Under review as a conference paper at ICLR 2018

COMBINATION OF SUPERVISED AND REINFORCEMENT
LEARNING FOR VISION-BASED AUTONOMOUS CON-
TROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning methods have recently achieved impressive results on a
wide range of control problems. However, especially with complex inputs, they
still require an extensive amount of training data in order to converge to a meaning-
ful solution. This limitation largely prohibits their usage for complex input spaces
such as video signals, and it is still impossible to use it for a number of com-
plex problems in a real world environments, including many of those for video
based control. Supervised learning, on the contrary, is capable of learning on a
relatively small number of samples, however it does not take into account reward-
based control policies and is not capable to provide independent control policies.
In this article we propose a model-free control method, which uses a combina-
tion of reinforcement and supervised learning for autonomous control and paves
the way towards policy based control in real world environments. We use Speed-
Dreams/TORCS video game to demonstrate that our approach requires much less
samples (hundreds of thousands against millions or tens of millions) comparing to
the state-of-the-art reinforcement learning techniques on similar data, and at the
same time overcomes both supervised and reinforcement learning approaches in
terms of quality. Additionally, we demonstrate the applicability of the method to
MuJoCo control problems.

1 INTRODUCTION

Recently proposed reinforcement learning methods (Mnih et al.|(2013), Kober & Peters|(2012), [Lill-
icrap et al.[{(2015)) allowed to achieve significant improvements in solving complex control problems
such as vision-based control. They can define control policies from scratch, without mimicking any
other control signals. Instead, reward functions are used to formulate criteria for control behaviour
optimisation. However, the problem with these methods is that in order to explore the control space
and find the appropriate actions, even the most recent state-of-the-art methods require several tens
of millions of steps before their convergence (Mnih et al.|(2013)), Mnih et al.| (2016)).

One of the first attempts to combine reinforcement and supervised learning can be attributed to
Rosenstein et al.| (2004). Recently proposed supervised methods for continious control problems,
like|Welschehold et al.|(2016), are known to rapidly converge, however they do not provide indepen-
dent policies. Contrary to many classification or regression problems, where there exists a definitive
labelling, as it is presented in Szegedy et al.| (2017), Krizhevsky et al.| (2012), for many control
problems an infinitely large number of control policies may be appropriate. In autonomous driving
problems, for example, there is no single correct steering angle for every moment of time as it is
appropriate to follow different trajectories; however such control sequences can be assessed by their
average speeds, or time of the lap, or other criteria appropriate for some reason. The situation is
the same for other control problems connected with robotics, including walking (Li & Wen| (2017))
and balancing (Esmaeili et al.| (2017))) robots, as well as in many others (Heess et al.| (2017))). In
these problems, also usually exist some criteria for assessment (for example, time spent to pass the
challenge), which would help to assess how desirable these control actions are.

Under review as a conference paper at ICLR 2018

The problem becomes even more challenging if the results are dependent on the sequence of previous
observations (Heess et al.[|(2015))), e.g. because of dynamic nature of the problem involving speed
or acceleration, or the difference between the current and the previous control signal.

In many real-world problems, it is possible to combine the reinforcement and the supervised learn-
ing. For the problem of autonomous driving, it is often possible to provide parallel signals of the
autopilot in order to use this information to restrict the reinforcement learning solutions towards the
sensible subsets of control actions. Similar things can also be done for robotic control. Such real
world models can be analytical, or trained by machine learning techniques, and may use some other
sensors, which are capable to provide alternative information (e.g., the model trained on LiDAR
data can be used to train the vision based model). However, although there were some works us-
ing partially labelled datasets within the reinforcement learning framework (Vecerik et al.| (2017)),
as far as we believe, the proposed problem statement, injecting supervised data into reinforcement
learning using regularisation of (Q)-functions, is different from the ones published before. In[Vecerik
et al.[| (2017), the authors consider the problem of robotic control which does not involve video
data, and their approach considers sharing the replay buffer between the reinforcement learning and
demonstrator data.

