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Abstract

The estimation of an f -divergence between two probability distributions based on
samples is a fundamental problem in statistics and machine learning. Most works
study this problem under very weak assumptions, in which case it is provably hard.
We consider the case of stronger structural assumptions that are commonly satisfied
in modern machine learning, including representation learning and generative
modelling with autoencoder architectures. Under these assumptions we propose and
study an estimator that can be easily implemented, works well in high dimensions,
and enjoys faster rates of convergence. We verify the behavior of our estimator
empirically in both synthetic and real-data experiments, and discuss its direct
implications for total correlation, entropy, and mutual information estimation.

1 Introduction and related literature

The estimation and minimization of divergences between probability distributions based on sam-
ples are fundamental problems of machine learning. For example, maximum likelihood learning
can be viewed as minimizing the Kullback-Leibler divergence KL(PdatakPmodel) with respect to
the model parameters. More generally, generative modelling—most famously Variational Autoen-
coders and Generative Adversarial Networks [21, 12]—can be viewed as minimizing a divergence
D(PdatakPmodel) where Pmodel may be intractable. In variational inference, an intractable posterior
p(z|x) is approximated with a tractable distribution q(z) chosen to minimize KL

�
q(z)kp(z|x)

�
. The

mutual information between two variables I(X,Y ), core to information theory and Bayesian machine
learning, is equivalent to KL(PX,Y kPXPY ). Independence testing often involves estimating a diver-
gence D(PX,Y kPXPY ), while two-sample testing (does P = Q?) involves estimating a divergence
D(PkQ). Additionally, one approach to domain adaptation, in which a classifier is learned on a
distribution P but tested on a distinct distribution Q, involves learning a feature map � such that a
divergence D (�#Pk�#Q) is minimized, where �# represents the push-forward operation [3, 11].

In this work we consider the well-known family of f -divergences [7, 24] that includes amongst others
the KL, Jensen-Shannon (JS), �2, and ↵-divergences as well as the Total Variation (TV) and squared
Hellinger (H2) distances, the latter two of which play an important role in the statistics literature [2].
A significant body of work exists studying the estimation of the f -divergence Df (QkP ) between
general probability distributions Q and P . While the majority of this focuses on ↵-divergences and
closely related Rényi-↵ divergences [35, 37, 22], many works address specifically the KL-divergence
[34, 39] with fewer considering f -divergences in full generality [28, 20, 26, 27]. Although the
KL-divergence is the most frequently encountered f -divergence in the machine learning literature,
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in recent years there has been a growing interest in other f -divergences [30], in particular in the
variational inference community where they have been employed to derive alternative evidence lower
bounds [5, 23, 9].

The main challenge in computing Df (QkP ) is that it requires knowledge of either the densities
of both Q and P , or the density ratio dQ/dP . In studying this problem, assumptions of differing
strength can be made about P and Q. In the weakest agnostic setting, we may be given only a finite
number of i.i.d samples from the distributions without any further knowledge about their densities.
As an example of stronger assumptions, both distributions may be mixtures of Gaussians [17, 10], or
we may have access to samples from Q and have full knowledge of P [15, 16] as in e.g. model fitting.

Most of the literature on f -divergence estimation considers the weaker agnostic setting. The lack of
assumptions makes such work widely applicable, but comes at the cost of needing to work around
estimation of either the densities of P and Q [37, 22] or the density ratio dQ/dP [28, 20] from
samples. Both of these estimation problems are provably hard [2, 28] and suffer rates—the speed
at which the error of an estimator decays as a function of the number of samples N—of order
N�1/d when P and Q are defined over Rd unless their densities are sufficiently smooth. This is a
manifestation of the curse of dimensionality and rates of this type are often called nonparametric. One
could hope to estimate Df (PkQ) without explicitly estimating the densities or their ratio and thus
avoid suffering nonparametric rates, however a lower bound of the same order N�1/d was recently
proved for ↵-divergences [22], a sub-family of f -divergences. While some works considering the
agnostic setting provide rates for the bias and variance of the proposed estimator [28, 22] or even
exponential tail bounds [37], it is more common to only show that the estimators are asymptotically
unbiased or consistent without proving specific rates of convergence [39, 35, 20].

Motivated by recent advances in machine learning, we study a setting in which much stronger
structural assumptions are made about the distributions. Let X and Z be two finite dimensional
Euclidean spaces. We estimate the divergence Df (QZkPZ) between two probability distributions
PZ and QZ , both defined over Z . PZ has known density p(z), while QZ with density q(z) admits the
factorization q(z) :=

R
X q(z|x)q(x)dx where access to independent samples from the distribution

QX with unknown density q(x) and full knowledge of the conditional distribution QZ|X with density
q(z|x) are assumed. In most cases QZ is intractable due to the integral and so is Df (QZkPZ). As
a concrete example, these assumptions are often satisfied in applications of modern unsupervised
generative modeling with deep autoencoder architectures, where X and Z would be data and latent
spaces, PZ the prior, QX the data distribution, QZ|X the encoder, and QZ the aggregate posterior.

