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Abstract

Least-mean squares (LMS) solvers such as Linear / Ridge / Lasso-Regression,
SVD and Elastic-Net not only solve fundamental machine learning problems, but
are also the building blocks in a variety of other methods, such as decision trees
and matrix factorizations.
We suggest an algorithm that gets a finite set of n d-dimensional real vectors and
returns a weighted subset of d + 1 vectors whose sum is exactly the same. The
proof in Caratheodory’s Theorem (1907) computes such a subset inO(n2d2) time
and thus not used in practice. Our algorithm computes this subset in O(nd) time,
using O(log n) calls to Caratheodory’s construction on small but "smart" subsets.
This is based on a novel paradigm of fusion between different data summarization
techniques, known as sketches and coresets.
As an example application, we show how it can be used to boost the performance
of existing LMS solvers, such as those in scikit-learn library, up to x100. General-
ization for streaming and distributed (big) data is trivial. Extensive experimental
results and complete open source code are also provided.

1 Introduction and Motivation

Least-Mean-Squares (LMS) solvers are the family of fundamental optimization problems in machine
learning and statistics that include linear regression, Principle Component Analysis (PCA), Singular
Value Decomposition (SVD), Lasso and Ridge regression, Elastic net, and many more [16, 19,
18, 34, 40, 35, 33]. See formal definition below. First closed form solutions for problems such
as linear regression were published by e.g. Pearson [29] around 1900 but were probably known
before. Nevertheless, today they are still used extensively as building blocks in both academy and
industry for normalization [24, 20, 3], spectral clustering [30], graph theory [39], prediction [10, 32],
dimensionality reduction [23], feature selection [15] and many more; see more examples in [17].

Least-Mean-Squares solver in this paper is an optimization problem that gets as input an n× d real
matrix A, and another n-dimensional real vector b (possibly the zero vector). It aims to minimize
the sum of squared distances from the rows (points) of A to some hyperplane that is represented by
its normal or vector of d coefficients x, that is constrained to be in a given set X ⊆ Rd:

min
x∈X

f(‖Ax− b‖2) + g(x).

Here, g is called a regularization term. For example: in linear regression X = Rd, f(y) = y2 for
every y ∈ R and g(x) = 0 for every x ∈ X . In Lasso f(y) = y2 for every y ∈ R and g(x) = α·‖x‖1
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for every x ∈ Rd and α > 0. Such LMS solvers can be computed via the covariance matrix ATA.
For example, the solution to linear regression of minimizing ‖Ax− b‖2 is (ATA)−1AT b.

1.1 Related work

While there are many LMS solvers and corresponding implementations, there is always a trade-off
between their accuracy and running time; see comparison table in [5] with references therein. The
reason is related to the fact that computing the covariance matrix of A can be done essentially in
one of two ways: (i) summing the d × d outer product aiaTi of the ith row aTi of A over every i,
1 ≤ i ≤ n. This is due to the fact that ATA =

∑n
i=1 aia

T
i , or (ii) factorization of A, e.g. using

SVD or the QR decomposition [16].

Numerical issues. Method (i) is easy to implement for streaming rows of A by maintaining only d2
entries of the covariance matrix for the n vectors seen so far, or maintaining its inverse (ATA)−1 as
explained e.g. in [17]. This takes O(d2) time for each vector insertion and requires O(d2) memory,
which is the same as the desired output covariance matrix. However, every such addition may
introduce another numerical error which accumulates over time. This error increases significantly
when running the algorithms using 32 bit floating point representation, which is common for GPU
computations; see Fig. 2v for example. This solution is similar to maintaining the set of d rows of the
matrix DV T , where A = UDV T is the SVD of A, which is not a subset of the original input matrix
A but has the same covariance matrix ATA = V D2V . A common problem is that to compute
(ATA)−1, the matrix ATA must be invertible. This may not be the case due to numerical issues.
In algorithms such as Lasso, the input cannot be a covariance matrix, but only a corresponding
matrix whose covariance matrix isATA, that can be computed from the Cholesky decomposition [6]
that returns a left triangular matrix A for the given covariance matrix ATA. However, Cholesky
decomposition can be applied only on positive-definite matrices, which is not the case even for small
numerical errors that are added to ATA. See Section 4 for more details and empirical evidence.
Running-time issues. Method (ii) above utilizes factorizations such as SVD, i.e., A = UDV T to
compute the covariance matrix via ATA = V D2V T or the QR decomposition A = QR to compute
ATA = RTQTQRT = RTR. This approach is known to be much more stable. However, it is
much more time consuming: while in theory the running time is O(nd2) as in the first method, the
constants that are hidden in the O(·) notation are significantly larger. Moreover, unlike Method (i),
it is impossible to compute such factorizations exactly for streaming data [8].