The novelty of the approach, presented in this paper, is given as follows:

1. the regularised optimisation problem statement, combining reinforcement and supervised
learning, is proposed;

2. the training algorithm for the control method is proposed, based on this problem statement,
and assessed on the control problems;

3. the novel greedy actor-critic reinforcement learning algorithm is proposed as a part of the
training algorithm, containing interlaced data collection, critic and actor update stages.

The proposed method reduces the number of samples from millions or tens of millions, required
to train the reinforcement learning model on visual data, to just hundreds of thousands, and also
improves the quality against the supervised and reinforcement learning.

2 PROPOSED METHOD

The overall idea of the method is shown in figure |1| and can be described as follows: to perform
an initial approximation by supervised learning and then, using both explicit labels and rewards, to
fine-tune it.

For supervised pre-training, the annotated dataset should contain recorded examples of control by
some existing model. The aim of this stage is to mimic the existing control methods in order to
avoid nonsense control behaviour of the trained model.

For supervised and reinforcement learning based fine-tuning, a pretrained model is used as an initial
approximation. Contrary to the standard reinforcement learning approaches, the pre-trained model
helps it to avoid nonsense control values right from the beginning. Also, for the control it is assumed
that there is access to labels, which helps to divert the reinforcement learning model from spending
its time on exploring those combinations of inputs and control signals, which are most likely not to
provide meaningful solutions.

2.1 SUPERVISED PRETRAINING

Hereinafter we consider the following problem statement for supervised pretraining. Let Z be
the space of all possible input signals. To simplify the formalisation, we restrict ourselves to the
image signals z € Z = R™*", where m and n are the height and the width of the image, re-
spectively. Such signals can form sequences of finite length I > 0 : (21, 29,...,2) € Z'. We
define an operator from the subsequences of real valued quantities to d-dimensional control sig-
nals m(2;, zi—1,...,2i—p+1|Ox) : ZP — R?, where i € [p,1], p € N is the number of frames
used to produce the control signal, and ©, are the parameters of the operator 7(-). We denote
Ci = (Ziy- s Zimp41|On)s i = (Zis Zie1y -+ Ziept1)-

Under review as a conference paper at ICLR 2018

Supervised Pre-training Initial Model Environment

\ @/%onﬁol Signals

Reinforcement&Supervised Learning

Y

Annotated Dataset

Finetuned Model

Figure 1: The overall scheme of the proposed method

The problem is stated as follows: given the set of /N sequences {2j AL };Vzl and the set of corre-
lj

N
- } , produced by some external control method called
1= i1

sponding signal sequences {<é{ € Rd>
a 'reference actor’, find the parameters O of the actor 7(-|©), which minimise a loss function (the
used loss function is defined in formula (7).

2.2 LABEL-ASSISTED REINFORCEMENT LEARNING

The reinforcement learning method is inspired by the DDPG algorithm (Lillicrap et al.| (2015)),
however, it is substantially reworked in order to meet the needs of the proposed combination of
supervised and reinforcement learning working in real time. First, the problem statement and basic
definitions, necessary for formalisation of the method, need to be given.

In line with the standard terminology for reinforcement learning, we refer to a model, generating
control signals, as an agent, and to control signals as actions. Also, as it is usually done for rein-
forcement learning problem statements, we assume the states to be equivalent to the observations.
Initially, the model receives an initial state of the environment z;. Then it applies the action c;,
which results in transition into the state x5. The procedure repeats recurrently, resulting in se-
quences of states X" = (x1,a, ..., 2,) and actions C™ = (cy, ¢, . .., ¢,). Every time the agents
performs an action it receives a reward r(x;, ¢;) € R (Lillicrap et al|(2015)).

