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Abstract 

This paper introduce a domain modeling method for multi-
payload planning of experimental satellite based on temporal 
planning paradigm, which may express temporal constraints 
and corresponding handlers in a universal style. This will al-
low user to model planning problem more efficiently, and 
guide planning process throw domain description files. 

 Introduction  

The experimental satellite usually carries multiple pay-

loads including remote sensing, astronomy, scientific exper-

iments to work alternately or at the same time. The payload 

may run on different working modes, and each working 

mode is a sequence of instructions. 

Due to the nature of the experiment, scientists and engi-

neers may have several requirements for the work of the 

payload, which may be summed up as the following aspects: 

• Minimum/maximum duration constraint for single task 

• Minimum/maximum interval constraint between two 
tasks 

• Minimum/maximum interval constraint between two 
command instructions 

• Task prerequisite constraint, that is, a task or an instruc-
tion must be executed before the constraint task 

• Task mutual exclusion constraint, that is, a payload can-
not work on two mode at the same time 

In the process of satellite ground operation, the task con-

straint and its value may be adjusted frequently. Further-

more, if there is a task request that violates some constraint, 

the planner should processed according to the predefined 

conflict resolution method. 

In fact, the formatted description of tasks, constraints, and 

their processing strategies is a domain modeling problem. 

Existing modeling languages such as PDDL and NDDL 

have been able to express such information well. But these 

languages are hard to use in engineering, due to our lack of 

support from domain-dependent planners. 

Therefore, we proposed a general domain modeling 

method, which defined the expressions of tasks, events, con-

straints and conflict resolution strategies based on time in-

terval algebra and time point algebra, and implements multi-

payload task planning and scheduling based on greedy algo-

rithms. This method conforms to the temporal planning par-

adigm described in Figure 1. 
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Figure 1: Temporal planning 

General Domain Modeling 

Domain model contains three parts: resource, task and 

constraint.  

Resource model 

Resource model is a triple: 

• ResourceSet={R|R=(Name, Type, Capacity)} 

The type can be continuous or discrete, specially if the 

type is discrete and the capacity is 1, this resource derive to 

bool type. 

Task model 

The task model defines all the work modes that can be 

carry on by all instruments, and their command sequences. 

It has a hierarchical structure. The root is a payload set: 

• PayloadSet = {Payload | Payload = (Name, Workmode-
Set)} 

Each payload contains a WorkmodeSet which is defines 

as: 

• WorkmodeSet={Workmode|Workmode=(Name, 
EventSet)} 

Each workmode contains a EventSet which is defines as: 

• EventSet={Event|Event=(Name, TimeRef, TimeShift, 
ParaSet, ResourceCostSet)} 

In the definition of the event, the ‘TimeRef’ represents the 

time reference, which can only be T0 and T1 representing 

the start and end of the task respectively. The ‘TimeShift’ 



represents the time offset relative to the time reference. The 

‘ParaSet‘ defines the device parameters to be adjusted for 

this event. The ‘ResourceCostSet’ represents all the re-

source requirement of this event, which is defined as:  

• ResourceCostSet={ResourceCost|ResourceCost=(Name, 
Type , CostValue)} 

Each ‘ResourceCost’ should specify the cost type, and the 

cost value. The type can be ‘ByQuantity’ or ‘ByRatio’ epre-

senting quantitative consumption and constant speed con-

sumption respectively. Correspondingly, the ‘CostValue’ 

represents the amount of resources consumed at a time, or 

the rate at which resources are consumed. 

Constraint model 

The constraint model consists of multiple time constraint. 

A time constraint CT consists of a set of constraint relation-

ships and a set of constraint solvers. 

• CT=(RelationSet, SolverSet) 

The ‘RelationSet’ contains multiple constraint relation-

ship groups RG. If one of the constraint relationship groups 

is satisfied, the constraint is considered to be satisfied. Each 

constraint relationship group RG contains multiple con-

straint relationships r. When all the constraint relationships 

r are satisfied, it is considered that the constraint relationship 

group RG is satisfied. 

• RelationSet={ RG | RG=r1&r2& ┅┅&rn } 

the constraint relationship ‘r’ is a quad: 

• r=(Nmaster, Nslave, type, value） 

In the relationship r, the master node Nmaster and the 

slave node Nslave can be expressed as: 

• N=(Payload, Workmode, Event) 

The ‘Payload’, ‘Workmode’ and ‘Event’ are correspond-

ing to the definition in the task model. They can also be 

‘Any’, which represents arbitrary payload, arbitrary work-

mode, and arbitrary event, respectively, for the definition of 

fuzzy constraint. 