Caratheodory’s Theorem [7] states that every point contained in the convex hull of n points in
Rd can be represented as a convex combination of a subset of at most d + 1 points, which we
call the Caratheodory set; see Section 2 and Fig. 1. This implies that we can maintain a weighted
(scaled) set of d2 + 1 points (rows) whose covariance matrix is the same as A, since (1/n)

∑
i aia

T
i

is the mean of n matrices and thus in the convex hull of their corresponding points in R(d2); see
Algorithm 2. The fact that we can maintain such a small sized subset of points instead of updating
linear combinations of all the n points seen so far, significantly reduces the numerical errors as
shown in Fig. 2v. Unfortunately, computing this set from Caratheodory’s Theorem takes O(n2d2)
or O(nd3) time via O(n) calls to an LMS solver. This fact makes it non-practical to use in an LMS
solvers, as we aim to do in this work, and may explain the lack of software or source code for this
algorithm on the web.

Approximations via Coresets and Sketches. In the recent decades numerous approximation and
data summarization algorithms were suggested to approximate the covariance matrix or its singular
values. This is by computing a small matrix S whose covariance STS approximates, in some sense,
the covariance matrix ATA of the input data A. The term coreset is usually used when S is a
weighted (scaled) subset of rows from the n rows of the input matrix. The matrix S is sometimes
called a sketch if each rows in S is a linear combination of few or all rows in A, i.e. S = WA for
some matrix W ∈ Rs×n. However, those coresets and sketches usually yield (1 + ε)-multiplicative
approximations for ‖Ax‖22 by ‖Sx‖22 where the matrix S is of (d/ε)O(1) rows and x may be any
vector, or the smallest/largest singular vector of S or A; see lower bounds in [13]. Moreover, a
(1+ε)-approximation to ‖Ax‖22 by ‖Sx‖22 does not guarantee an approximation to the actual entries
or eigenvectors of A by S that may be very different; see [12].

Accurately handling big data. The algorithms in this paper return accurate coresets (ε = 0),
which is less common in the literature. There algorithms can be used to compute the covari-
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ance matrix ATA via a scaled subset of rows from the input matrix A. Such coresets support
unbounded stream of input rows using memory that is sub-linear in their size, and also support dy-
namic/distributed data in parallel. This is by the useful merge-and-reduce property of coresets that
allow them to handle big data; see details e.g. in [4]. Unlike traditional coresets that pay additional
logarithmic multiplicative factors due to the usage of merge-reduce trees and increasing error, the
suggested weighted subsets in this paper do not introduce additional error to the resulting compres-
sion since they preserve the desired statistics accurately. The actual numerical errors are measured
in the experimental results, with analysis that explain the differences.

A main advantage of a coreset over a sketch is that it preserves sparsity of the input rows [14], which
usually reduces theoretical running time. Our experiments show, as expected from the analysis, that
coresets can also be used to significantly improve the numerical stability of existing algorithms.
Another advantage is that the same coreset can be used for parameter tuning over a large set of can-
didates. In addition to other reasons, this significantly reduces the running time of such algorithms
in our experiments; see Section 4.