The emitted actions are defined by the policy 7, mapping states into actions. In general (Silver et al.
(2014)), it can be stochastic, defining a probability distribution over the action space, however here
the deterministic policy is assumed. For such a deterministic policy, one can express the discounted
future reward using the following form of the Bellman equation for the expectation of discounted
future reward Q(-, -) (Lillicrap et al.|(2015)):

Qi ¢;) =Eqp,, [r(wi, i) +7Q(@ig1, m(2ig1))] (1
where 7(+) is an operator from states to actions, v € [0, 1] is a discount factor.

Q(-,-) is approximated by the critic neural network in line with the actor-critic approach. Similarly
to|Lillicrap et al.|(2015)), the proposed method uses a replay buffer to provide a training set.

In many of the state-of-the-art works on reinforcement learning, the actor’s parameters are trained
by maximisation of the critic’s approximation of Q(-,-) , using gradient descent with gradients,
obtained using the chain rule (Lillicrap et al.|(2015), |Silver et al.| (2014)):

Vo, m(2|0x) = Ex[Vr(2)Q(z, m(2)[0¢) Ve, m(2|Ox)]; 2)

where ©¢ and O are the trainable parameters of the actor and the critic, respectively. In [Lillicrap
et al.| (2015), |Silver et al. (2014), the greedy optimisation algorithm is not used as it might be
impossible to collect diverse training sample for the critic as the actor would not be able to advance
through the task. Instead, small steps in the gradient direction are applied to slightly modify the
policy.

In the proposed method, contrary to many state-of-the-art methods, the optimisation is carried out
in a greedy way, so that the steps of testing the current policy, updating the critic and the actor are

Under review as a conference paper at ICLR 2018

interlaced. This is done in order to meet the requirements of real world scenarios, namely min-
imising the difference between the measurements per second rate in testing and training scenarios
and providing the reasonable performance of the actor after the smallest possible number of epochs.
In order to avoid deterioration of performance in the pretrained model (which would essentially
lead to the number of steps comparable with the state-of-the-art reinforcement learning models), the
regularisation is used to bring the parameters closer towards some pre-defined (reference) policy.

In the following derivations we use a restriction that Q(-, -) > 0, which, as one can easily see from
Equation (1), will be true if the rewards are non-negative. We also assume (due to the practical rea-
sons, it doesn’t affect further derivations) that the control signal is bounded between values (t1,t2),
and ¢; and ¢, are not included into the appropriate operational values. Based on these practical as-
sumptions, the training sample for the critic is augmented with the values Q(z,t1) = Q(x,t2) = 0
for every value x.

The optimisation problem is based on the regularised Q-function f(z, 7(z|0,)) :

F(6r) =) f(z,n(216r)) — max, (3)
rzeX T
flz,7m(2]105)) = Qz, m(x]|Or)) — aQ(z, 7 (x)) X p(7(z|O), 7 (x)), 4

where o > 0 is some coefficient, 7(+) is the reference actor, and p(-,) is a differentiable distance-
like function. One can easily see that in the case o = 0 it completely coincides with the reinforce-
ment problem, and with &« — oo the problem becomes a standard supervised training one. The
weight Q(z,7(x)) is given to encourage the actor to follow the reference policy if the expected
reward is high, and not to encourage much otherwise.

After differentiating this expression with respect to ©, one can see that

VE(©,) = Y- Vo, 7(2l0) {V.Q(a7(210,)) - aQ(e. ().

zeX

(m(z[Or), 7 (x))
on)
As in|Lillicrap et al.| (2015)), the update of the critic is carried out by solving the following optimisa-
tion problem:

~ ~ 2
Z [Qﬂ(xm cil0q) — r(wi, ¢i) — YQ™ (wit1, 7T(%+1|@7r)\962)} - fggla (6)
(Ii,ci)e(k,é)

where X and C are taken from the replay buffer, Q™ is the discounted reward function approxi-
mation. One can see that this equation is recurrent, and therefore the current target for training is
dependent on the values of the previous training stage.

The training procedure is carried out in the way described in Algorithm In this algorithm,
NUM_EPOCHS denotes the maximum number of epochs during the training procedure.