Given independent observations X1, . . . , XN from QX , the finite mixture Q̂N

Z
:=

1
N

P
N

i=1 QZ|Xi

can be used to approximate the continuous mixture QZ . Our main contribution is to approximate
the intractable Df (QZkPZ) with Df (Q̂N

Z
kPZ), a quantity that can be estimated to arbitrary precision

using Monte-Carlo sampling since both distributions have known densities, and to theoretically study
conditions under which this approximation is reasonable. We call Df (Q̂N

Z
kPZ) the Random Mixture

(RAM) estimator and derive rates at which it converges to Df (QZkPZ) as N grows. We also
provide similar guarantees for RAM-MC—a practical Monte-Carlo based version of RAM. By
side-stepping the need to perform density estimation, we obtain parametric rates of order N�� ,
where � is independent of the dimension (see Tables 1 and 2), although the constants may still in
general show exponential dependence on dimension. This is in contrast to the agnostic setting where
both nonparametric rates and constants are exponential in dimension.

Our results have immediate implications to existing literature. For the particular case of the KL

divergence, a similar approach has been heuristically applied independently by several authors for
estimating the mutual information [36] and total correlation [6]. Our results provide strong theoretical
grounding for these existing methods by showing sufficient conditions for their consistency.

A final piece of related work is [4], which proposes to reduce the gap introduced by Jensen’s
inequality in the derivation of the classical evidence lower bound (ELBO) by using multiple Monte-
Carlo samples from the approximate posterior QZ|X . This is similar in flavour to our approach, but
fundamentally different since we use multiple samples from the data distribution to reduce a different
Jensen gap. To avoid confusion, we note that replacing the “regularizer” term EX [KL(QZ|XkPZ)] of
the classical ELBO with expectation of our estimator EXN [KL(Q̂N

Z
kPZ)] results in an upper bound

of the classical ELBO (see Proposition 1) but is itself not in general an evidence lower bound:

EX

h
EQZ|X log p(X|Z)�KL(QZ|XkPZ)

i
 EX

h
EQZ|X log p(X|Z)

i
� EXN

h
KL(Q̂N

Z
kPZ)

i
.
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The remainder of the paper is structured as follows. In Section 2 we introduce the RAM and RAM-
MC estimators and present our main theoretical results, including rates of convergence for the bias
(Theorems 1 and 2) and tail bounds (Theorems 3 and 4). In Section 3 we validate our results in both
synthetic and real-data experiments. In Section 4 we discuss further applications of our results. We
conclude in Section 5.

2 Random mixture estimator and convergence results

In this section we introduce our f -divergence estimator, and present theoretical guarantees for it. We
assume the existence of probability distributions PZ and QZ defined over Z with known density p(z)
and intractable density q(z) =

R
q(z|x)q(x)dx respectively, where QZ|X is known. QX defined over

X is unknown, however we have an i.i.d. sample XN
= {X1, . . . , XN} from it. Our ultimate goal is

to estimate the intractable f -divergence Df (QZkPZ) defined by:
Definition 1 (f -divergence). Let f be a convex function on (0,1) with f(1) = 0. The f -divergence
Df between distributions QZ and PZ admitting densities q(z) and p(z) respectively is

Df (QZkPZ) :=

Z
f

✓
q(z)

p(z)

◆
p(z)dz.

Many commonly used divergences such as Kullback–Leibler and �2 are f -divergences. All the
divergences considered in this paper together with their corresponding f can be found in Appendix A.
Of them, possibly the least well-known in the machine learning literature are f�-divergences [32].
These symmetric divergences are continuously parameterized by � 2 (0,1]. Special cases include
squared-Hellinger (H2) for � =

1
2 , Jensen-Shannon (JS) for � = 1, Total Variation (TV) for � = 1.

In our setting QZ is intractable and so is Df (QZkPZ). Substituting QZ with a sample-based finite
mixture Q̂N

Z
:=

1
N

P
N

i=1 QZ|Xi
leads to our proposed Random Mixture estimator (RAM):

Df

�
Q̂N

Z
kPZ

�
:= Df

⇣
1
N

P
N

i=1 QZ|Xi

��PZ

⌘
. (1)

Although Q̂N

Z
is a function of XN we omit this dependence in notation for brevity. In this section we

identify sufficient conditions under which Df (Q̂N

Z
kPZ) is a “good” estimator of Df (QZkPZ). More

formally, we establish conditions under which the estimator is asymptotically unbiased, concentrates
to its expected value and can be practically estimated using Monte-Carlo sampling.