1.2 Our contribution

A natural question that follows from the previous section is: can we maintain the optimal solution
for LMS problems both accurately and fast? We answer this question affirmably by suggesting:

(i) the first algorithm that computes the Caratheodory set of n input points in time that is linear
in the input O(nd) for asymptotically large n. This is by using a novel approach of core-
set/skecthes fusion that is explained in the next section; see Algorithm 1 and Theorem 1.

(ii) an algorithm that maintains a ("coreset") matrix S ∈ R(d2+1)×d such that: (a) its set of rows is
a scaled subset of rows fromA ∈ Rn×d whose rows are the input points, and (b) the covariance
matrices of S and A are the same, i.e., STS = ATA; see Algorithm 2 and Theorem 3.2.

(iii) example applications for boosting the performance of existing solvers by running them on the
matrix S above or its variants for Linear/Ridge/Lasso Regressions and Elastic-net.

(iv) extensive experimental results on synthetic and real-world data for common LMS solvers of
Scikit-learn library with either CPython or Intel’s distribution. Either the running time or
numerical stability is improved up to two orders of magnitude.

(v) open code [26] for our algorithms that we hope will be used for the many other LMS solvers
and future research as suggested in our Conclusion section; see Section 5.

1.3 Novel approach: Coresets meet Sketches

As explained in Section 1.1, the covariance matrix ATA of A itself can be considered as a sketch
which is relatively less numerically stable to maintain (especially its inverse, as desired by e.g. linear
regression). The Caratheodory set, as in Definition 2.1, that corresponds to the set of outer products
of the rows of A is a coreset whose weighted sum yields the covariance matrix ATA. Moreover, it
is more numerically stable but takes much more time to compute; see Theorem 2.2.

To this end, we suggest a meta-algorithm that combines these two approaches: sketches and core-
sets. It may be generalized to other, not-necessarily accurate, ε-coresets and sketches (ε > 0); see
Section 5.

The input to our meta-algorithm is 1) a set P of n items, 2) an integer k ∈ {1, · · · , n} where n is
highest numerical accuracy but longest running time, and 3) a pair of coreset and sketch construction
schemes for the problem at hand.
The output is a coreset for the problem whose construction time is faster than the construction time
of the given coreset scheme; see Fig. 1.

Step I: Compute a balanced partition {P1, · · · , Pk} of the input set P into k clusters of roughly the
same size. While the correctness holds for any such arbitrary partition (e.g. see Algorithm 3.1), to
reduce numerical errors – the best is a partition that minimizes the sum of loss with respect to the
problem at hand.

Step II: Compute a sketch Si for each cluster Pi, where i ∈ {1, · · · , k}, using the input sketch
scheme. This step does not return a subset of P as desired, and is usually numerically less stable.
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Figure 1: Overview of Algorithm 1 and the steps in Section 1.3. Images left to right: Steps I and II (Partition and sketch steps): A partition
of the input weighted set of n = 48 points (in blue) into k = 8 equal clusters (in circles) whose corresponding means are µ, . . . , µ8 (in
red). The mean of P (and these means) is x (in green). Step III (Coreset step): Caratheodory (sub)set of d + 1 = 3 points (bold red) with
corresponding weights (in green) is computed only for these k = 8� n means. Step IV (Recover step): the Caratheodory set is replaced by
its corresponding original points (dark blue). The remaining points in P (bright blue) are deleted. Step V (Recursive step): Previous steps are
repeated until only d+ 1 = 3 points remain. This procedure takesO(logn) iterations for k = 2d+ 2.

Step III: Compute a coreset B for the union S = S1 ∪ · · · ∪ Sk of sketches from Step II, using the
input coreset scheme. Note that B is not a subset (or coreset) of P .

Step IV: Compute the union C of clusters in P1, · · · , Pk that correspond to the selected sketches in
Step III, i.e. C =

⋃
Si∈B Pi. By definition, C is a coreset for the problem at hand.

Step V: Recursively compute a coreset for C until a sufficiently small coreset is obtained. This step
is used to reduce running time, without selecting k that is too small.