In a contrast to |Lillicrap et al. (2015)), the proposed model detaches the procedures of filling the
replay buffer, training critic and actor into three subsequent steps, making the algorithm greedy
rather than making steps every time control happens. As one can see from the algorithm, the 0-th
epoch’s testing episodes reflect the performance of the model with supervised pretraining. This was
done to assess the performance of the same model parameterisation during the epoch, as well as to
exclude the problem when the control signal frequency (and hence performance) is affected by the
optimisation time.

3 RESULTS

To demonstrate the ability of the method to learn control signals, TORCS (Espi et al.)/ SpeedDreams
(SpeedDreams) driving simulator was used. As a reference actor and for the baseline, the Simplix
bot, which is a part of the standard package, was used. The outputs of the bot steering angles
were restricted between —0.25 and 0.25. The car name was Lynx 220. In the case if the car has
stuck (average speed is less than one unit as measured by the simulator), the recovery procedure
is provided by the bot. The time and rewards for the recovery are excluded from consideration.
The reward is defined as the current car speed measured by the simulator. The assessment has
been carried out on a single computer, using NVIDIA GeForce GTX 980 Ti graphical processor on
Ubuntu Linux operating system. The model parameters are described in the Appendix A.

Under review as a conference paper at ICLR 2018

Algorithm 1 The description of the training algorithm

Initialise and train the parameters O, for the actor 7(z|©,) on a supervised dataset with obser-
vations and labels { X g, Cs}
Initialise the parameters of the critic O, k =1
Initialise the empty replay buffer B
while £ < NUM_EPOCHS do
Perform N_TESTING_EPISODES testing episodes of the length L_TESTING_EPISODES
with the current parameters ©,, where the states x;, actions c;, reference actor actions ciGT,

rewards ; = r(z;, ¢;) and subsequent states x; 1 are collected and put into the replay buffer

légerform N_GD_UPDATE_CRITIC iterations of gradient descent, according to the optimisa-
tion problem @, in order to update the parameters of the critic ©¢; values x;, T;41, ¢;, 1; are
taken from the replay buffer B
Perform N_GD_UPDATE_ACTOR iterations of gradient descent for the optimisation problem
in order to update the parameters of the actor O ; values x;, cZGT = 7t(x;) are taken from
the replay buffer B
k=k+1

end while

Features(i-1) ‘

Features(i) | | Control Signal(i-1) ‘ Control Signal(i)

Image(i-1) Image(i)
‘eature Extractor

JFcalurc Extractor

Features(i-1) ‘

Features(i)

Control Signal(i)

Figure 2: The scheme of the actor (left) and critic (right) networks

3.1 NETWORK ARCHITECTURE

The network architecture, used for the proposed actor-critic approach, is shown in Figure 2] For
supervised pretraining, the dataset has been collected from the SpeedDreams simulator, combining
the sequences of images and the corresponding control values produced by the bot. Using this
dataset, the InceptionV 1 network (Szegedy et al.[(2015)) is first fine-tuned from the Tensorflow Slim
implementation (Silberman & Guadarramal (2016)) on the collected dataset, mapping each single
image directly into the control signals. The last (classification) layer of the network is replaced by a
fully connected layer of the same size (1001) as the preceding logits layer; this layer is referred to as
a feature extraction layer as it serves as an input space for the actor-critic model. Such an approach
is used in order to avoid expensive storage of images in the replay buffer, as well as circumvent the
challenge of training deep architectures within the reinforcement learning setting. Each of the actor
and critic layers except the last contains ReLU nonlinearity (Nair & Hinton| (2010)). The actor’s
last layer with dimensionality d of the control signal is followed by the tanh nonlinearity, which
restricts the output between the boundary values (t1,t2) = (—1, 1); the last layer of the critic has no
nonlinearities.