2.1 Convergence rates for the bias of RAM

The following proposition shows that Df (Q̂N

Z
kPZ) upper bounds Df (QZkPZ) in expectation for

any finite N , and that the upper bound becomes tighter with increasing N :
Proposition 1. Let M  N be integers. Then

Df (QZkPZ)  EXN

⇥
Df (Q̂

N

Z
kPZ)

⇤
 EXM

⇥
Df (Q̂

M

Z
kPZ)

⇤
. (2)

Proof sketch (full proof in Appendix B.1). The first inequality follows from Jensen’s inequality, using
the facts that f is convex and QZ = EXN [Q̂N

Z
]. The second holds since a sample XM can be drawn

by sub-sampling (without replacement) M entries of XN , and by applying Jensen again.

As a function of N , the expectation is a decreasing sequence that is bounded below. By the monotone
convergence theorem, the sequence converges. Theorems 1 and 2 in this section give sufficient
conditions under which the expectation of RAM converges to Df (QZkPZ) as N ! 1 for a variety
of f and provide rates at which this happens, summarized in Table 1. The two theorems are proved
using different techniques and assumptions. These assumptions, along with those of existing methods
(see Table 3) are discussed at the end of this section.
Theorem 1 (Rates of the bias). If EX⇠QX

⇥
�2

�
QZ|X , QZ

�⇤
and KL (QZkPZ) are finite then the

bias EXN

⇥
Df (Q̂N

Z
kPZ)

⇤
�Df (QZkPZ) decays with rate as given in the first row of Table 1.

Proof sketch (full proof in Appendix B.2). There are two key steps to the proof. The first is to bound
the bias by EXN

⇥
Df (Q̂N

Z
, QZ)

⇤
. For the KL this is an equality. For Df� this holds because for

3



Table 1: Rate of bias EXN Df

�
Q̂N

Z
kPZ

�
�Df (QZkPZ).

f -divergence KL TV �2 H2 JS Df� Df↵
1
2<�<1 1<�<1 �1<↵<1

Theorem 1 N
�1

N
� 1

2 - N
� 1

2 N
� 1

4 N
� 1

4 N
� 1

4 -
Theorem 2 N

� 1
3 logN N

� 1
2 N

�1
N

� 1
5 N

� 1
3 logN N

� 1
3 N

� 1
2 N

�↵+1
↵+5

Table 2: Rate  (N) of high probability bounds for Df

�
Q̂N

Z
kPZ

�
(Theorem 3).

f -divergence KL TV �2 H2 JS Df� Df↵
1
2<�<1 1<�<1 1

3<↵<1

 (N) N
� 1

6 logN N
� 1

2 N
� 1

2 - N
� 1

6 logN N
� 1

6 N
� 1

2 N

1�3↵
↵+5

��1/2 it is a Hilbertian metric and its square root satisfies the triangle inequality [14]. The second
step is to bound EXN

⇥
Df (Q̂N

Z
, QZ)

⇤
in terms of EXN

⇥
�2

(Q̂N

Z
, QZ)

⇤
, which is the variance of the

average of N i.i.d. random variables and therefore decomposes as EX⇠QX

⇥
�2

(QZ|X , QZ)
⇤
/N .

Theorem 2 (Rates of the bias). If EX⇠QX ,Z⇠PZ

⇥
q4(Z|X)/p4(Z)

⇤
is finite then the bias

EXN

⇥
Df (Q̂N

Z
kPZ)

⇤
�Df (QZkPZ) decays with rate as given in the second row of Table 1.

Proof sketch (full proof in Appendix B.4). Denoting by q̂N (z) the density of Q̂N

Z
, the proof is based

on the inequality f
�
q̂N (z)/p(z)

�
� f

�
q(z)/p(z)

�
 q̂N (z)�q(z)

p(z) f 0�q̂N (z)/p(z)
�

due to convexity
of f , applied to the bias. The integral of this inequality is bounded by controlling f 0, requiring subtle
treatment when f 0 diverges when the density ratio q̂N (z)/p(z) approaches zero.

2.2 Tail bounds for RAM and practical estimation with RAM-MC

Theorems 1 and 2 describe the convergence of the expectation of RAM over XN , which in practice
may be intractable. Fortunately, the following shows that RAM rapidly concentrates to its expectation.
Theorem 3 (Tail bounds for RAM). Suppose that �2

�
QZ|xkPZ

�
 C < 1 for all x and for some

constant C. Then, the RAM estimator Df (Q̂N

Z
kPZ) concentrates to its mean in the following sense.

