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Abstract

Causal identification is the problem of deciding whether a post-interventional
distribution is computable from a combination of qualitative knowledge about the
data-generating process, which is encoded in a causal diagram, and an observational
distribution. A generalization of this problem restricts the qualitative knowledge to
a class of Markov equivalent causal diagrams, which, unlike a single, fully-specified
causal diagram, can be inferred from the observational distribution. Recent work
by (Jaber et al., 2019a) devised a complete algorithm for the identification of
unconditional causal effects given a Markov equivalence class of causal diagrams.
However, there are identifiable conditional causal effects that cannot be handled by
that algorithm. In this work, we derive an algorithm to identify conditional effects,
which are particularly useful for evaluating conditional plans or policies.

1 Introduction

The graphical approach to causal inference is becoming an important tool for assessing the efficacy
of actions or policies (Pearl, 2000; Bareinboim and Pearl, 2016). In this approach, data from an
observational probability distribution P is associated with a causal diagram (e.g., Fig. 1a) in which
nodes correspond to measured variables, directed edges represent direct causal relations, and bi-
directed edges encode spurious associations due to unmeasured confounding variables. Performing
an action do(X = x) eliminates the impact of other variables on those in X by fixing the values of
the latter and induces an interventional distribution, denoted Px. Whether, and if so how, aspects of
Px can be determined from the observational distribution together with the causal diagram is known
as the problem of causal identification.

In this work, we focus on conditional causal effects, of the form Px(y|z), which denotes the
conditional probability of Y = y given Z = z according to the interventional distribution Px. Such
conditional effects are particularly useful when what is at stake is the consequence of conditional
plans or policies, in which what value or probability distribution to impose on X is contingent on
the value of Z (Pearl and Robins, 1995). When the available knowledge is sufficient to delineate
the causal diagram, a number of criteria, including a complete algorithm, for identifying conditional
effects are known (Pearl, 1995; Spirtes et al., 2000; Tian, 2004; Shpitser and Pearl, 2006). However,
we are usually in a position where background knowledge is not nearly enough to give us confidence
on a single causal diagram. In such situations, forcing a single diagram easily leads to false modeling
assumptions and, consequently, misleading inferences.
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Figure 1: Causal diagram (left) and the inferred
PAG (right).

Instead of specifying the causal diagram based
on expert knowledge, one may adopt a more
data-driven approach and attempt to learn it
from data. However, from observational data,
it is common that only a Markov equivalence
class of causal diagrams can be consistently esti-
mated (Verma, 1993; Spirtes et al., 2001; Zhang,
2008b). A distinguished characterization of the
Markov equivalence class uses partial ancestral
graphs (PAGs). Fig. 1b shows the PAG learnable
from observational data that is consistent with the causal diagram depicted in Fig. 1a. The directed
edges in a PAG represent causal relations (that are not necessarily direct) and the circle marks stand
for structural uncertainty. Labeled edges (with v) signify the absence of unmeasured confounders.

In this work, we study the problem of using invariant structural features in a Markov equivalence
class (learnable from observational data) to identify conditional causal effects. Identification from an
equivalence class is considerably more challenging than from a single diagram due to the structural
uncertainties. Zhang (2007) extended Pearl’s do-calculus to PAGs. However, it is computationally
hard to decide whether there exists (and, if so, to find) a sequence of derivations in the generalized
calculus to identify the effect of interest. More recently, a complete algorithm was devised for
identifying unconditional causal effects given a PAG (Jaber et al., 2019a). This algorithm can be used
to identify conditional effects of the form Px(y|z) whenever the joint effect Px(y, z) is identifiable.
However, as we will show, many conditional effects are identifiable while the corresponding joint
effect is not.1 Specifically, we make the following contributions:

1. We establish a novel decomposition that serves to reduce a targeted conditional causal
distribution into components that are easier to identify.

2. Based on the decomposition, we develop an algorithm to compute the effect of an arbitrary
set of intervention variables on an arbitrary outcome set while conditioning on a third disjoint
set, from a PAG and an observational distribution. We show that this algorithm subsumes
that of (Jaber et al., 2019a).

2 Preliminaries

In this section, we introduce the basic setup and notations. Boldface capital letters denote sets of
variables, while boldface lowercase letters stand for value assignments to those variables.

