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ABSTRACT

As an emerging field, federated learning has recently attracted considerable atten-
tion. Compared to distributed learning in the datacenter setting, federated learning
has more strict constraints on computate efficiency of the learned model and com-
munication cost during the training process. In this work, we propose an efficient
federated learning framework based on variational dropout. Our approach is able
to jointly learn a sparse model while reducing the amount of gradients exchanged
during the iterative training process. We demonstrate the superior performance
of our approach on achieving significant model compression and communication
reduction ratios with no accuracy loss.

1 INTRODUCTION

Federated Learning is an emerging machine learning approach that has recently attracted considerable
attention due to its wide range of applications in mobile scenarios (McMahan et al., 2017; Konečnỳ
et al., 2016; Smith et al., 2017). It enables geographically distributed devices such as mobile phones to
collaboratively learn a shared model while keeping the training data on each phone. This is different
from standard machine learning approach which requires all the training data to be centralized in
a server or in a datacenter. As such, federated learning enables distributing the knowledge across
phones without sharing users’ private data.

Federated Learning uses some form of distributed stochastic gradient descent (SGD) and requires a
parameter server to coordinate the training process. The server initializes the model and distributes it
to all the participating devices. In each distributed SGD iteration, each device computes the gradients
of the model parameters using its local data. The server aggregates the gradients from each device,
averages them, and sends the averaged gradients back. Each device then updates the model parameters
using the averaged gradients. In such manner, each device benefits from obtaining a better model
than the one trained only on the locally stored private data.

While federated learning shares some common features with distributed learning in the datacenter
setting (Dean et al., 2012; Li et al., 2014) since they both use distributed SGD as the core training
technique, federated learning has two more strict constraints which datacenter setting does not have:

Model Constraint: Compared to datacenters, mobile devices have much less compute resources.
This requires the final model learned in the federated learning setting to be computationally efficient
so that it can efficiently run on mobile devices.

Communication Constraint: In datacenters, communication between the server and working
nodes during SGD is conducted via Gbps Ethernet or InfiniBand network with even higher bandwidth
(Wen et al., 2017). In contrast, communication in the federated learning setting relies on wireless
networks such as 4G and Wi-Fi. Both uplink and downlink bandwidths of those wireless networks
are at Mbps scale, which is much lower than the Gbps scale in the datacenter setting. The limited
bandwidth in the federated learning setting illustrates the necessity of reducing the communication
cost to accelerate the training process.

In this work, we propose an efficient federated learning framework that meets both model and
communication constraints. Our approach is inspired by variational dropout (Kingma et al., 2015).
Our key idea is to jointly and iteratively sparsify the parameters of the shared model to be learned
as well as the gradients exchanged between the server and the participating devices during the
distributed SGD training process. By sparsifying parameters, only important parameters are kept, and
the final model learned thus becomes computationally efficient run on mobile devices. By sparsifying
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gradients, only important gradients are transmitted, and the communication cost is thus significantly
reduced. We examine the performance of our framework on three deep neural networks and five
datasets that fit the federated learning setting and are appropriate to be deployed on resource-limited
mobile devices. Our experiment results show that our framework is able to achieve significant model
compression and communication reduction ratios with no accuracy loss.

2 RELATED WORK

Federated Learning. As an emerging field, federated learning has recently attracted a lot of attention.
McMahan et al. (2017) developed a federated learning approach based on iterative model averaging
to tackle the statistical challenge, especially for mobile setting. Smith et al. (2017) proposed a
distributed learning framework based on multi-task learning and demonstrated their approach is
able to address the statistical challenge and is robust to stragglers. Konečnỳ et al. (2016) developed
structured and sketched update techniques to reduce uplink communication cost in federated learning.
In comparison, our work – to the best of our knowledge – represents the first federated learning
framework that achieves model sparsification and communication reduction in a unified manner.