For N > 8 and for any � > 0, with probability at least 1� � it holds that
���Df (Q̂

N

Z
kPZ)� EXN

⇥
Df (Q̂

N

Z
kPZ)

⇤���  K ·  (N)

p
log(2/�),

where K is a constant and  (N) is given in Table 2.

Proof sketch (full proof in Appendix B.5). These results follow by applying McDiarmid’s inequality.
To apply it we need to show that RAM viewed as a function of XN has bounded differences.
We show that when replacing Xi 2 XN with X 0

i
the value of Df (Q̂N

Z
kPZ) changes by at most

O(N�1/2 (N)). Proof of this proceeds similarly to the one of Theorem 2.

In practice it may not be possible to evaluate Df (Q̂N

Z
kPZ) analytically. We propose to use Monte-

Carlo (MC) estimation since both densities q̂N (z) and p(z) are assumed to be known. We consider
importance sampling with proposal distribution ⇡(z|XN

), highlighting the fact that ⇡ can depend
on the sample XN . If ⇡(z|XN

) = p(z) this reduces to normal MC sampling. We arrive at the
RAM-MC estimator based on M i.i.d. samples ZM

:= {Z1, . . . , ZM} from ⇡(z|XN
):

D̂M

f
(Q̂N

Z
kPZ) :=

1

M

MX

m=1

f

✓
q̂N (Zm)

p(Zm)

◆
p(Zm)

⇡ (Zm|XN )
. (3)
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Table 3: Rate of bias for other estimators of Df (P,Q).

f -divergence KL TV �2 H2 JS Df� Df↵
1
2<�<1 1<�<1 �1<↵<1

Krishnamurthy et al. [22] - - - - - - - N
� 1

2 +N

�3s
2s+d

Nguyen et al. [28] N
� 1

2 - - - - - - -
Moon and Hero [26] N

� 1
2 - N

� 1
2 N

� 1
2 N

� 1
2 N

� 1
2 N

� 1
2 N

� 1
2

Theorem 4 (RAM-MC is unbiased and consistent). E
⇥
D̂M

f
(Q̂N

Z
kPZ)

⇤
= E

⇥
Df (Q̂N

Z
kPZ)

⇤
for any

proposal distribution ⇡. If ⇡(z|XN
) = p(z) or ⇡(z|XN

) = q̂N (z) then under mild assumptions? on
the moments of q(Z|X)/p(Z) and denoting by  (N) the rate given in Table 2, we have

VarXN ,ZM

⇥
D̂M

f
(Q̂N

Z
kPZ)

⇤
= O

�
M�1

�
+O

�
 (N)

2
�
.

Proof sketch (?full statement and proof in Appendix B.6). By the law of total variance,

VarXN ,ZM

⇥
D̂M

f

⇤
= EXN

⇥
Var

⇥
D̂M

f
|XN

⇤⇤
+ VarXN

⇥
Df (Q̂

N

Z
kPZ)

⇤
.

The first of these terms is O(M�1
) by standard results on MC integration, subject to the assumptions

on the moments. Using the fact that Var[Y ] =
R1
0 P(|Y � EY | >

p
t)dt for any random variable Y

we bound the second term by integrating the exponential tail bound of Theorem 3.

Through use of the Efron-Stein inequality—rather than integrating the tail bound provided by
McDiarmid’s inequality—it is possible for some choices of f to weaken the assumptions under which
the O( (N)

2
) variance is achieved: from uniform boundedness of �2

(QZ|XkPZ) to boundedness in
expectation. In general, a variance better than O(M�1

) is not possible using importance sampling.
However, the constant and hence practical performance may vary significantly depending on the
choice of ⇡. We note in passing that through Chebyshev’s inequality, it is possible to derive confidence
bounds for RAM-MC of the form similar to Theorem 3, but with an additional dependence on M and
worse dependence on �. For brevity we omit this.

2.3 Discussion: assumptions and summary

All the rates in this section are independent of the dimension of the space Z over which the dis-
tributions are defined. However the constants may exhibit some dependence on the dimension.
Accordingly, for fixed N , the bias and variance may generally grow with the dimension.

Although the data distribution QX will generally be unknown, in some practical scenarios such as
deep autoencoder models, PZ may be chosen by design and QZ|X learned subject to architectural
constraints. In such cases, the assumptions of Theorems 2 and 3 can be satisfied by making suitable
restrictions (we conjecture also for Theorem 1). For example, suppose that PZ is N (0, Id) and QZ|X
is N (µ(X),⌃(X)) with ⌃ diagonal. Then the assumptions hold if there exist constants K, ✏ > 0

such that kµ(X)k < K and ⌃ii(X) 2 [✏, 1] for all i (see Appendix B.7). In practice, numerical
stability often requires the diagonal entries of ⌃ to be lower bounded by a small number (e.g. 10�6).
If X is compact (as for images) then such a K is guaranteed to exist; if not, choosing K very large
yields an insignificant constraint.