For supervised finetuning and pretraining stages, we use the following loss function:
|m(z) — ¢
I(X,C) = mz) — 4. (7)
IEXZ,CEC |C| Te

where € is a reasonably small constant (with respect to ¢, we use ¢ = 10~2), 7(z) is an operator,
transforming input vectors x to the control signals, c is the reference actor control signal. This was
done because some of the control signals, supplied by the bot, were large enough to devaluate the
impact of the smaller values within the loss.

Under review as a conference paper at ICLR 2018

Table 1: Simplix bot rewards

Test episode 1 | Test episode 2 | Test episode 3 | Test episode 4 | Test episode 5 | Average
81315.25 81779.02 79481.26 81563.64 81931.15 81214.07

Table 2: Maximum sum-of-rewards values for different parameters o (for « = 0 these values are
obtained during supervised pretraining)

a maxp 100% - mr;‘f;f t Epoch || maxp 100% - r?;:f Epoch
100 | 75511.69 | 92.16 i 9 72180.06 | 88.88 10
0.25 | 75896.42 | 92.63 17 73339.50 | 90.30 14

0.1 75866.78 | 92.60 32 73380.70 | 90.35 15
0.05 | 75379.34 | 91.97 27 71670.40 | 88.25 23
0.01 | 67766.42 | 82.71 20 65806.41 | 81.03 20

0 62724.68 | 76.56 1 58469.25 | 71.99 1

Similarly, the distance-like function p in formula (4) is defined as:

(=)T (x = #)

|72 + €

p(m,) = ; ®)

where ¢ is a reasonably small constant (we use € = 10~4).

To implement the formalisation, described in section 2.1 we use a syamese network architecture
(see |Bertinetto et al.| (2016, October)), given in Figure [2| The features, calculated by the fine-tuned
network, are submitted for the current and the previous frame (p = 2 in terminology of section [2.1)).
It is done in order to take into account the dynamic state of the environment, including speed. Also
we need to mention that the previous control signal is submitted as an input for the critic (for the
initial video frame in each sequence, we assume that the frames and control signals are the same for
the current and the previous frames).

3.2 EXPERIMENTS

Table [2| and Figure [3| contain the comparison of the results given different values of the parameter
a. When a = 0, we rely solely on reinforcement learning; the higher is the parameter «, the more
restriction is put to stick to the supervised labels rather than improving the policy by reinforcement
learning.

In Figure[3] the scatter points depict total rewards during each of the testing episodes, and the curves
are depicting the mean total rewards for each epoch over all testing episode rewards. The total
reward is calculated as an arithmetic sum of the rewards during one training episode. The left figure
shows the results for all tested parameters, while the right one shows the comparison between the
best performing one and the one with the largest value of « (i.e. the closest to supervised active
learning). The performance of the pretrained model corresponds to the first epoch in the graph.
The shaded area in the right figure shows the standard deviation of the testing episodes performance
during the epoch. One can see from the figure that the smaller values of the coefficient v tend to
yield worse performance; however, it may be attributed to longer convergence time as it implies
more reliance on reinforcement learning exploration. At the same time, the unlimited increase of
the coefficient o does not help gaining further performance improvements. Even more, one can see
from the right figure that after certain point the curve for « = 100 slowly declines; we suggest that
it could be caused by overfitting to the bot values. We also see that for o« = 0, when the supervised
data is used only during the pre-training stage, the performance is much lower than for the rest of
the graphs.

Table [2] shows the total rewards for different values of parameter «. The value maxp shows the
maximum total reward over one testing episode during all the training time (corresponds to the
highest scatter point in Figure (3| for a given parameter «), the value maxz shows the maximum

Under review as a conference paper at ICLR 2018

mean total reward, where the mean is calculated for each epoch over all testing episode total rewards
(corresponds to the highest point of the curve in Figure 3| for a given parameter).