Gradient Compression. Our work is related to gradient compression in distributed SGD. One line of
research is to use low-bit gradient representation to reduce the gradient communication overhead. In
Wen et al. (2017), the authors proposed TernGrad which only used three numerical levels to represent
gradients. In Alistarh et al. (2017), the authors presented QSGD that allows dynamic trade-off
between accuracy and communication cost by choosing bit width of gradients. As another line of
research, some previous works aimed to reduce communication cost by transmitting only a small
portion of gradients. For example, Konecnỳ & Richtárik (2016) proposed using the structured update
to sparsify the gradients. Aji & Heafield (2017) and Lin et al. (2018) used magnitudes as indicators
to measure the importance of gradients and proposed to only transmit gradients whose magnitudes
are larger than a threshold. In our work, we use an additional dropout parameter as the importance
indicator, and transmit gradients based on the values of the dropout parameters stochastically.

Model Sparsification. Our work is also related to model sparsification. Model sparsification aims
to reduce the computational intensity of deep neural networks by pruning out redundant model
parameters. In (Han et al., 2016), the authors developed a parameter pruning method that can sparsify
deep neural networks by an order of magnitude without losing the prediction accuracy. The novelty
of our proposed approach lies at integrating model sparsification and communication reduction into a
single optimization framework based on training data distributed at different devices.

3 PRELIMINARIES

Bayesian Neural Networks. Our work is inspired by Bayesian neural networks (Polson et al.,
2017). Conventional neural networks learn scalar weights via maximum likelihood estimation.
In comparison, a Bayesian neural network associates each weight with a distribution. Having a
distribution instead of a single scalar value takes account of uncertainty for weight estimates and is
thus more robust to overfitting (Hernández-Lobato & Adams, 2015).

Consider a Bayesian neural network parameterized by weight matrix w. Let p(w) denote the prior
distribution of w. Given a dataset D with N data samples (xn, yn) for n ∈ [1, N ], the posterior
distribution of w is p(w|D) = p(D|w)p(w)/p(D). Unfortunately, p(w|D) is generally computa-
tionally intractable, and thus approximation approaches are needed. One popular approximation
approach is variational inference, which uses a parametric distribution qφ(w) to approximate the true
posterior distribution p(w|D) (Kingma & Welling, 2013). The parameters φ of qφ(w) are learned by
maximizing the variational lower bound L(φ) defined as follows (Kingma et al., 2015):

L(φ) =

N∑
n=1

Eqφ(w)log p(yn|xn,w)−DKL(qφ(w)||p(w)). (1)

The first term on the right side measures the predictive performance of qφ(w). The second term is the
KL-divergence between qφ(w) and p(w), which regularizes qφ(w) to be close to p(w).

Variational Dropout. Dropout is one of the most effective regularization methods for training deep
neural networks (Srivastava et al., 2014). In traditional dropout training, either Bernoulli or Gaussian
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Figure 1: Left: The standard federated learning framework. The gradients transmitted from each
device to the central server is non-sparse, and the shared model learned from the distributed private
data is non-sparse. Right: The proposed efficient federated learning framework based on unified
gradient and model sparsification. The gradients transmitted from each device to the central server is
sparse, and the shared model learned from the distributed private data is sparse.

noises are added to the weights with a fixed dropout rate p (Srivastava et al., 2014). In (Kingma
et al., 2015), the authors connected dropout with Bayesian neural networks, and showed that a
different dropout rate pij can be learned for each individual weight wij in w if the Gaussian noise
ξij ∼ N (1, αij = pij/(1 − pij)) is added. As a result, each weight wij in w has the following
Gaussian distribution parameterized by φij = (θij , αij):

wij ∼ N (θij , αijθ
2
ij) = qφij (wij) (2)

where αijθ2
ij is the variance of the Gaussian distribution, and αij is enforced to be greater than zero.

Given qφij (wij) in (2), the first term in (1) can be approximated by Monte Carlo estimation (Kingma
et al., 2015). To compute the second term in (1), the authors in (Kingma et al., 2015) adopted a prior
distribution p(w) which makes DKL(qφ(w)||p(w)) only depend on αij . As a result, the second term
in (1) can be approximated by

DKL(qφ(w)||p(w)) ≈
∑
i,j

(
−0.64 ∗ σ(1.87 + 1.49 ∗ logαij) + 0.5 ∗ log(1 + α−1

ij )
)

+ C, (3)

where C is a constant and σ is the sigmoid function
1

1 + e−x
.