We then run an existing solver on the coreset C to obtain a faster accurate solution for P . Algo-
rithm 1 and 3.1 are special cases of this meta-algorithm, where the sketch is simply the sum of a
set of points/matrices, and the coreset is the existing (slow) implementation of the Caratheodory set
from Theorem 2.2.

Paper organization. In Section 2 we give our notations, definitions and the current state-of-the-
art result. Section 3 presents our main algorithms for efficient computation of the Caratheodory
(core-)set and a subset that preserves the inputs covariance matrix, their theorems of correctness
and proofs. Section 4 demonstrates the applications of those algorithms to common LMS solvers,
with extensive experimental results on both real-world and synthetic data via the Scikit-learn library
with either CPython or Intel’s Python distributions. We conclude the paper with open problems and
future work in Section 5.

2 Notation and Preliminaries
For a pair of integers n, d ≥ 1, we denote by Rn×d the set of n × d real matrices, and [n] =
{1, · · · , n}. To avoid abuse of notation, we use the big O notation where O(·) is a set [11]. A
weighted set is a pair (P, u) where P = {p1, · · · , pn} is an ordered finite set in Rd, and u : P →
[0,∞) is a positive weights function. We sometimes use a matrix notation whose rows contains the
elements of P instead of the ordered set notation.

Given a point q inside the convex hull of a set of points P , Caratheodory’s Theorem proves that there
a subset of at most d + 1 points in P whose convex hull also contains q. This geometric definition
can be formulated as follows.

Definition 2.1 (Caratheodory set). Let (P, u) be a weighted set of n points in Rd such that∑
p∈P u(p) = 1. A weighted set (S,w) is called a Caratheodory Set for (P, u) if: (i) its size is

|S| ≤ d + 1, (ii) its weighted mean is the same,
∑
p∈S w(p) · p =

∑
p∈P u(p) · p, and (iii) its sum

of weights is
∑
p∈S w(p) = 1.

Caratheodory’s Theorem suggests a constructive proof for computing this set inO(n2d2) time [7, 9];
see Algorithm 8 along with an overview and full proof in Section A of the supplementary material.
However, as observed e.g. in [28], it can be computed only for the first m = d+ 1 points, and then
be updated point by point in O(md2) = O(d3) time per point, to obtain O(nd3) overall time. This
still takes Θ(n) calls to a linear system solver that returns x ∈ Rd satisfying Ax = b for a given
matrix A ∈ R(d+1)×d and vector b ∈ Rd+1, in O(d3) time per call.

Theorem 2.2 ([7], [28]). A Caratheodory set (S,w) can be computed for any weighted set (P, u)
where

∑
p∈P u(p) = 1 in t(n, d) ∈ O(1) ·min

{
n2d2, nd3

}
time.
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3 Faster Caratheodory Set

In this section, we present our main algorithm that reduces the running time for computing a
Caratheodory set from O(min

{
n2d2, nd3

}
) in Theorem 2.2 to O(nd) for sufficiently large n; see

Theorem 3.1. A visual illustration of the corresponding Algorithm 1 is shown in Fig. 1. As an
application, we present a second algorithm, called CARATHEODORY-MATRIX, which computes a
small weighted subset of a the given input that has the same covariance matrix as the input matrix;
see Algorithm 2.

Theorem 3.1 (Caratheodory-Set Booster). Let (P, u) be a weighted set of n points in Rd such
that

∑
p∈P u(p) = 1, and k ≥ d + 2 be an integer. Let (C,w) be the output of a call to

FAST-CARATHEODORY-SET(P, u, k); See Algorithm 1. Let t(k, d) be the time it takes to com-
pute a Caratheodory Set for k points in Rd, as in Theorem 2.2. Then (C,w) is a Caratheodory set

of (P, u) that is computed in time O
(
nd+ t(k, d) · logn

log(k/d)

)
.

Proof. See full proof of Theorem B.1 in the supplementary material.

Tuning Algorithm 1 for the fastest running time. To achieve the fastest running time in
Algorithm 1, simple calculations show that when t(k, d) = kd3, i.e., when applying the algo-
rithm from [28], k = ed is the optimal value (that achieves the fastest running time), and when
t(k, d) = k2d2, i.e., when applying the original Caratheodory algorithm (Algorithm 8), k =

√
ed is

the value that achieves the fastest running time.