In order to compare the rewards shown in these graphs and tables, we have also measured them the
Simplix bot in the same conditions (frame per second rate) as the proposed algorithm. The total
rewards for the Simplix bot, available in the SpeedDreams/TORCS simulator, are given in Table|[T}
The mean value of these rewards is Ry, = 81214.07. The maximum value achieved by the bot is
maxp,,, = 81931.15. The percentage of the proposed algorithm’s rewards with respect to the bot
one, in average and for the best performance, is also given in Table[2}

70000 70000 A

60000

o
S
S
S
s

50000

£ 50000

Sum-of-rewards
Sum-of-rewards

40000

30000 40000 -

— 01
— 100

20000
30000 .,

0 10 20 30 10 0 5 10 15 20 25 30 35
Epochs Epochs

Figure 3: Sum-of-rewards for different parameters o

Q function Q_function (regularised) 250
-250
-500
—=750
—1000
—1250

~1500

-1750
a0 40

Figure 4: Regularised and non-regularised (J-function values, high reward, « = 0.25; the epochs’
indices are shown on the right axis, and the values of 7(-) are shown on the left axis

Q function Q_function (regularised) 50

-~ bot 10
— 3, édression
4 40

Figure 5: Regularised and non-regularised ()-function values, low reward, o = 0.25; the epochs’
indices are shown on the right axis, and the values of 7(-) are shown on the left axis

One of the notable things is the dramatic decrease in the number of samples: from millions
(2015)) or tens of millions (2013)) measurements for standard reinforcement
learning techniques (Lillicrap et al.| (2015)) to just hundreds of thousands (15000 per training epoch,
several tens of training epochs). For some of the reinforcement learning algorithms, trained on a
problem of driving in a simulator, only some realisations were able to finish the task
(2015)), and for those methods, which report solving similar problems by reinforcement learning
only, the reported performance constitutes 75 — 90% (Mnih et al| (2016)), while we achieve up
to 92.63% of the bot’s performance as reported in Table 2} The graphs in Figures El and [5| illus-
trate the difference between the unregularised Q-function Q(z, 7(x)) and its regularised counter-
part f(z,7(z)) (see Equation). The images on the top of the figures, recorded during the testing

Under review as a conference paper at ICLR 2018

episode of the first epoch (directly after the supervised pretraining), have been used for computation
of the @-values. The graphs below these images show the evolution of the Q-function (and its reg-
ularised version f) across the epochs. One can see that, as expected, the regularised ()-function is
steeper than the unregularised one as it penalises the values which are too far away from the refer-
ence actor control signal. The difference between Figures[d]and[5]shows the importance of the factor
Q(z,#(x)) in Equation |4} the penalty for not following the control signal is less, if the expected
reward is smaller. It makes the algorithm explore values further from the bot’s values, if it does not
provide high expected reward.

Another interesting aspect to be considered is how the proposed method would behave for other
well-known control scenarios. Appendix B discusses the performance of the method for MuJoCo
environments (Todorov et al.| (2012))) using OpenAl Baselines package (Dhariwal et al.|(2017)).

4 CONCLUSION

The proposed method shows dramatic improvement in the number of samples for video data (down
to just several hundred thousand) comparing to the reinforcement learning methods, as well as im-
proves the performance comparing to both supervised and reinforcement learning. We believe that
such approach, combining reinforcement and supervised learning, could help to succeed in the areas
of complex spaces where the state-of-the-art reinforcement learning methods are not working yet,
as well as towards practical usage for real world models such as autonomous cars or robots.

However, there are still a few limitations of the proposed method. First, it still requires label data
through all the course of training. We believe that in the future work it should be possible to reduce
usage of training data to a limited number of labelled episodes. Such decrease of the training data
could benefit to the range of practical tasks solvable by the proposed approach.

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr. Fully-convolutional siamese
networks for object tracking. European Conference on Computer Vision, Springer International
Publishing, 18:850-865, 2016, October.

Prafulla Dhariwal, Christopher Hesse, Matthias Plappert, Alec Radford, John Schulman, Szymon
Sidor, and Yuhuai Wu. Openai baselines. https://github.com/openai/baselines,
2017.

N. Esmaeili, A. Alfi, and H. Khosravi. Balancing and trajectory tracking of two-wheeled mobile
robot using backstepping sliding mode control: Design and experiments. Journal of Intelligent &
Robotic Systems, pp. 1-13, 2017.