Structural Causal Models. We use Structural Causal Models (SCMs) (Pearl, 2000, pp. 204-207)
as our basic semantical framework. Formally, an SCM M is a 4-tuple 〈U,V,F, P (U)〉, where U is
a set of exogenous (latent) variables and V is a set of endogenous (measured) variables. F represents
a collection of functions F = {fi} such that each endogenous variable Vi ∈ V is determined by a
function fi ∈ F, where fi is a mapping from the respective domain of Ui ∪ Pai to Vi, Ui ⊆ U,
Pai ⊆ V \ Vi. The uncertainty is encoded through a probability distribution over the exogenous
variables, P (U). Every SCM is associated with one causal diagram where every variable V ∪U is
a node, and an arrow is drawn from each member of Ui ∪Pai to Vi. Following standard practice,
when drawing a causal diagram, we omit the exogenous nodes and add a bi-directed arc between
two endogenous nodes if they share an exogenous parent. We restrict our study to recursive systems,
which means that the corresponding diagram will be acyclic. The marginal distribution induced
over the endogenous variables P (V) is called observational, and factorizes according to the causal
diagram, i.e.:

P (v) =
∑
u

∏
i

P (vi|pai,ui)P (u) (1)

Within the structural semantics, performing an action X=x is represented through the do-operator,
do(X=x), which encodes the operation of replacing the original equation for X by the constant x
and induces a submodel Mx. The resulting distribution is denoted by Px, which is the main target for
identification in this paper. For details on structural models, we refer readers to (Pearl, 2000).

1Another approach is based on SAT (Boolean constraint satisfaction) solvers (Hyttinen et al., 2015). Given
its somewhat distinct nature, a closer comparison lies outside the scope of this paper.
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Ancestral Graphs. We now introduce a graphical representation of equivalence classes of causal
diagrams. A mixed graph can contain directed and bi-directed edges. A is an ancestor of B if there
is a directed path from A to B. A is a spouse of B if A↔ B is present. An almost directed cycle
happens when A is both a spouse and an ancestor of B. An inducing path is a path on which every
node (except for the endpoints) is a collider on the path (i.e., both edges incident to the node are
into it) and is an ancestor of an endpoint of the path. A mixed graph is ancestral if it does not
contain directed or almost directed cycles. It is maximal if there is no inducing path between any
two non-adjacent nodes. A Maximal Ancestral Graph (MAG) is a graph that is both ancestral and
maximal (Richardson and Spirtes, 2002).

In general, a causal MAG represents a set of causal diagrams with the same set of observed variables
that entail the same conditional independence and ancestral relations among the observed variables.
Different MAGs may be Markov equivalent in that they entail the exact same independence model.
A partial ancestral graph (PAG) represents an equivalence class of MAGs [M], which shares the
same adjacencies as every MAG in [M] and displays all and only the invariant edge marks (i.e., edge
marks that are shared by all members of [M]). A circle indicates an edge mark that is not invariant.

A PAG is learnable from the independence model over the observed variables, and the FCI algorithm
is a standard method to learn such an object (Zhang, 2008b). In short, a PAG represents a class of
causal diagrams with the same observed variables that entail the same independence model over the
observed variables.

Graphical Notions. Given a causal diagram, a MAG, or a PAG, a path between X and Y is
potentially directed (causal) from X to Y if there is no arrowhead on the path pointing towards X . Y
is called a possible descendant of X and X a possible ancestor of Y if there is a potentially directed
path from X to Y . Y is called a possible child of X and X a possible parent of Y if they are adjacent
and the edge is not into X . For a set of nodes X, let Pa(X) (Ch(X)) denote the union of X and the
set of possible parents (children) of X, and let An(X) denote the union of X and the set of possible
ancestors of X. Let Pa∗(X) denote Pa(X) excluding the possible parents of X due to circle edges
(◦−◦). Similarly, Ch∗(X) denotes Ch(X) excluding the possible children of X due to circle edges.
For convenience, we use an asterisk (*) as a wildcard to denote any possible mark of a PAG (◦, >,−)
or a MAG (>,−). If the edge marks on a path between X and Y are all circles, we call the path a
circle path. We refer to the closure of nodes connected with circle paths as a bucket. Obviously, given
a PAG, nodes are partitioned into a unique set of buckets.