Table 3 summarizes the rates of bias for some existing methods. In contrast to our proposal, the
assumptions of these estimators may in practice be difficult to verify. For the estimator of [22], both
densities p and q must belong to the Hölder class of smoothness s, be supported on [0, 1]d and satisfy
0 < ⌘1 < p, q < ⌘2 < 1 on the support for known constants ⌘1, ⌘2. For that of [28], the density
ratio p/q must satisfy 0 < ⌘1 < p/q < ⌘2 < 1 and belong to a function class G whose bracketing
entropy (a measure of the complexity of a function class) is properly bounded. The condition on the
bracketing entropy is quite strong and ensures that the density ratio is well behaved. For the estimator
of [26], both p and q must have the same bounded support and satisfy 0 < ⌘1 < p, q < ⌘2 < 1 on
the support. p and q must have continuous bounded derivatives of order d (which is stronger than
assumptions of [22]), and f must have derivatives of order at least d.
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In summary, the RAM estimator Df (Q̂N

Z
kPZ) for Df (QZkPZ) is consistent since it concentrates

to its expectation EXN

⇥
Df (Q̂N

Z
kPZ)

⇤
, which in turn converges to Df (QZkPZ). It is also practical

because it can be efficiently estimated with Monte-Carlo sampling via RAM-MC.

3 Empirical evaluation

In the previous section we showed that our proposed estimator has a number of desirable theoretical
properties. Next we demonstrate its practical performance. First, we present a synthetic experiment
investigating the behaviour of RAM-MC in controlled settings where all distributions and divergences
are known. Second, we investigate the use of RAM-MC in a more realistic setting to estimate a
divergence between the aggregate posterior QZ and prior PZ in pretrained autoencoder models. For
experimental details not included in the main text, see Appendix C2.

3.1 Synthetic experiments

The data model. Our goal in this subsection is to test the behaviour of the RAM-MC estimator
for various d = dim(Z) and f -divergences. We choose a setting in which Q�

Z
parametrized by a

scalar � and PZ are both d-variate normal distributions for d 2 {1, 4, 16}. We use RAM-MC to
estimate Df (Q�

Z
, PZ), which can be computed analytically for the KL, �2, and squared Hellinger

divergences in this setting (see Appendix C.1.1). Namely, we take PZ and QX to be standard normal
distributions over Z = Rd and X = R20 respectively, and Z ⇠ Q�

Z|X be a linear transform of X
plus a fixed isotropic Gaussian noise, with the linear function parameterized by �. By varying � we
can interpolate between different values for Df (Q�

Z
kPZ).

The estimators. In Figure 1 we show the behaviour of RAM-MC with N 2 {1, 500} and M=128

compared to the ground truth as � is varied. The columns of Figure 1 correspond to different
dimensions d2 {1, 4, 16}, and rows to the KL, �2 and H

2 divergences, respectively. We also include
two baseline methods. First, a plug-in method based on kernel density estimation [26]. Second, and
only for the KL case, the M1 method of [28] based on density ratio estimation.

The experiment. To produce each plot, the following was performed 10 times, with the mean
result giving the bold lines and standard deviation giving the error bars. First, N points XN were
drawn from QX . Then M=128 points ZM were drawn from Q̂N

Z
and RAM-MC (3) was evaluated.

For the plug-in estimator, the densities q̂(z) and p̂(z) were estimated by kernel density estimation
with 500 samples from QZ and PZ respectively using the default settings of the Python library
scipy.stats.gaussian_kde. The divergence was then estimated via MC-sampling using 128

samples from QZ and the surrogate densities. The M1 estimator involves solving a convex linear
program in N variables to maximize a lower bound on the true divergence, see [28] for more details.
Although the M1 estimator can in principle be used for arbitrary f -divergences, its implementation
requires hand-crafted derivations that are supplied only for the KL in [28], which are the ones we use.

Discussion. The results of this experiment empirically support Proposition 1 and Theorems 1, 2,
and 4: (i) in expectation, RAM-MC upper bounds the true divergence; (ii) by increasing N from
1 to 500 we clearly decrease both the bias and the variance of RAM-MC. When the dimension d
increases, the bias for fixed N also increases. This is consistent with the theory in that, although the
rates are independent of d, the constants are not. We note that by side-stepping the issue of density
estimation, RAM-MC performs favourably compared to the plug-in and M1 estimators, more so in
higher dimensions (d = 16). In particular, the shape of the RAM-MC curve follows that of the truth
for each divergence, while that of the plug-in estimator does not for larger dimensions. In some cases
the plug-in estimator can even take negative values because of the large variance.