Sparsifying Bayesian Neural Networks via Variational Dropout. Given that variational dropout
allows learning different dropout rates for different weights, the authors in (Molchanov et al., 2017)
showed that variational dropout can be used to sparsify Bayesian neural networks by pruning the
weights whose learned dropout rates are high while still achieving comparable predictive accuracies
comparing to the unpruned ones. This is because a large dropout rate corresponds to large noise in
the weight. The large noise causes the value of this weight to be random and unbounded, which
will corrupt the model prediction. As a result, pruning this weight out would be beneficial to the
prediction performance of the learned neural network.

Our work is inspired by this key finding. We adopt variational dropout to sparsify neural networks in
the federated learning setting. We describe the details of our approach in the following section.

4 OUR ALGORITHM

Standard Federated Learning Framework. Figure 1 (left) illustrates the standard federated learn-
ing framework based on synchronous SGD (we leave asynchronous SGD for future work). The
framework consists of a parameter server and a number of geographically distributed devices. In
each distributed SGD iteration, each device computes the gradients of the model parameters based on
its local data, and sends the gradients (non-sparse) to the server. The server averages the gradients
aggregated from every device and sends the averaged gradients (non-sparse) to all devices. Each
device then uses the received averaged gradients to update its local model (non-sparse).
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Algorithm 1 Efficient Federated Learning based on Variational Dropout.
Input:
N devices with local private datasetsD1,D2,D3, . . . ,DN .
Base model parameter θ0 , Dropout parameterα0, Learning rate η, the threshold value T.

Output:
A sparse modelw shared byN decentralized devices.

Initialize: θi = θ0,αi = α0, i = 1, ..., N .
1: for each iteration do:
2: for i = 1 : N do:
3: Device i selects a mini-batch bi from local private datasetDi.
4: Device i computes the sparse gradients gθi = ∇θi

Li �M(αi), gαi = ∇αi
Li �M(αi),

whereM(αi) is a 0-1 binary matrix, and each entryM(αij) is put to 0 if αij > T otherwise 1.
5: Device i uploads (gθi , gαi ) to the central server.
6: The central sever receives the uploaded model parameter gradients and computes their average:

ḡθ = 1
N

∑N
i=1 gθi , ḡα = 1

N

∑N
i=1 gαi .

7: for i = 1 : N do:
8: Device i pulls averaged gradients from the central server and updates parameters:

θi ← θi − η · ḡθ ,αi ← αi − η · ḡα.

Given that the standard federated learning framework suffers from both model and communication
constraints described in the introduction section, we propose an efficient federated learning framework
(Figure 1 (right)) that meets both model and communication constraints.

Our Algorithm. Algorithm 1 formulates our proposed federated learning framework based on
variational dropout. Let N denote the number of devices, and D1,D2,D3, ...,DN be the dataset
stored inside the N devices, respectively. The goal of our proposed federated learning framework is
to have all these N devices to collectively learn a sparse model at the final stage while reducing the
communication cost during the training process.

Before the training process starts, the server initializes a base model parameterized by (θ0, α0), sets
the learning rate to be η, and distributes the base model and the learning rate to all the N devices. As
such, all the devices have the same initial parameters to start with. In practice, α0 are initialized with
random values; θ0 can be initialized with either random values or the pretrained weights from other
dataset such as ImageNet (Deng et al., 2009).

During each distributed SGD iteration, the ith device first selects a mini-batch bi from its local private
datasetDi, and computes the gradients of the loss function in (1), including model parameter gradient
∇θiLi and dropout parameter gradient ∇αiLi, where θi,αi are the parameters of the ith device and
Li is the variational lower bound of the ith device.

The iterative exchange of gradients (∇θiLi,∇αiLi) would incur massive communication overhead
and becomes the communication bottleneck in standard federated learning framework. To reduce the
communication overhead, our key idea is to utilize the dropout parameters α to identify important
gradients to transmit to the server (Line 4). As explained in the preliminaries section, a large dropout
rate corresponds to large noise in the weight. The large noise causes the value of this weight to
be random and unbounded, which will corrupt the model prediction. As a result, pruning this
weight out would be beneficial to the prediction performance of the learned neural network. Recall
αij = pij/(1 − pij). A large dropout rate pij leads to a large dropout parameter αij . As such,
the dropout parameter αij can be viewed as an importance indicator of its corresponding model
parameter θij , where higher value αij corresponds to less important θij .