A directed edge X → Y in a MAG or a PAG is visible if there exists no causal diagram in the
corresponding equivalence class where there is an inducing path between X and Y that is into X .
This implies that a visible edge is not confounded (X ←−→ Y doesn’t exist). Which directed edges
are visible is easily decidable by a graphical condition (Zhang, 2008a), so we simply mark visible
edges by v. For brevity, we refer to any edge that is not a visible directed edge as invisible.

Identification in Causal Diagrams. Tian and Pearl (2002) introduced a decomposition of a causal
diagram into a set of so-called c-components (confounded components).
Definition 1 (C-Component). In a causal diagram, two nodes are said to be in the same c-component
iff they are connected by a bi-directed path, i.e., a path composed solely of bi-directed edges.

The significance of c-components and their decomposition is evident from (Tian, 2004, Lemmas 2,
3), which are the basis for the proposed algorithm for identifying conditional causal effects. For any
set C ⊆ V, Q[C] denotes the post-intervention distribution of C under an intervention on V \C.

Q[C] = Pv\c(c) =
∑
u

∏
{i|Vi∈C}

P (vi|pai,ui)P (u) (2)

Obviously, Q[C] functionally depends on C and the corresponding parents, i.e., Pa(C). Moreover,
Q[C] decomposes into a product of sub-queries over the c-components in DC, the induced subgraph
of the causal diagram D over C. That is, Q[C] =

∏
i Q[Ci], where Ci is a c-component in DC.

3 Unconditional Causal Effect

In this section, we review the techniques developed in (Jaber et al., 2019a) for identifying uncondi-
tional causal effects. The notion of pc-component (Def. 2) in MAGs and PAGs generalizes that of
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Algorithm 1 IDP(x,y) given PAG P
Input: two disjoint sets X,Y ⊂ V
Output: Expression for Px(y) or FAIL

1: Let D = An(Y)PV\X

2: Px(y) =
∑

d\y IDENTIFY(D,V, P )

3: function IDENTIFY(C, T, Q = Q[T])
4: if C = ∅ then return 1
5: if C = T then return Q

/* In PT, let B denote a bucket, and let CB denote the pc-component of B */
6: if ∃B ⊂ T \C such that CB ∩ Ch(B) ⊆ B then
7: Compute Q[T \B] from Q; . via Proposition 2
8: return IDENTIFY(C,T \B,Q[T \B])
9: else if ∃B ⊂ C such thatRB 6= C then

10: return IDENTIFY(RB,T,Q) · IDENTIFY(RC\RB
,T,Q)

IDENTIFY(RB∩RC\RB
,T,Q) . by Proposition 3

11: else
12: throw FAIL

c-component in a causal diagram. Being in the same pc-component is a necessary condition for two
nodes to be in the same c-component in some causal diagram in the corresponding equivalence class
(Prop. 1). As a special case of Def. 2, two nodes are in the same definite c-component (dc-component)
if they are connected with a bi-directed path, i.e., a path composed solely of bi-directed edges.
Definition 2 (PC-Component). In a MAG, a PAG, or any induced subgraph thereof, two nodes are
in the same possible c-component (pc-component) if there is a path between them such that (1) all
non-endpoint nodes along the path are colliders, and (2) none of the edges is visible.
Proposition 1. Let P be a MAG or a PAG over V, and D be any causal diagram in the equivalence
class represented by P . For any X,Y ∈ A ⊆ V, if X and Y are in the same c-component in DA,
then X and Y are in the same pc-component in PA.

Using the above notions, the following identification criterion is derived where the intervention is on
a bucket rather than a single node and the input distribution is possibly interventional. The expression
depends on a partial topological order (PTO) over the nodes, which is a topological order over the
buckets. A detailed discussion can be found in (Jaber et al., 2018).
Proposition 2. Let P denote a PAG over V, T be a union of a subset of the buckets in P , and X ⊂ T
be a bucket. Given Pv\t (i.e., Q[T]), and a partial topological order B1 < · · · < Bm with respect
to PT, Q[T \X] is identifiable if and only if, in PT, there does not exist Z ∈ X such that Z has a
possible child C /∈ X that is in the pc-component of Z. If identifiable, then the expression is given by

Q[T \X] =
Pv\t∏

{i|Bi⊆SX} Pv\t(Bi|B(i−1))
×

∑
x

∏
{i|Bi⊆SX}

Pv\t(Bi|B(i−1)),

where SX =
⋃

Z∈X SZ , SZ being the dc-component of Z in PT, and B(i−1) denoting the set of
nodes preceding bucket Bi in the partial order.