Algorithm 1 FAST-CARATHEODORY-SET(P, u, k); see Theorem 3.1

Input: A set P of n points in Rd, a (weight) function u : P → [0,∞) such that
∑
p∈P u(p) = 1,

and an integer (number of clusters) k ∈ {1, · · · , n} for the numerical accuracy/speed trade-off.
Output: A Caratheodory set of (P, u); see Definition 2.1.

1 P := P \ {p ∈ P | u(p) = 0}. // Remove all points with zero weight.
2 if |P | ≤ d+ 1 then
3 return (P, u) // |P | is already small

4 {P1, · · · , Pk} := a partition of P into k disjoint subsets (clusters), each contains at most dn/ke points.

5 for every i ∈ {1, · · · , k} do

µi :=
1∑

q∈Pi
u(q)

·
∑
p∈Pi

u(p) · p // the weighted mean of Pi

77 u′(µi) :=
∑
p∈Pi

u(p) // The weight of the ith cluster.

8 (µ̃, w̃) := CARATHEODORY({µ1, · · · , µk} , u′) // see Algorithm 8 and Theorem 2.2.

9 C :=
⋃
µi∈µ̃

Pi

// C is the union over all clusters Pi ⊆ P whose representative µi was
chosen for µ̃.

10 for every µi ∈ µ̃ and p ∈ Pi do

11 w(p) :=
w̃(µi)u(p)∑
q∈Pi

u(q)
// assign weight for each point in C

12 (C,w) := FAST-CARATHEODORY-SET(C,w, k) // recursive call
13 return (C,w)

Theorem 3.2. Let A ∈ Rn×d be a matrix, and k ≥ d2 + 2 be an integer. Let S ∈ R(d2+1)×d

be the output of a call to CARATHEODORY-MATRIX(A, k); see Algorithm 2. Let t(k, d) be the
computation time of CARATHEODORY (Algorithm 8) given k points in Rd. Then ATA = STS.
Furthermore, S is computed in O

(
nd2 + t(k, d2) · logn

log (k/d2))

)
time.

Proof. See full proof of Theorem B.2 in the supplementary material.
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Algorithm 2 CARATHEODORY-MATRIX(A, k); see Theorem 3.2

Input : A matrix A = (a1 | · · · | an)T ∈ Rn×d, and an integer k ∈ {1, · · · , n} for numerical
accuracy/speed trade-off.

Output: A matrix S ∈ R(d2+1)×d whose rows are scaled rows from A, and ATA = STS.
1 for every i ∈ {1 · · · , n} do
2 Set pi ∈ R(d2) as the concatenation of the d2 entries of aiaTi ∈ Rd×d.

// The order of entries may be arbitrary but the same for all points.
3 u(pi) := 1/n

4 P :=
{
pi | i ∈ {1, · · · , n}

}
// P is a set of n vectors in R(d2).

5 (C,w) := FAST-CARATHEODORY-SET(P, u, k) // C ⊆ P and |C| = d2+1 by Theorem 3.1

6 S := a (d2 + 1)× d matrix whose ith row is
√
n · w(pi) · aTi for every pi ∈ C.

7 return S

Solver Objective function Python’s Package Example Python’s solver

Linear regression [6] ‖Ax− b‖22 scipy.linalg LinearRegression(A, b)

Ridge regression [18] ‖Ax− b‖22 + α ‖x‖22 sklearn.linear_model RidgeCV(A, b,A,m)

Lasso regression [35]
1

2n
‖Ax− b‖22 + α ‖x‖1 sklearn.linear_model LassoCV(A, b,A,m)

Elastic-Net regression [40]
1

2n
‖Ax− b‖22 + ρα ‖x‖22 +

(1− ρ)

2
α ‖x‖1 sklearn.linear_model ElasticNetCV(A, b,A, ρ,m)

Table 1: Four LMS solvers that were tested with Algorithm 3. Each procedure gets a matrix A ∈ Rn×d, a vector b ∈ Rn and aims to
compute x ∈ Rd that minimizes its objective function. Additional regularization parameters include α > 0 and ρ ∈ [0, 1]. The Python’s
solvers usem-fold cross validation over every α in a given set A ⊆ [0,∞).