Eric Espi, Christophe Guionneau, and Bernhard Wymann et al. Torcs, the open racing car simulator.
http://torcs.sourceforge.net. Accessed in October 2017.

N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver. Memory-based control with recurrent neural
networks. arXiv preprint arXiv:1512.04455, 2015.

N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, A. Eslami,
M. Riedmiller, and D. Silver. Emergence of locomotion behaviours in rich environments. arXiv
preprint arXiv:1707.02286., 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

J. Kober and J. Peters. Reinforcement learning in robotics: A survey. Reinforcement Learning,
Springer Berlin Heidelberg, pp. 579-610, 2012.

https://github.com/openai/baselines

Under review as a conference paper at ICLR 2018

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.

Kunquan Li and Rui Wen. Robust control of a walking robot system and controller design. Procedia
Engineering, 174:947-955, 2017.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. International Conference on Machine
Learning, pp. 1928-1937, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814,
2010.

N. Qian. On the momentum term in gradient descent learning algorithms. Neural Networks : The
Official Journal of the International Neural Network Society, 12(1):145151, 1999.

Michael T Rosenstein, Andrew G Barto, Jennie Si, Andy Barto, Warren Powell, and Donald Wun-
sch. Supervised actor-critic reinforcement learning. Handbook of Learning and Approximate
Dynamic Programming, pp. 359-380, 2004.

Nathan Silberman and Sergio Guadarrama. Tf-slim: A high level library to define complex models
in tensorflow. https://research.googleblog.com/2016/08/tf-slim-high-level-library-to-define.html,
2016. Accessed in October 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pp. 387-395, 2014.

SpeedDreams. an open motorsport sim. http://www.speed-dreams.org. Accessed in
October 2017.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact
of residual connections on learning. AAAI pp. 4278-4284, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Erhan
Dumitru, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026—
5033. IEEE, 2012.

Matej Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothorl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstra-

tions for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

Tim Welschehold, Christian Dornhege, and Wolfram Burgard. Learning manipulation actions from
human demonstrations. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on, pp. 3772-3777. IEEE, 2016.

http://www.speed-dreams.org

Under review as a conference paper at ICLR 2018

Table 3: Parameters of the network

Parameter Name in Algorithm 1| Value
Critic Training Steps/ Epoch | N_.GD_UPDATE_CRITIC | 12500
Actor Training Steps/ Epoch | N_.GD_UPDATE_ACTOR | 12500
Testing episode length L_TESTING_EPISODES | 3000
Testing episodes per epoch N_TESTING_EPISODES | 5

Actor learning rate 1-1077
Critic learning rate 1-107°
Supervised learning rate 1-1077
Supervised momentum 0.9

Soft update coefficient 0.1
Discount factor v See Equation |1 0.9
Actor FC1 size See Figure|2 2002
Actor FC2 size See Figure|2 2002
Actor FC3 size See Figure 2 1

Critic FC1 size See Figure|2 2005
Critic FC2 size See Figure|2 2005
Critic FC3 size See Figure 2 1

A PARAMETERISATION OF THE MODEL

The parameterisation for the experiments is given in Table 3} the parameters’ verbal description is
augmented with the names referencing to Algorithm|[I]

For supervised-only pretraining of the actor network, the Momentum algorithm is used (Qian
(1999)); for the rest of the stages, the Adam algorithm is used (Kingma & Ba|(2014)). The proposed
algorithm has been implemented in Python using TensorFlow framework (Abadi et al.| (2016)). For
the stage of supervised pretraining, in order to improve convergence of the model at the initial stage,
the additional soft update coefficient was introduced for exponential smoothing of the parameters of
the network during gradient descent optimisation.