For example, given the PAG in Fig. 1b, X is not in the same pc-component with any of its possible
children V3, V4, hence Px(v1, . . . , v4) is computable from the observational distribution P (v). An-
other important result is decomposing a target quantity Q[C] into a product of smaller quantities.
Such a decomposition is obtained in Proposition 3 using the Region construct (Def. 3).
Definition 3 (RegionRC

A). Given a PAG or a MAG P over V, and A ⊆ C ⊆ V. Let the region of
A with respect to C, denotedRC

A, be the union of the buckets that contain nodes in the pc-component
of A in the induced subgraph PC.
Proposition 3. Given a PAG P over V and set C ⊆ V, Q[C] can be decomposed as follows.

Q[C] =
Q[RA].Q[RC\RA

]

Q[RA ∩RC\RA
]

where A ⊂ C andR(.) = RC
(.).
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Figure 2: Sample PAGs with identifiable conditional causal effects.

Propositions 2 and 3 are utilized in Algorithm 1 which is sound and complete for identifying
unconditional causal effects given a PAG (Jaber et al., 2019a).

4 Conditional Causal Effects

We formalize the notion of identifiability from a PAG using the following definition, which generalizes
the causal-diagram-specific notion (Tian, 2004).

Definition 4 (Causal-Effect Identifiability). The causal effect of a set of variables X on a disjoint set
of variables Y conditioned on another set Z is said to be identifiable from a PAG P if the quantity
Px(y|z) can be computed uniquely from the observational distribution P (V) given every causal
diagram D (represented by a MAG) in the Markov equivalence class represented by P .

Given a PAG P and a conditional causal effect Px(y|z), we can rewrite the quantity as follows.
Hence, if Px(y, z) is identifiable, then Px(y|z) is identifiable as well.

Px(y|z) =
Px(y, z)∑
y Px(y, z)

For example, Pz1(y, z2) is identifiable in the PAG of Figure 2c with the following (simplified)
expression via Algorithm 1. Hence, both Pz1(y|z2) and Pz1(z2|y) are identifiable.

Pz1(y, z2) = Q[Y,Z2] = P (y|z1, z2)P (z2)

However, not all identifiable conditional effects can be identified this way. Consider the PAG in Fig. 2d
and the conditional effect Px(y|z1, z2). Whereas Px(y, z1, z2) is not identifiable by Algorithm 1 and
hence the conditional effect is not identifiable simpliciter, Px(y|z1, z2) turns out to be identifiable
as we show later. Therefore, Algorithm 1, though complete for identifying unconditional effects, is
unable to compute many identifiable conditional effects.

To do better, we start by generalizing the notion of Q[·] to accommodate conditioning.

Definition 5. For any pair of disjoint sets C,Z ⊆ V, we define the quantity Q[C|Z], given below, to
be the post-intervention distribution of C conditional on Z under an intervention on V \ (C ∪ Z).

Q[C|Z] = Q[C ∪ Z]∑
c Q[C ∪ Z]

In what follows, we utilize Definition 5 to derive an algorithm for conditional causal effect identifi-
cation. The following proposition shows a way to rewrite a given conditional effect in terms of the
notion in Definition 5.2

Proposition 4. Given distribution P (V), causal PAG P over V, and target effect Px(y|z) where
X,Y,Z are disjoint subsets of V, we have the following.

Px(y|z) =
∑
d\y

Q[D|Z] (3)

where D = An(Y ∪ Z)PV\X \ Z.

2The proofs can be found in (Jaber et al., 2019b).
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Algorithm 2 Recursive routine to decompose Q[T|Z].
1: function DECOMPOSE(P , T, Z)
2: if T = ∅ then return ∅

/* In PT∪Z, let C(·) denote the pc-component of (·) in PT∪Z. */
3: Initialize X to an arbitrary node in T

4: Let A = Pa∗(CX) ∩ Pa∗(CT∪Z\CX

)
5: while A 6⊆ Z do
6: X = X ∪ Ch∗(A ∩T)

7: A = Pa∗(CX) ∩ Pa∗(CT∪Z\CX

)

/* Let T1 = CX ∩T and T2 = T \T1 */
8: return 〈T1,RX \T1〉 ∪ DECOMPOSE(P,T2,RT∪Z\CX \T2)

For example, given the PAG in Figure 2d and query Px(y|z1, z2), we can rewrite the conditional
causal effect as

∑
w Q[Y,W |Z1, Z2].