4 Experimental Results

In this section we apply our fast construction of the Carathoodory Set S from the previous section
to boost the running time of common LMS solvers in Table 1 by a factor of tens to hundreds,
or to improve their numerical accuracy by a similar factor to support, e.g., 32 bit floating point
representation as in Fig. 2v. This is by running the given solver as a black box on the small matrix
C that is returned by Algorithms 4–7, which is based on S. That is, our algorithm does not compete
with existing solvers but relies on them, which is why we called it "booster". Open code for our
algorithms is provided [26].

m-folds cross validation (CV). We briefly discuss the CV technique which is utilized in common
LMS solvers. Given a parameter m and a set of real numbers A, to select the optimal value α ∈ A
of the regularization term, the existing Python’s LMS solvers partition the rows of A into m folds
(subsets) and run the solver m · |A| times, each run is done on a concatenation of m − 1 folds
(subsets) and α ∈ A, and its result is tested on the remaining “test fold”. Finally, the cross validation
returns the parameters that yield the optimal (minimal) value on the test fold; see [22] for details.

From Caratheodory Matrix to LMS solvers. As stated in Theorem 3.2, Algorithm 2 gets an
input matrix A ∈ Rn×d and an integer k > d + 1, and returns a matrix S ∈ R(d2+1)×d of the
same covariance ATA = STS, where k is a parameter for setting the desired numerical accuracy.
To "learn" a given label vector b ∈ Rn, Algorithm 3 partitions the matrix A′ = (A | b) into m
partitions, computes a subset for each partition that preserves its covariance matrix, and returns the
union of subsets as a pair (C, y) where C ∈ R(m(d+1)2+m)×d and y ∈ Rm(d+1)2+m. For m = 1
and every x ∈ Rd,

‖Ax− b‖ =
∥∥A′(x | −1)T

∥∥ =
∥∥(C | y)(x | −1)T

∥∥ = ‖Cx− y‖ , (1)

where the second and third equalities follow from Theorem 3.2 and the construction of C, respec-
tively. This enables us to replace the original pair (A, b) by the smaller pair (C, y) for the solvers in
Table 1 as in Algorithms 4–7. A scaling factor β is also needed in Algorithms 6–7.
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To support CV with m > 1 folds, Algorithm 3 computes a coreset for each of the m folds (subsets
of the data) in Line 4 and concatenates the output coresets in Line 5. Thus, (1) holds similarly for
each fold (subset) when m > 1.

The experiments. We applied our CARATHEODORY-MATRIXcoreset from Algorithm 2 on com-
mon Python’s SKlearn LMS-solvers that are described in Table 1. Most of these experiments were
repeated twice: using the default CPython distribution [37] and Intel’s distribution [25] of Python.
All the experiments were conducted on a standard Lenovo Z70 laptop with an Intel i7-5500U CPU
@ 2.40GHZ and 16GB RAM. We used the 3 following real-world datasets:

(i) 3D Road Network (North Jutland, Denmark) [21]. It contains n = 434874 records. We used
the d = 2 attributes: “Longitude” [Double] and “Latitude” [Double] to predict the attribute
“Height in meters” [Double].

(ii) Individual household electric power consumption [1]. It contains n = 2075259 records. We
used the d = 2 attributes: “global active power” [kilowatt - Double], “global reactive power”
[kilowatt - Double]) to predict the attribute “voltage” [volt - Double].

(iii) House Sales in King County, USA [2]. It contains n = 21, 600 records. We used the following
d = 8 attributes: “bedrooms” [integer], “sqft living” [integer], “sqft lot” [integer], “floors”
[integer], “waterfront” [boolean], “sqft above” [integer], “sqft basement” [integer], “year built”
[integer]) to predict the “house price” [integer] attribute.