3.2 Real-data experiments

The data model. To investigate the behaviour of RAM-MC in a more realistic setting, we consider
Variational Autoencoders (VAEs) and Wasserstein Autoencoders (WAEs) [21, 38]. Both models
involve learning an encoder Q✓

Z|X with parameter ✓ mapping from high dimensional data to a
lower dimensional latent space and decoder mapping in the reverse direction. A prior distribution

2 A python notebook to reproduce all experiments is available at https://github.com/
google-research/google-research/tree/master/f_divergence_estimation_ram_mc.
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H
2

�2

KL

Figure 1: (Section 3.1) Estimating Df

�
N (µ�,⌃�), N (0, Id)

�
for various f , d, and parameters µ�

and ⌃� indexed by � 2 R. Horizontal axis correspond to � 2 [�2, 2], columns to d 2 {1, 4, 16}
and rows to KL, �2, and H

2 divergences respectively. Blue are true divergences, black and red are
RAM-MC estimators (3) for N 2 {1, 500} respectively, green are M1 estimator of [28] and orange
are plug-in estimates based on Gaussian kernel density estimation [26]. N = 500 and M = 128 in
all the plots if not specified otherwise. Error bars depict one standard deviation over 10 experiments.

PZ is specified, and the optimization objectives of both models are of the form “reconstruction +
distribution matching penalty”. The penalty of the VAE was shown by [19] to be equivalent to
KL(Q✓

Z
kPZ) + I(X,Z) where I(X,Z) is the mutual information of a sample and its encoding.

The WAE penalty is D(Q✓

Z
kPZ) for any divergence D that can practically be estimated. Following

[38], we trained models using the Maximum Mean Discrepency (MMD), a kernel-based distance on
distributions, and a divergence estimated using a GAN-style classifier leading to WAE-MMD and
WAE-GAN respectively [13, 12]. For more information about VAE and WAE, see Appendix C.2.1.

The experiment. We consider models pre-trained on the CelebA dataset [25], and use them to
evaluate the RAM-MC estimator as follows. We take the test dataset as the ground-truth QX , and
embed it into the latent space via the trained encoder. As a result, we obtain a ⇠20k-component
Gaussian mixture for QZ , the empirical aggregate posterior. Since QZ is a finite—not continuous—
mixture, the true Df (QZkPZ) can be estimated using a large number of MC samples (we used 10

4).
Note that this is very costly and involves evaluating 2 · 104 Gaussian densities for each of the 104 MC
points. We repeated this evaluation 10 times and report means and standard deviations. RAM-MC is
evaluated using N 2 {20, 21, . . . , 214} and M 2 {10, 103}. For each combination (N,M), RAM-
MC was computed 50 times with the means plotted as bold lines and standard deviations as error
bars. In Figure 2 we show the result of performing this for the KL divergence on six different models.
For each dimension d 2 {32, 64, 128}, we chose two models from the classes (VAE, WAE-MMD,
WAE-GAN). See Appendix C.2 for further details and similar plots for the H2-divergence.

Discussion. The results are encouraging. In all cases RAM-MC achieves a reasonable accuracy
with N relatively small, even for the bottom right model where the true KL divergence (⇡ 1910)
is very big. We see evidence supporting Theorem 4, which says that the variance of RAM-MC is
mostly determined by the smaller of  (N) and M : when N is small, the variance of RAM-MC does
not change significantly with M , however when N is large, increasing M significantly reduces the
variance. Also we found there to be two general modes of behaviour of RAM-MC across the six
trained models we considered. In the bottom row of Figure 2 we see that the decrease in bias with
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Figure 2: (Section 3.2) Estimates of KL(Q✓

Z
kPZ) for pretrained autoencoder models with RAM-MC

as a function of N for M=10 (green) and M=1000 (red) compared to an accurate MC estimate of
the ground truth (blue). Lines and error bars represent means and standard deviations over 50 trials.

N is very obvious, supporting Proposition 1 and Theorems 1 and 2. In contrast, in the top row it is
less obvious, because the comparatively larger variance for M=10 dominates reductions in the bias.
Even in this case, both the bias and variance of RAM-MC with M=1000 become negligible for large
N . Importantly, the behaviour of RAM-MC does not degrade in higher dimensions.

The baseline estimators (plug-in [26] and M1 [28]) perform so poorly that we decided not to include
them in the plots (doing so would distort the y-axis scale). In contrast, even with a relatively modest
N=2

8 and M=1000 samples, RAM-MC behaves reasonably well in all cases.

4 Applications: total correlation, entropy, and mutual information estimates

In this section we describe in detail some direct consequences of our new estimator and its guarantees.
Our theory may also apply to a number of machine learning domains where estimating entropy, total
correlation or mutual information is either the final goal or part of a broader optimization loop.