Inspired by this property, the ith device is able to identify important gradients (gθi , gαi ) by:

gθi = ∇θiLi �M(αi)

gαi = ∇αiLi �M(αi)
(4)

where M(αi) is a (0,1)-matrix and � represents Hadamard product. Each entry M(αij) in M(αi)
is put to 0 if αij > T otherwise 1.

As shown in the experiment section, M(αi) will become highly sparse during the training process
and thus (gθi , gθi) will also be highly sparse. It should be emphasized that although we upload a
pair of sparse gradients (gθi , gαi) (Figure 1 (right)) compared to non-sparse gradients gwi in the
standard federated learning framework (Figure 1 (left)), due to highly sparse (gθi , gαi), the total
number of exchanged gradients is significantly reduced.
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The remaining steps are the same with the standard federated learning framework except that we
upload gαi and download ḡα. The server averages the uploaded gradients denoted as (ḡθ, ḡα) and
sends back to the devices. Finally, each device downloads the averaged parameter gradients from the
server and updates the model parameters with the preset learning rate η.

Algorithm Variants. During our experiments, we have observed two key insights. First, even though
α and θ are independent variables, α is empirically negatively correlated with θ, which is consistent
with the observation in Molchanov et al. (2017). Second, θij is suppressed by large αij and it can
hardly grow back unlessDKL in (1) is removed. Based on these observations, we make some variants
from Algorithm 1 to further reduce the communication cost.

Specifically, each device is forced to optimize α locally. It neither uploads the gradients of α to the
server nor downloads the gradients of α from the server. The rationale behind this strategy is that
since α is associated with θ which is synchronized every iteration during SGD, α will thus be forced
to be almost the same across all the devices. Thus we can only need to upload gradients of important
model parameters gθ and omit the gradient of the dropout parameters.

In our experiments, we have implemented both Algorithm 1 and the variants described above. Our
experimental results on variants show better performance on communication cost reduction while
achieving convergence and the same test accuracies as Algorithm 1 and in our experimental section
we only show the results on the algorithm variants. The experimental results on Algorithm 1 is shown
in the supplementary material.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Deep Neural Networks. We evaluate the performance of our framework on three deep
neural networks and five datasets that fit the federated learning setting. Specifically, we examined
CifarNet (Krizhevsky et al., 2012) on MNIST (LeCun et al., 1998) and MNIST-Fashion (Xiao et al.,
2017) datasets; ResNet-18 (He et al., 2016) on CIFAR-10 (Krizhevsky & Hinton, 2009) and Traffic
Sign (tra) datasets, and VGG-like (Simonyan & Zisserman, 2015) on SVHN (Netzer et al., 2011)
dataset, where VGG-like is obtained by removing the fully connected layers of the standard VGG-16
(Simonyan & Zisserman, 2015).

Protocol. We use the standard distributed learning framework illustrated in Figure 1 (left) as the
baseline. We implement the baseline and our proposed framework using PyTorch (Paszke et al.,
2017) and conduct experiments on NVIDIA 1080Ti GPUs. All the experimental settings are the same
for the baseline and our proposed framework. In all experiments, we set the mini-batch size to 128
and used Adam (Kinga & Adam, 2015) as the SGD optimizer. Each dataset is randomly and evenly
divided into N non-overlapping parts for N devices. To achieve state-of-the-art accuracy, all the
deep neural networks were pre-trained on ImageNet (Deng et al., 2009) before they are trained on
each of the five datasets. This setup also emulates the practical use scenario of federated learning
in real-world settings where devices are loaded with pre-trained models before they participate in
federated learning when new data comes in. For fair comparison, we run both the baseline and our
proposed framework to full convergence on each dataset.

