13793.9 31159 7845 0
Seaquest 181.2 378.4 1496.5 20182 61
UpNDown 1284.6 5566.3 10298.7 9082 488.4

9



Under review as a conference paper at ICLR 2020

Table 3: Mean human normalized score for each approach. Value in brackets after the name of the
method indicates the number of training interactions performed before the evaluation.

OTRainbow (100k) OTRainbow (500k) SimPLe (100k) HRainbow (100k)
Alien 9.56% 9.72% 6.46% 1.58%
Amidar 4.27% 12.23% 3.76% 0.54%
Assault 8.27% 24.09% 22.32% 2.96%
Asterix 4.77% 8.43% 10.82% 0.81%
BankHeist 23.23% 29.04% 2.67% 2.71%
BattleZone 3.34% 23.49% 3.26% 1.34%
Boxing 55.00% 202.50% 187.50% 15.00%
Breakout 28.93% 93.53% 50.16% 7.77%
ChopperCommand 3.93% 7.31% 3.35% 1.15%
CrazyClimber 49.83% 76.68% 196.80% 18.59%
DemonAttack 17.53% 35.66% 2.09% 8.94%
Freeway 84.46% 85.14% 56.42% 0.34%
Frostbite 3.70% 4.26% 3.82% 1.55%
Gopher 25.64% 24.22% 16.91% 24.21%
Hero 24.41% 47.91% 9.52% 9.60%
Jamesbond 22.01% 46.01% 18.89% 8.61%
Kangaroo 18.82% 112.13% 0.31% -0.11%
Krull 203.66% 255.35% 77.67% 168.55%
KungFuMaster 23.08% 30.04% 64.40% 1.82%
MsPacman 4.57% 10.14% 8.05% 0.84%
Pong 73.06% 135.69% 111.78% 3.03%
PrivateEye 0.11% 0.11% 0.01% 0.02%
Qbert 2.58% 61.56% 8.45% 0.52%
RoadRunner 34.37% 87.79% 71.90% 6.68%
Seaquest 1.12% 1.31% 3.09% 0.72%
UpNDown 27.45% 41.64% 33.30% 9.98%
Median 20.42% 32.85% 10.17% 2.27%

SRainbow (100k) SRainbow (500k) SRainbow (1M) SRainbow (2M)
Alien 2.00% 4.43% 8.69% 14.19%
Amidar 1.24% 3.53% 7.26% 14.27%
Assault -1.43% 17.62% 30.57% 78.70%
Asterix 0.12% 1.44% 9.73% 25.23%
BankHeist 0.07% 0.35% 40.17% 119.14%
BattleZone 1.12% 1.29% 1.60% 25.78%
Boxing -627.50% -745.00% 200.00% 1170.00%
Breakout 0.97% 11.65% 47.57% 101.94%
ChopperCommand -5.98% -2.58% 2.66% 12.37%
CrazyClimber -18.11% 66.80% 211.02% 324.60%
DemonAttack 0.72% 2.26% 10.67% 49.31%
Freeway 0.00% 27.70% 92.74% 107.77%
Frostbite -0.32% 4.72% 10.29% 54.80%
Gopher 8.93% 8.71% 90.28% 164.04%
Hero 1.03% 0.40% 11.71% 29.96%
Jamesbond 4.82% 5.56% 54.81% 117.35%
Kangaroo -1.40% 3.73% 17.55% 140.69%
Krull -8.84% 372.30% 545.33% 539.24%
KungFuMaster -2.79% -0.09% 44.88% 70.83%
MsPacman -1.09% 6.53% 10.89% 13.37%
Pong -0.67% -0.67% 13.13% 104.38%
PrivateEye -0.04% 0.96% 0.20% 0.09%
Qbert -0.32% 2.14% 7.70% 29.20%
RoadRunner 20.25% 16.09% 175.83% 397.18%
Seaquest 0.35% 0.60% 1.58% 7.13%
UpNDown 0.19% 9.27% 59.09% 114.16%
Median 0.03% 3.63% 15.34% 74.77%
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