Total correlation and entropy estimation. The differential entropy, which is defined as H(QZ) =

�
R
Z q(z) log q(z)dz, is often a quantity of interest in machine learning. While this is intractable in

general, straightforward computation shows that for any PZ

H(QZ)� EXNH(Q̂N

Z
) = EXNKL[Q̂N

Z
kPZ ]�KL[QZkPZ ].

Therefore, our results provide sufficient conditions under which H(Q̂N

Z
) converges to H(QZ) and

concentrates to its mean. We now examine some consequences for Variational Autoencoders (VAEs).

Total Correlation is considered by [6], TC(QZ) := KL[QZk
Q

dZ

i=1 QZi ] =
P

dZ

i=1 H(QZi)�H(QZ)

where QZi is the ith marginal of QZ . This is added to the VAE loss function to encourage QZ to be
factorized, resulting in the �-TC-VAE algorithm. By the second equality above, estimation of TC can
be reduced to estimation of H(QZ) (only slight modifications are needed to treat H(QZi)).

Two methods are proposed in [6] for estimating H(QZ), both of which assume a finite dataset of
size D. One of these, named Minibatch Weighted Sample (MWS), coincides with H(Q̂N

Z
) + logD

estimated with a particular form of MC sampling. Our results therefore imply inconsistency of the
MWS method due to the constant logD offset. In the context of [6] this is not actually problematic
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since a constant offset does not affect gradient-based optimization techniques. Interestingly, although
the derivations of [6] suppose a data distribution of finite support, our results show that minor
modifications result in an estimator suitable for both finite and infinite support data distributions.

Mutual information estimation. The mutual information (MI) between variables with joint distri-
bution QZ,X is defined as I(Z,X) := KL [QZ,XkQZQX ] = EX KL

⇥
QZ|XkQZ

⇤
. Several recent

papers have estimated or optimized this quantity in the context of autoencoder architectures, coin-
ciding with our setting [8, 19, 1, 31]. In particular, [36] propose the following estimator based on
replacing QZ with Q̂N

Z
, proving it to be a lower bound on the true MI:

IN
TCPC

(Z,X) = EXN

h
1
N

P
N

i=1 KL[QZ|Xi
kQ̂N

Z
]

i
 I(Z,X).

The gap can be written as I(Z,X)� IN
TCPC

(Z,X) = EXN KL[Q̂N

Z
kPZ ]�KL[QZkPZ ] where PZ

is any distribution. Therefore, our results also provide sufficient conditions under which IN
TCPC

converges and concentrates to the true mutual information.

5 Conclusion

We introduced a practical estimator for the f -divergence Df (QZkPZ) where QZ =
R
QZ|XdQX ,

samples from QX are available, and PZ and QZ|X have known density. The RAM estimator is based
on approximating the true QZ with data samples as a random mixture via Q̂N

Z
=

1
N

P
n
QZ|Xn

. We
denote by RAM-MC the estimator version where Df (Q̂N

Z
kPZ) is estimated with MC sampling. We

proved rates of convergence and concentration for both RAM and RAM-MC, in terms of sample size
N and MC samples M under a variety of choices of f . Synthetic and real-data experiments strongly
support the validity of our proposal in practice, and our theoretical results provide guarantees for
methods previously proposed heuristically in existing literature.

Future work will investigate the use of our proposals for optimization loops, in contrast to pure
estimation. When Q✓

Z|X depends on parameter ✓ and the goal is to minimize Df (Q✓

Z
kPZ) with

respect to ✓, RAM-MC provides a practical surrogate loss that can be minimized using stochastic
gradient methods.

Acknowledgements

Thanks to Alessandro Ialongo, Niki Kilbertus, Luigi Gresele, Giambattista Parascandolo, Mateo
Rojas-Carulla and the rest of Empirical Inference group at the MPI, and Ben Poole, Sylvain Gelly,
Alexander Kolesnikov and the rest of the Brain Team in Zurich for stimulating discussions, support
and advice.

References
[1] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing a

broken ELBO. In ICML, pages 159–168, 2018.

[2] Alexandre B. Tsybakov. Introduction to nonparametric estimation. 2009.

[3] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for
domain adaptation. In Advances in neural information processing systems, pages 137–144, 2007.

[4] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

[5] Liqun Chen, Chenyang Tao, Ruiyi Zhang, Ricardo Henao, and Lawrence Carin Duke. Variational inference
and model selection with generalized evidence bounds. In ICML, 2018.

[6] Tian Qi Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of disentanglement in
variational autoencoders. arXiv preprint arXiv:1802.04942, 2018.

[7] Imre Csiszár, Paul C Shields, et al. Information theory and statistics: A tutorial. Foundations and Trends R�
in Communications and Information Theory, 1(4):417–528, 2004.