5.2 RESULTS

5.2.1 ACCURACY AND MODEL SPARSITY

We first examine the Top-1 test accuracy and the model sparsity achieved by our framework when 4
devices are included. Table 1 lists the top-1 accuracy achieved by the baseline (i.e., non-sparse) and
our framework (i.e., sparse) as well as the the model sparsity (defined as the percentage of non-zero
weights) for each dataset. Overall, our framework is able to sparsify the model with 1.4% to 7.2%
non-zero weights across three different models trained on five different datasets. The sparse models
have achieved comparable accuracy compared to the non-sparse ones.

5.2.2 COMMUNICATION COST REDUCTION

In the second set of experiments, we demonstrate the benefits of our framework in reducing commu-
nication costs during training. Figure 2 plots the communication cost curves of both the baseline (red
dashed line) and our framework (blue solid line) during training on five datasets. The horizontal axis
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Table 1: Top-1 accuracy and model sparsity of 4 devices.

Network Dataset Params Top-1 Accuracy
(Non-Sparse)

Top-1 Accuracy
(Sparse)

Percentage of
Non-Zero Weights

CifarNet MNIST 1.3M 99.48% 99.31% 2.9%
CifarNet MNIST-Fashion 1.3M 91.60% 91.51% 7.2%

ResNet-18 CIFAR-10 11.7M 93.57% 93.38% 3.8%
ResNet-18 Traffic Sign 11.7M 98.42% 98.18% 1.4%
VGG-like SVHN 18.8M 95.30% 95.33% 3.0%

represents the epoch number during training. The vertical axis represents the percentage of gradients
transmitted during both uploading and downloading stages.

We have two observations from the results. First, our framework takes more epochs than the baseline
to converge. For example, as shown in Figure 2 (a), it takes 20 epochs for our framework to converge
while it takes 10 epochs for the baseline. This is because compared to sending all the gradients during
each SGD iteration, sending a sparse version of the gradients leads to a larger variance. Second, the
percentage of gradients transmitted drops very quickly at the beginning of the training process. This
indicates that it only takes a small number of SGD iterations for our framework to learn a model
with a significantly high sparsity. In other words, it demonstrates the efficiency of our framework on
learning sparse models in the federated setting.

Given the fact that our approach takes more epochs to converge, the key question we need to answer
is whether our approach can reduce the communication costs by enough to offset the overhead caused
by the extra epochs. To answer this question, Table 2 lists the data communication volumes of the
baseline (i.e., non-sparse) and our approach (i.e., sparse) for each dataset. The data communication
volume is the total transmission data volume (including both uploading and downloading stages)
accumulated from all the SGD iterations until convergence during training. The value of the data
communication volume can be seen as the area under the communication cost curves depicted in
Figure 2. As shown in Table 2, our approach not only reduces the communication costs by enough
to offset the overhead caused by the extra epochs, but also cuts the communication costs to 12.2%
to 22.2% of the non-sparse framework across datasets. The success in reducing the communication
costs by this large is attributed to our approach’s fast sparsification speed illustrated in Figure 2. In
fact, the transmission of sparse gradients include both gradient value itself and its corresponding
index. However, the corresponding index overhead is negligible due to the high sparsity, and we omit
it in calculating the communication cost (Abadi et al., 2016).

Table 2: Data communication volume and percentage of communication cost with 4 devices.

Network Dataset Data Communication
Volume (Non-Sparse)

Data Communication
Volume (Sparse)

Percentage of
Communication Cost

CifarNet MNIST 11.5 GB 2.1 GB 18.2%
CifarNet MNIST-Fashion 34.5 GB 7.6 GB 22.2%

ResNet-18 CIFAR-10 297.5 GB 55.2 GB 18.5%
ResNet-18 Traffic Sign 200.3 GB 24.6 GB 12.3%
VGG-like SVHN 702.2 GB 84.9 GB 12.0%
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Figure 2: Communication cost curves during training on five datasets. The horizontal axis represents
the epoch number during training. The vertical axis represents the percentage of gradients transmitted.
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Figure 4: (a) The percentage of non-zero weights of the model after training for 4, 8, and 16 devices;
(b) the percentage of communication cost for 4, 8 and 16 devices.