The synthetic data consists of an n × d matrix A and vector b of length n, both of uniform random
entries in [0, 1000]. As expected by the analysis, since our compression introduces no error to the
computation accuracy, the actual values of the data had no affect on the results, unlike the size of
the input which affects the computation time. Table 2 summarizes the experimental results.

4.1 Competing methods

We now present other sketches for improving the practical running time of LMS solvers; see discus-
sion in Section 4.2.
SKETCH + CHOLESKY is a method which simply sums the 1-rank matrices of outer products of
rows in the input matrixA′ = (A | b) which yields its covariance matrixB = A′TA′. The Cholesky
decomposition B = LTL then returns a small matrix L ∈ Rd×d that can be plugged to the solvers,
similarly to our coreset.
SKETCH + INVERSE is applied in the special case of linear regression, where one can avoid
applying the Cholesky decomposition and can compute the solution (ATA)−1AT b directly after
maintaining ATA and AT b for the data seen so far.

4.2 Discussion

Running time. The number of rows in the reduced matrixC isO(d2), which is usually much smaller
than the number n of rows in the original matrix A. This also explains why some coresets (dashed
red line) failed for small values of n in Fig. 2b,2c,2h and 2i. The construction of C takes O(nd2).
Solving linear regression takes the same time, with or without the coreset. However, the constants
hidden in the O notation are much smaller since the time for computing C becomes neglectable for
large values of n, as shown in Fig. 2u. We emphasize that, unlike common coresets, there is no
accuracy loss due to the use of our coreset, ignoring ±10−15 additive errors/improvements. The
improvement in running time due to our booster is in order of up to x10 compared to the algorithm’s
running time on the original data, as shown in Fig. 2m– 2n. The contribution of the coreset is
significant, already for smaller values of n, when it boosts other solvers that use cross validation
for parameter tuning as explained above. In this case, the time complexity reduced by a factor of
m · |A| since the coreset is computed only once for each of the m folds, regardless of the size |A|. In
practice, the running time is improved by a factor of x10–x100 as shown for example in Fig. 2a– 2c.
As shown in the graphs, e.g., Fig. 2u, the computations via Intel’s Python distribution reduced the
running times by 15-40% compared to the default CPython distribution, with or without the booster.
This is probably due to its tailored implementation for our hardware.

Numerical stability. The SKETCH + CHOLESKY method is simple and accurate in theory, and
there is no hope to improve its running time via our much more involved booster. However, it
is numerically unstable in practice for the reasons that are explained in Section 1.1. In fact, on
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Figure Algorithm’s number x/y Axes labels Python Distribution Dataset Input Parameter
2a,2b,2c 5–7 Size/Time for various d CPython Synthetic m = 3, |A| = 100
2d,2e,2f 5–7 Size/Time for various |A| CPython Synthetic m = 3, d = 7
2g,2h,2i 5–7 Size/Time for various d Intel’s Synthetic m = 3, |A| = 100
2j,2k,2l 5–7 Size/Time for various |A| Intel’s Synthetic m = 3, d = 7
2m,2n 5–7 |A|/Time CPython Datasets (i),(ii) m = 3, |A| = 100
2o,2p 5–7 |A|/Time Intel’s Datasets (i),(ii) m = 3, |A| = 100
2q,2r 5–7 Time/maximal |A| than is feasible CPython Datasets (i),(ii) m = 3
2s,2t 5–7 Time/maximal |A| than is feasible Intel’s Datasets (i),(ii) m = 3
2u 4 Size/Time for various Distributions CPython, Intel’s Synthetic m = 64, d = 15
2v 4 Error/Count Histogram + Size/Error CPython Datasets (i),(iii) m = 1