The following fact plays a crucial role in the derivation of our algorithm.
Lemma 1. Given a PAG P over V and any causal diagram D in the equivalence class represented
by P , suppose X ⊂ A ⊆ V, and let SX and CX denote the c-component and pc-component of X in
DA and PA, respectively. Then, for every Y ∈ A, if Y ∈ Pa(SX) in DA, then Y ∈ Pa∗(CX) in PA,
where Pa∗(·) is (the union of the input set and) the set of possible parents due to directed or partially
directed edges (→ , ◦→).

In words, given a PAG P and any diagram D in the equivalence class, if a node Y is a parent of the
c-component of X inDA, then Y must be either in the pc-component of X in PA or a possible parent
of the pc-component by a non-circle edge. For example, given the PAG in Figure 2a, CX = {X,Z}
and Y 6∈ Pa∗(CX), hence Y 6∈ Pa(SX) in any causal diagram in the equivalence class. It is easy
to see why in this simple example. First, X is not in the pc-component of Y so they are not in the
same c-component in any causal diagram, by Proposition 1. If X and Z are in the same c-component
in some diagram D and Y is a parent of Z, then we have an (unshielded) collider at Z in D, which
would contradict the given PAG. This observation generalizes to more complex cases. Note that the
property does not necessarily hold if the input to Pa(·) and Pa∗(·) are arbitrary subsets of V rather
than a c-component and a pc-component.

Next, we derive a sufficient condition for decomposing Q[T|Z] into two sub-queries.
Proposition 5. Given a PAG P over V and Q[T|Z], let X ⊂ T ∪ Z. The following decomposition
holds if Pa∗(CX) ∩ Pa∗(CT∪Z\CX

) ⊆ Z, where C(·) is the set of nodes in the pc-component of (·)
in PT∪Z,R(·) is with respect to T ∪ Z, T1 = CX ∩T, and T2 = T \T1.

Q[T|Z] = Q[T1|RX \T1] ·Q[T2|RT∪Z\CX \T2]

For example, given Q[Y,W |Z1, Z2] and the PAG in Figure 2d, CY = {Y,Z2}, Pa∗(CY ) =
{Y,Z2, Z1}, and Pa∗(C{W,Z1}) = {W,Z1, Z2}. Hence, Pa∗(CY ) ∩ Pa∗(C{W,Z1}) = {Z1, Z2}
and the condition of Prop. 5 is satisfied. So, we have the following decomposition.

Q[Y,W |Z1, Z2] = Q[Y |Z2,W ] ·Q[W |Z1, Z2] (4)

It is important to note that the condition is based on the pc-component of X ⊂ T ∪ Z while the Q[·]
decomposition uses the region of X (Def. 3). The decomposition would still be valid by using the
pc-component instead of the region, but using the region has the advantage of keeping together nodes
in the same bucket (i.e., nodes that share circle edges). For instance, using the region allows us to
keep W and Z2 together in each sub-query. This will be useful in the final algorithm.

Algorithm 2 decomposes Q[T|Z] into a product of sub-queries by applying Prop. 5 recursively.
In each iteration, the routine finds a subset X that satisfies the criterion in the proposition (cf.
line 5). The first line checks for a base case where T = ∅. For example, given Q[Y |Z1, Z2]
and the PAG in Figure 2c, the function assigns X to {Y }. Since Pa∗(CX) = {Y,Z2, Z1} and
Pa∗(CZ1) = {Z1, Z2}, their intersection satisfies the criterion. Hence, Q[Y |Z1, Z2] = Q[Y |Z2]×
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Algorithm 3 CIDP(x,y, z) given PAG P
Input: three disjoint sets X,Y,Z ⊂ V
Output: Expression for Px(y|z) or FAIL

1: Let D = An(Y ∪ Z)PV\X \ Z
2: Px(y|z) =

∑
d\y Q[D|Z] . Expand query via Prop. 4

3: F = DECOMPOSE(P,D,Z) . F is a set of pairs 〈Di,Zi〉
/* At this point, Px(y|z) =