The type of the relationship ‘r’ can be defined as: 

• type∈{ Lower, Upper, PointQualitative, IntervalQualita-
tive } 

If the type is ‘Lower’ or ‘Upper’, the relationship is a 

quantitative point constraint. The ‘value’ is a const, and re-

spectively represents: 

Tslave – Tmaster > value 

or Tslave – Tmaster < value 

If the type is ‘PointQualitative’, 

• value ∈{ before, ibefore, equal } 

The ‘value’ can be ‘before’, ‘ibefore’ or ‘equal’, respec-

tively represents: 

Tmaster < Tslave 

Tmaster > Tslave 

Tmaster = Tslave 

If the type is ‘IntervalQualitative’, 

• value ∈{ b, bi, =, m, mi, o, oi, d, di, s, si, f, fi} 

The ‘value’ respectively represents the 13 time interval 

relationships proposed by Allen (Allen 1983). 

The constraint processor set ‘SolverSet’ represents a set 

of operations that can be used to solve conflicts when the 

task violates the constraint.  

• SolverSet={SG|SG=S1&S2& ┅┅&Sn } 

The ‘SolverSet’ contains multiple solver groups SG, 

which are applied to solve the conflict, and only one SG is 

selected from the set. The choice is determined by the con-

straint processing algorithm. Each solver group SG contains 

multiple constraint solver S. If a solver group SG is applied, 

all the solvers S in the group should be executed. 

There are many types of constraint solvers. The opera-

tions of the various types of solvers that have been defined 

so far are as follows: 

• Si∈{Smerge,Sadd,Sremove,Sshift } 

The meanings are: 

• Smerge: merge two tasks 

• Sadd：add a node(a workmode or a event) 

• Sremove：delete a node 

• Sshift：shift a node 

The type of the constraint solver is not limited to the 

above, the solver type can be increased as needed, and the 

corresponding handler is added to the planner by means of 

a plug-in. 

Planning and Scheduling 

There are many planners that use the temporal planning 

paradigm, such as EUROPA(Barreiro et al. 2012), CASPER 

(Chien et al. 2000), APSI (Fratini and Cesta 2012), etc.  

In fact, the multi-payload planning problem does not re-

quire such a comprehensive planner. Instead, the planner 

should only handle task conflicts according to predefined 

rules. So we implement a planner based on the idea of plan-

space planning method, that the planner should extract con-

flict, select conflict and then solve conflict continuously. 

  

Function  ExtractConflict(TaskList, CTList) 

Input: TaskList, CTList 

Output: ConflictList 

1. For task1 in TaskList 

2.     For task2 in TaskList 

3.         For CT in CTList 

4.             If consistency(task1, task2, CT) == false 

5.                 ConflictListCT(task1,task2)  

6. Return ConflictList 

 

First of all, we need a conflict extraction function. This 

function may extract all the conflict among the tasks input 

the function according to the CT List. 



Then, the planning and scheduling algorithm may search 

through the Conflict List, and solve every conflict according 

to the solvers which are provided by the constraint model. 

 

Algorithm  PS(TaskList, CTList) 

Input: TaskList, CTList 

Output: Plan 

1.     ConflictExtractConflict(TaskList, CTList) 

2.     While Conflict≠Ø do 

3.         Sort(Conflict) 

4.         For CT in Conflict do 

5.             SolverGroupNull 

6.             RemainConflictCount∞ 

7.             For SG in SolverSet of CT(task1,task2) do 

8.                 TrySolve(task1, task2, SG) 

9.                 TExtractConflict([task1,task2],CTList)  

10.                 If Length(T)<RemainConflictCount then 

11.                     RemainConflictCountLength(T) 

12.                     SolverGroupSG                 

13.         Solve(task1,task2, SolverGroup) 

14.         TaskListUpdate(TaskList) 

15.     Conflict ExtractConflict(TaskList, CTList) 

16. Return PlanTaskList 

 

It is worth noting that the Solve(task1, task2, SG) func-

tion need the program entities corresponding to the solvers 

SG defined in the constraint model.  

Conclusion 

Knowledge engineering for planning and scheduling 

plays a key role in planning system development. In this pa-

per, we have presented a domain modeling method and pro-

vided a corresponding planning algorithm. It is a simplified 

application of temporal planning method, which allows us-

ers to easily define constraint models and corresponding 

conflict resolution operations. 
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