B EXPERIMENTS WITH REGULARISED DDPG ON MUJOCO ENVIRONMENTS

The experiments with MuJoCo environment (Todorov et al.| (2012)) demonstrate the applicability
of the proposed idea of regularising ()-values with supervised learning to other well known control
problems. For this purpose, we have added the proposed (Q-function regularisation to the standard
DDPG algorithm with the implementation, network architecture and parameters, taken from OpenAl
Baselines (Dhariwal et al|(2017)). L? distance has been used as p for the equation H Also, in
order to maintain the correctness of regularisation assumptions, as the condition) > 0 is not met
for some low reward values in MuJoCo, Q(x, 7 (x)) was substituted by max(0, Q(z, 7 (x)). The
reference actors were obtained by pretraining actors by standard DDPG algorithm.

The results of these experiments are given in Figure[6] In every graph, the black lines show the per-
formance of the pretrained reference actor. These experiments are aimed to compare the following
three cases:

1. the original DDPG algorithm (referenced as o = 0)

2. the DDPG algorithm with fixed regularisation coefficient, o = 0.1

3. the DDPG algorithm with exponential decay, initial value of « is 1, the value is decayed
with the coefficient 0.01 every 20, 000 timesteps.

For the HalfCheetah scenario, one can see that the model with the fixed regularisation coefficient
can easily reach the pretrained value but then lags behind the algorithm with exponential decay. The
exponential decay algorithm, in contrary, takes advantage of the reference actor performance and
then gradual decay of the regularisation enables it to explore values further from the reference actor.

10

Under review as a conference paper at ICLR 2018

These results could suggest that in certain cases the regularisation can prevent the model of further
exploration beyond the reference actor performance.

For the Hopper scenario, the peak in the performance of original DDPG algorithm beyond the ref-
erence actor baseline near step 270000 suggests that the original DDPG algorithm may be unstable
for this task, which also holds for DDPG with exponential decay as the regularisation coefficient
becomes negligibly small. At the same time one can see that the model with the fixed regularisation
coefficient can reach performance beyond the reference actor.

It could be concluded from the graphs for the InvertedDoublePendulum task that convergence de-
pends in this case on the initial value of parameter o. The larger initial value for the DDPG with
exponential decay appears to give better results due to heavier reliance on the supervised part. What
is important is that all versions of the method are able to maintain stable performance after the initial
training episode.

For the Swimmer scenario, the exponential « setting allowed to go for some period of time beyond
the reference actor baseline; at the same time, the version with o = 0.1, while not beating the
reference actor, shows smaller variance than the original algorithm, and most of the time exposes
better average performance than the original DDPG method.

6000
] 4000
2 ————
o
é 2000 1 Exponential Alpha
—— Alpha=0.1
01 —— Alpha=0
T T T T T T T T
o 50000 100000 150000 200000 250000 300000 350000 400000 450000
Timesteps
(a) HalfCheetah
3000 { = Exponential Alpha
" —— Alpha=01
< 2000 \
: : /! e .w Mu&m
1000 y - -
RN WY Vo Vs R v
o4
T T T T T 1
0 50000 100000 150000 200000 250000 300000
Timesteps
(b) Hopper
10000
wu
=]
2
£ 5000
% = Exponential Alpha
—— Alpha=0.1
= Alpha=0
T T T T
0 20000 40000 60000 80000
Timesteps
(c) InvertedDoublePendulum
5 50 4
2
)
é Exponential Alpha
04 =—— Alpha=0.1
—— Alpha=0
T T T T T T T T 1
0 25000 50000 75000 100000 125000 150000 175000 200000 225000

Timesteps

(d) Swimmer

Figure 6: Results in MuJoCo environments, top to bottom: HalfCheetah, Hopper, InvertedDou-
blePendulum, Swimmer. The average reference actor performance is shown by black horizontal bar,
o = 0 corresponds to the original DDPG algorithm

11

	Introduction
	Proposed method
	Supervised pretraining
	Label-assisted reinforcement learning

	Results
	Network architecture
	Experiments

	Conclusion
	Parameterisation of the model
	Experiments with regularised DDPG on MuJoCo environments