∑
d\y

∏
i Q[Di|Zi] =

∏
i

∑
di\y Q[Di|Zi] */

4: Let F∗ = ∅
5: for each 〈Di,Zi〉 ∈ F do
6: if Di ∩Y 6= ∅ then
7: F∗ = F∗ ∪ DO-SEE(P,Di,Zi)

8: Px(y|z) =
∏
{i|〈Di,Zi〉∈F∗}

∑
di\y

IDENTIFY(Di ∪ Zi,V, P )∑
di

IDENTIFY(Di ∪ Zi,V, P )

9: function DO-SEE(P , T, Z)
/* Let B denote a bucket in P and C(·) denote the pc-component of (·) in PT∪Z∪B */

10: if ∃B | B ∩ (T ∪ Z) 6= ∅ ∧B 6⊆ (T ∪ Z) then
11: if Pa∗(CB\(T∪Z)) ∩T = ∅ then
12: return DO-SEE(P,T,Z ∪B \T)
13: else
14: throw FAIL
15: return 〈T,Z〉

Q[∅|Z1, Z2] where Q[∅|Z1, Z2] = 1 by definition. The base case accounts for the recursive call
DECOMPOSE(P, ∅, {Z1, Z2}) which yields Q[∅|Z1, Z2] = 1. In general, this step simplifies a target
Q[·] and facilitates its computation.

To derive our identification algorithm, we use one more trick. Lemma 2 below provides a sufficient
criterion where given Q[T|Z] and a causal diagram D, we can move a subset X from the intervention
set V \ (T ∪ Z) to the conditioning set.
Lemma 2. Given causal diagram D and Q[T|Z], let X ⊆ V \ (T ∪ Z) and let SX denote the
c-component of X in DT∪Z∪X. If Pa(SX) ∩T = ∅, then Q[T|Z] = Q[T|Z ∪X].

The following proposition generalizes the result in Lemma 2 to PAGs using the property in Lemma 1.
Proposition 6. Given PAG P and Q[T|Z], let X ⊆ V\(T∪Z) and let CX denote the pc-component
of X in PT∪Z∪X. If Pa∗(CX) ∩T = ∅, then Q[T|Z] = Q[T|Z ∪X].

Proof. Let D be any diagram in the equivalence class represented by P . By Lemma 1, if Pa∗(CX)∩
T = ∅ in PT∪Z∪X, then Pa(SX) ∩T = ∅ in DT∪Z∪X. Hence, the proposition follows by Lemma 2
since the equation is valid for all the diagrams in the equivalence class.

For example, given Q[Y |Z] and the PAG in Figure 2a, Pa∗(CX)∩ {Y } = Pa∗({X,Z})∩ {Y } = ∅,
hence Q[Y |Z] = Q[Y |Z,X]. Similarly, given the PAG in Fig. 2b, Q[Y |Z,W ] = Q[Y |Z,W,X].

Finally, we use the above results to construct Algorithm 3 which identifies conditional causal effects.
The algorithm is sound by Theorem 1. It starts by computing set D then expanding the query
accordingly in lines 1-2. Then, CIDP calls Alg. 2 which decomposes Q[D|Z] to sub-queries as the
comment below line 3 elaborates. Lines 4-7 achieve two things. First, we drop every unnecessary
query Q[Di|Zi] where Di ∩Y = ∅ since

∑
di

Q[Di|Zi] = 1. For each remaining query Q[Di|Zi],
function DO-SEE(·, ·, ·) searches recursively for a bucket B in P such that a strict subset of B is
in Di ∪ Zi, and then tries to apply Prop. 6 to obtain Q[Di|Zi ∪B \Di]. Finally, in line 8, we try
to compute the target conditional effect by computing each Q[Di|Zi] =

Q[Di∪Zi]∑
di

Q[Di∪Zi]
and calling

IDENTIFY(Di ∪Zi,V,P) from Alg. 1. CIDP does not identify the target effect if either DO-SEE(·)
or IDENTIFY(·) throws a FAIL.
Theorem 1. CIDP (Algorithm 3) is sound.
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Proof Sketch. Line 2 follows from Proposition 4. Function DECOMPOSE(·, ·, ·) is sound by Proposi-
tion 5. The second equivalence in the comment after line 3 is justified by the proof of Prop. 5. Line
6 drops from F∗ every Q[Di|Zi] where Y ∩Di = ∅ since

∑
di

Q[Di|Zi] = 1. The soundness of
DO-SEE(·, ·, ·) follows from Proposition 6. Finally, line 8 is sound by Definition 5 and the correctness
of IDENTIFY(·, ·, ·) in (Jaber et al., 2019a).