5.2.3 SCALABILITY ANALYSIS

In this experiment, we examine the scalability of our framework when extending to larger number
of devices. Figure 3 shows the performance of accuracy when extending to 8 and 16 devices, and
Figure 4 shows the percentage of non-zero weights, and the percentage of communication cost
when extending to 8 and 16 devices. We have the following observations from the results. First,
our framework doesn’t incur any accuracy loss for 8 and 16 devices, demonstrating its robustness
across different models and datasets. Second, we observe that our framework scales well when the
number of devices increases to 8 and 16. Specifically, with 8 devices, our framework achieves 3.3%
to 7.7% non-zero weights and and cuts the communication costs to 14.7% to 24.3% compared to the
non-sparse model. With 16 devices, our framework achieves 4.4% to 8.4% non-zero weights and cuts
the communication costs to 16.1% to 26.3% compared to the non-sparse model.

We also observe that both percentage of non-zero weight and communication reduction increase
slightly when the number of devices increases. This is due to the way we set up our experiments in
which we randomly and evenly divided each dataset into N non-overlapping parts for N devices. As
the number of devices increases, the data size allocated to each device decreases. As a consequence,
the data distribution at each device becomes less similar, which makes it challenging to learn a global
shared model with the same high sparsity without accuracy loss. In our experiments, we focused on
maintaining the accuracy and thus compromised with a slightly increased percentage of non-zero
weights and communication reduction.
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5.2.4 PERFORMANCE ANALYSIS FROM RANDOM INITIALIZATION

In previous experiments, the model parameters θ are pretrained with ImageNet, and in this section
we will display the performance of our proposed framework with random initialization weights.
Table 3, Table 4 and Table 5 are the accuracy, percentage of non-zero weights and percentage of
communication cost for 4, 8, and 16 devices with random initialization weights, respectively. Firstly,
we see that the accuracy has decreased 2-3% compared to models using the pretrained weights.
Secondly, the percentage of the non-zero weights and total communication cost has decreased
accordingly compared to the model with pretrained weights. Starting from the random initialization
has some drawbacks for the Bayesian dropout training since lots of weights will be pruned away
in the early stage (Molchanov et al., 2017), before the model could possibly learn some useful
representations of the data. As a result, the model sparsity will be higher while the accuracy will be
lower. At the same time, the total communication cost will be lower compared to pretrained model
due to the higher model sparsity.

Table 3: Top-1 accuracy of 4, 8, and 16 devices for random initialization weights.

Network Dataset 4 devices 8 devices 16 devices
CifarNet MNIST 98.35% 98.19% 98.23%
CifarNet MNIST-Fashion 89.46% 89.51% 89.27%

ResNet-18 CIFAR-10 90.32% 90.19% 90.29%
ResNet-18 Traffic Sign 96.31% 96.36% 96.33%
VGG-like SVHN 92.19% 92.18% 92.21%

Table 4: Percentage of non-zero weights of 4, 8, and 16 devices for random initialization weights.

Network Dataset 4 devices 8 devices 16 devices
CifarNet MNIST 1.9% 2.8% 3.2%
CifarNet MNIST-Fashion 4.3% 5.4% 5.8%

ResNet-18 CIFAR-10 2.4% 3.5% 4.1%
ResNet-18 Traffic Sign 1.1% 1.8% 2.3%
VGG-like SVHN 1.3% 2.0% 2.7%

Table 5: Percentage of communication cost of 4, 8, and 16 devices for random initialization weights.

Network Dataset 4 devices 8 devices 16 devices
CifarNet MNIST 11.6% 13.7% 15.2%
CifarNet MNIST-Fashion 12.1% 12.6% 13.7%

ResNet-18 CIFAR-10 11.4% 13.3% 14.2%
ResNet-18 Traffic Sign 7.3% 9.7% 10.5%
VGG-like SVHN 7.0% 8.7% 9.9%

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel federated learning framework based on variational dropout
for efficiently learning deep neural networks from distributed data. Our experiments on diverse
deep network architectures and datasets show that our framework achieves high model sparsity with
2.9% to 7.2% non-zero weights and cuts the communication costs from 12.0% to 18.2% with no
accuracy loss. Our experiments also show that our framework scales well when the number of devices
increases. While this work focuses on the synchronous distributed SGD setting, we plan to examine
the performance of our framework in the asynchronous distributed SGD setting as our future work.
We also plan to explore the potential of our framework in further compressing the model and reducing
the communication cost by combining with the orthogonal gradient quantization approaches.
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A TOP-1 ACCURACY COMPARISON OF DIFFERENT TRAINING SETTINGS