[8] Adji B Dieng, Yoon Kim, Alexander M Rush, and David M Blei. Avoiding latent variable collapse with
generative skip models. arXiv preprint arXiv:1807.04863, 2018.

9



[9] Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Variational inference via
� upper bound minimization. In Advances in Neural Information Processing Systems, pages 2732–2741,
2017.

[10] J-L Durrieu, J-Ph Thiran, and Finnian Kelly. Lower and upper bounds for approximation of the kullback-
leibler divergence between gaussian mixture models. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4833–4836. Ieee, 2012.

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The Journal of
Machine Learning Research, 17(1):2096–2030, 2016.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[13] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

[14] M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on probability measures. In
AISTATS, 2005.

[15] A. O. Hero, B. Ma, O. Michel, and J. Gorman. Alpha divergence for classification, indexing and retrieval.
Comm. and Sig. Proc. Lab. (CSPL), Dept. EECS, Univ. Michigan, Ann Arbor, Tech. Rep. 328, 2001.

[16] A. O. Hero, B. Ma, O. J. J. Michel, and J. Gorman. Applications of entropic spanning graphs. IEEE Signal
Processing Magazine, 2002.

[17] John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaussian
mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-
ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, pages 6626–6637, 2017.

[19] Matthew D Hoffman and Matthew J Johnson. ELBO surgery: yet another way to carve up the variational
evidence lower bound. 2016.

[20] T. Kanamori, T. Suzuki, and M. Sugiyama. f-divergence estimation and two-sample homogeneity test
under semiparametric density-ratio models. IEEE Transactions on Information Theory, 58(2), 2012.

[21] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[22] A. Krishnamurthy, A. Kandasamy, B. Póczos, and L. Wasserman. Nonparametric estimation of Rényi
divergence and friends. In ICML, 2014.

[23] Yingzhen Li and Richard E Turner. Rényi divergence variational inference. In Advances in Neural
Information Processing Systems, pages 1073–1081, 2016.

[24] Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information theory. IEEE
Transactions on Information Theory, 52(10):4394–4412, 2006.

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[26] K. Moon and A. Hero. Ensemble estimation of multivariate f-divergence. In 2014 IEEE International
Symposium on Information Theory, pages 356–360, 2014.

[27] K. Moon and A. Hero. Multivariate f-divergence estimation with confidence. In NeurIPS, 2014.

[28] XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence functionals and
the likelihood ratio by convex risk minimization. IEEE Trans. Information Theory, 56(11):5847–5861,
2010.

[29] Frank Nielsen and Richard Nock. On the chi square and higher-order chi distances for approximating
f-divergences. IEEE Signal Process. Lett., 21(1):10–13, 2014.

10



[30] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers
using variational divergence minimization. In Advances in neural information processing systems, pages
271–279, 2016.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

[32] Ferdinand Osterreicher and Igor Vajda. A new class of metric divergences on probability spaces and its
applicability in statistics. Annals of the Institute of Statistical Mathematics, 55(3):639–653, 2003.

[33] Leandro Pardo. Statistical inference based on divergence measures. Chapman and Hall/CRC, 2005.

[34] F. Perez-Cruz. Kullback-leibler divergence estimation of continuous distributions. In IEEE International
Symposium on Information Theory, 2008.

[35] B. Poczos and J. Schneider. On the estimation of alpha-divergences. In AISTATS, 2011.

[36] Ben Poole, Sherjil Ozair, Aäron van den Oord, Alexander A Alemi, and George Tucker. On variational
lower bounds of mutual information. In ICML, 2018.

[37] S. Singh and B. Poczos. Generalized exponential concentration inequality for Rényi divergence estimation.
In ICML, 2014.

[38] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders. In
ICLR, 2018.

[39] Q. Wang, S. R. Kulkarni, and S. Verdú. Divergence estimation for multidimensional densities via k-nearest-
neighbor distances. IEEE Transactions on Information Theory, 55(5), 2009.

11


	Introduction and related literature
	Random mixture estimator and convergence results
	Convergence rates for the bias of RAM
	Tail bounds for RAM and practical estimation with RAM-MC
	Discussion: assumptions and summary

	Empirical evaluation
	Synthetic experiments
	Real-data experiments

	Applications: total correlation, entropy, and mutual information estimates
	Conclusion
	f for divergences considered in this paper
	Proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Upper bounds of f
	Proof of Theorem 2
	Proof of Theorem 3
	Full statement and proof of Theorem 4
	Elaboration of Section 2.3: satisfaction of assumptions of theorems

	Empirical evaluation: further details
	Synthetic experiments
	Analytical expressions for divergences between two Gaussians
	Further experimental details

	Real-data experiments
	Variational Autoencoders (VAEs) and Wasserstein Autoencoders (WAEs)
	Further experimental details
	Additional results for squared Hellinger distance