4.1 Illustrative Example

Consider the effect Px(y|z1, z2) and the PAG in Figure 2d. We have the following from Eq. 4 and
Lines 4-7 of the algorithm. Since {Y }, {Z2,W} are buckets in the PAG, DO-SEE(·) does nothing.

Px(y|z1, z2) =
∑
w

Q[Y,W |Z1, Z2] = Q[Y |Z2,W ] ·
∑
w

Q[W |Z1, Z2] = Q[Y |Z2,W ]

Then, we call IDENTIFY({Y,Z2,W},V, P ) to compute Q[{Y, Z2,W}] from P (V). Node Z1 is
not in the same pc-component with its only child Y in P . Hence, Q[{Y,Z2,W,X}] is identifiable
from P (V) by Proposition 2 using the order X < {W,Z2} < Z1 < Y .

Q[{Y,Z2,W,X}] = P (v)

P (z1|x,w, z2)
×

∑
z′1

P (z′1|x,w, z2) = P (x,w, z2) · P (y|x,w, z2, z1) (5)

Next, X does not have any possible children in PV\{Z1}, hence Q[{Y, Z2,W}] is identifiable from
Q[{Y, Z2,W,X}] (Eq. 5) using the partial order X < {W,Z2} < Y . The last equivalence is a
simplification obtained by considering the independence relation (X ⊥⊥ {W,Z2}).

Q[{Y, Z2,W}] =
Pz1

Pz1(x)
×
∑
x′

Pz1(x
′) =

P (x,w, z2)P (y|x,w, z2, z1)
P (x)

= P (w, z2)P (y|w, z2, z1)

Finally, the conditional effect simplifies as follows.

Px(y|z1, z2) =
Q[{Y,Z2,W}]∑
y Q[{Y,Z2,W}]

=
P (w, z2) · P (y|w, z2, z1)∑
y P (w, z2) · P (y|w, z2, z1)

= P (y|z2, z1)

4.2 Expressiveness

Theorem 2 below establishes that CIDP subsumes IDP. Conversely, IDP cannot compute some
conditional effects that are identifiable by CIDP, such as the cases depicted in Fig. 2, because the
corresponding joint effects are not identifiable. Hence, CIDP is strictly more powerful than IDP.
Theorem 2. CIDP (Alg. 3) subsumes IDP (Alg. 1) − if CIDP fails to identify Px(y), IDP fails too.

Proof. Suppose Z = ∅. The query expansion reduces to that in Alg. 1. Alg. 2 will decompose Q[D]
only if the subsets are disjoint in PD since any adjacency implies the condition of Proposition 5
would fail. Such a decomposition is valid for IDP using Prop. 3 where the denominator set would be
empty. Whenever set B in DO-SEE(·) exists (line 10), the function fails. We then have B ∩X 6= ∅
and there exists a potentially causal path from X to Y that starts with an invisible edge. Hence, Px(y)
is not identifiable by (Jaber et al., 2019a, Th. 3), and consequently IDP fails. Finally, CIDP fails if a
call to IDENTIFY(·) fails. It follows that IDP would fail as well which concludes the proof.

5 Conclusion

The problem of identifying conditional causal effects is of great interest due to its role in evaluating
conditional plans or policies (Pearl and Robins, 1995). We have investigated a challenging version of
this problem where in addition to the observational distribution, the available causal information is
not a fully specified causal diagram, but a PAG which represents a Markov equivalence class of causal
diagrams and which can be inferred from the observational distribution. We develop an algorithm
to compute the effect of an arbitrary set of intervention variables X on an arbitrary outcome set Y
while conditioning on a third disjoint set Z, denoted Px(y|z). We show that the proposed algorithm
subsumes the state-of-the-art algorithm in (Jaber et al., 2019a), which is complete for unconditional
effects. Moreover, CIDP identifies all the examples in the literature that we are aware of, including
the one in Fig. 2b which is not identifiable by the generalized do-calculus (Zhang, 2008a). Based on
these observations, we conjecture that our algorithm is complete.
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