Table 2: Summary of experimental results. CPython [37] and Intel’s [25] distributions were used. The input: A ∈ Rn×d and b ∈
Rn, where n is “Data size”. CV used m folds for evaluating each parameter in A. The chosen number of clusters in Algorithm 3 is
k = 2(d + 1)2 + 2 in order to have O(logn) iterations in Algorithm 1, and ρ = 0.5 for Algorithm 7. Computation time includes the
computation of the reduced input (C, y); See Section 3. The histograms consist of bins along with the number of errors that fall in each bin.

most of our experiments we could not even apply this technique at all using 32-bit floating point
representation. This is because the resulting approximation to A′TA′ was not a positive definite
matrix as required by the Cholesky Decomposition, and we could not compute the matrix L at
all. In case of success, the running time of the booster was slower by at most a factor of 2 but
even in these cases numerical accuracy was improved up to orders of magnitude; See Fig. 2v for
histogram of errors using such 32-bit float representation which is especially common in GPUs for
saving memory, running time and power [38]. For the special case of linear regression, we can apply
SKETCH + INVERSE, which still has large numerical issues compared to our coreset computation
as shown in Fig. 2v.

Algorithm 3 LMS-CORESET(A, b,m, k)

Input: A matrix A ∈ Rn×d, a vector b ∈ Rn, a number (integer) m of cross-validation folds,
and an integer k ∈ {1, · · · , n} that denotes accuracy/speed trade-off.

Output: A matrix C ∈ RO(md2)×d whose rows are scaled rows from A, and a vector y ∈ Rd.
1 A′ := (A | b) // A matrix A′ ∈ Rn×(d+1)

2 {A′1, · · · , A′m} := a partition of the rows of A′ into m matrices, each of size ( nm )× (d+ 1)
3 for every i ∈ {1, · · · ,m} do
4 Si := CARATHEODORY-MATRIX(A′i, k) // see Algorithm 2

5 S := (ST1 | · · · |STm)T // concatenation of the m matrices into a single matrix of

m(d+ 1)2 +m rows and d+ 1 columns

6 C := the first d columns of S

7 y := the last column of S

8 return (C, y)

Algorithm 4 LINREG-BOOST(A, b,m, k)

1 (C, y) := LMS-CORESET(A, b,m, k)
2 x∗ := LinearRegression(C, y)
3 return x∗

Algorithm 5 RIDGECV-BOOST(A, b,A,m, k)

1 (C, y) := LMS-CORESET(A, b,m, k)
2 (x, α) := RidgeCV(C, y,A,m)
3 return (x, α)

Algorithm 6 LASSOCV-BOOST(A, b,A,m, k)

1 (C, y) := LMS-CORESET(A, b,m, k)

2 β :=
√(

m ·
(
d+ 1)2 +m

)
/n

3 (x, α) := LassoCV(β · C, β · y,A,m)
4 return (x, α)

Algorithm 7 ELASTICCV-BOOST(A, b,m,A, ρ, k)

1 (C, y) := LMS-CORESET(A, b,m, k)

2 β :=
√(

m ·
(
d+ 1)2 +m

)
/n

3 (x, α) := ElasticNetCV(β · C, β · y,A, ρ,m)
4 return (x, α)

5 Conclusion and Future Work
We presented a novel framework that combines sketches and coresets. As an example application,
we proved that the set from the Caratheodory Theorem can be computed in O(nd) overall time for
sufficiently large n instead of the O(n2d2) time as in the original theorem. We then generalized
the result for a matrix S whose rows are a weighted subset of the input matrix and their covariance
matrix is the same. Our experimental results section shows how to significantly boost the numerical
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) Accuracy comparison. (left): Dataset (i), (right): Dataset (ii). x∗ = LinearRegression(A, b). x
was computed using the methods specified in the legend; see Section 4.2.

Figure 2: Experimental results; see Table 2.

stability or running time of existing LMS solvers by applying them on S. Future work includes:
(a) applications of our framework to combine other sketch-coreset pairs e.g. as listed in [31], (b)
Experiments for streaming/distributed/GPU data, and (c) experiments with higher dimensional data:
we may compute each of the O(d2) entries in the covariance matrix by calling our algorithm with
d = 2 and the corresponding pair of columns in the d columns of the input matrix.
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