In this section, we compare the performance of Algorithm 1 with different settings. The first setting
is shown as our experiment section that model using the pretrained weights from Imagenet. The
second setting is that we train our neural network from random initialization weights which is
also shown in experiment section. The third setting is that we share the gradients of α using the
pretrained weights. The accuracy performance comparison of these settings for 4, 8 and 16 devices
are summarized in Table 6, Table 7 and Table 8. To be noted here, in our experimental setting, we
don’t not share α in order to further reduce communication cost for both the pretrained model and
random initialized model. We have two observations. Firstly, the accuracy of the setting that shares α
using the pretrained weights has the same accuracy of the setting using the pretrained weights without
sharing α. Secondly, if the model is initialized with random weights, the accuracy will drop 2-3%
compared to other two settings using pretrained weights.

Table 6: The accuracy comparison of 4 devices

Network Dataset Pretrained weights
without sharing α

Pretrained weights
share α

Random
initial weights

CifarNet MNIST 99.31% 99.35% 98.35%
CifarNet MNIST-Fashion 91.51% 91.49% 89.46%

ResNet-18 CIFAR-10 93.38% 93.41% 90.32%
ResNet-18 Traffic Sign 98.18% 98.16% 96.31%
VGG-like SVHN 95.33% 95.28% 92.19%

Table 7: The accuracy comparison of 8 devices

Network Dataset Pretrained weights
without sharing α

Pretrained weights
share α

Random
initial weights

CifarNet MNIST 99.37% 99.23% 98.19%
CifarNet MNIST-Fashion 91.39% 91.36% 89.51%

ResNet-18 CIFAR-10 93.48% 93.45% 89.49%
ResNet-18 Traffic Sign 98.35% 98.29% 96.36%
VGG-like SVHN 95.20% 95.38% 92.18%

Table 8: The accuracy comparison of 16 devices

Network Dataset Pretrained weights
without sharing α

Pretrained weights
share α

Random
initial weights

CifarNet MNIST 99.41% 99.33% 98.23%
CifarNet MNIST-Fashion 91.42% 91.47% 89.27%

ResNet-18 CIFAR-10 93.52% 93.34% 90.29%
ResNet-18 Traffic Sign 98.29% 98.38% 96.33%
VGG-like SVHN 95.31% 95.29% 92.21%

B PERCENTAGE OF NON-ZERO WEIGHTS COMPARISON OF DIFFERENT
TRAINING SETTINGS

In this section, we report the percentage of non-zero weights for these three settings described above,
and the results are shown as Figure 5.

We discover that the percentage of non-zero weights of the setting that shares α using the pretrained
weights has the same level with the one uisng pretrained weights without sharing α. If we train the
model from random initialized weights, the percentage of non-zero weights is lower than the two
other settings, it means that we will obtain a more sparse model after training. However, the model
accuracy will also be lower compared to other two settings.
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Figure 5: The percentage of non-zero weights of 4, 8, and 16 devices for sparse federated learning
with pretrained weights, random weights and pretrained weights with shared α.

C PERCENTAGE OF TOTAL COMMUNICATION COMPARISON OF DIFFERENT
TRAINING SETTINGS

In this section, we report the total communication percentage of these three settings described above,
and the results are shown as Figure 6.

First, we find that if the pretraied model shares α during the training, then the total communication
percentage is nearly twice as much as the pretrained model without sharing. The communication cost
is doubled because we share a pair of gradients (gθi , gαi) compared to sharing gθi only. Second, if
we train our model from random initialized weights, the total communication cost in the minimal
among the three settings. It is reasonable because the percentage of non-zero weights from random
initialized weights is the lowest and thus the total communication exchange during training is also
the lowest.
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Figure 6: The total communication percentage of 4, 8, and 16 devices for sparse federated learning
with pretrained weights, random weights and pretrained weights with shared α.
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