
Domain Modeling for Multi-Payload Planning of Experimental Satellite

Peng Wu

Key Laboratory of Space Utilization, Technology and Engineering Center for space Utilization, Chinese Academy of Sciences
wupeng@csu.ac.cn

Abstract

This paper introduce a domain modeling method for multi-
payload planning of experimental satellite based on temporal
planning paradigm, which may express temporal constraints
and corresponding handlers in a universal style. This will al-
low user to model planning problem more efficiently, and
guide planning process throw domain description files.

 Introduction

The experimental satellite usually carries multiple pay-

loads including remote sensing, astronomy, scientific exper-

iments to work alternately or at the same time. The payload

may run on different working modes, and each working

mode is a sequence of instructions.

Due to the nature of the experiment, scientists and engi-

neers may have several requirements for the work of the

payload, which may be summed up as the following aspects:

• Minimum/maximum duration constraint for single task

• Minimum/maximum interval constraint between two
tasks

• Minimum/maximum interval constraint between two
command instructions

• Task prerequisite constraint, that is, a task or an instruc-
tion must be executed before the constraint task

• Task mutual exclusion constraint, that is, a payload can-
not work on two mode at the same time

In the process of satellite ground operation, the task con-

straint and its value may be adjusted frequently. Further-

more, if there is a task request that violates some constraint,

the planner should processed according to the predefined

conflict resolution method.

In fact, the formatted description of tasks, constraints, and

their processing strategies is a domain modeling problem.

Existing modeling languages such as PDDL and NDDL

have been able to express such information well. But these

languages are hard to use in engineering, due to our lack of

support from domain-dependent planners.

Therefore, we proposed a general domain modeling

method, which defined the expressions of tasks, events, con-

straints and conflict resolution strategies based on time in-

terval algebra and time point algebra, and implements multi-

payload task planning and scheduling based on greedy algo-

rithms. This method conforms to the temporal planning par-

adigm described in Figure 1.

Observe
Request

Science
Experiment

Request

Resource
Model

Task Model
Constraint

Model

Window
forecast

Task List
Sorting

Partial
Plan

Conflict
Extraction

Conflict
Selection

Conflict
Solving

final Plan

Figure 1: Temporal planning

General Domain Modeling

Domain model contains three parts: resource, task and

constraint.

Resource model

Resource model is a triple:

• ResourceSet={R|R=(Name, Type, Capacity)}

The type can be continuous or discrete, specially if the

type is discrete and the capacity is 1, this resource derive to

bool type.

Task model

The task model defines all the work modes that can be

carry on by all instruments, and their command sequences.

It has a hierarchical structure. The root is a payload set:

• PayloadSet = {Payload | Payload = (Name, Workmode-
Set)}

Each payload contains a WorkmodeSet which is defines

as:

• WorkmodeSet={Workmode|Workmode=(Name,
EventSet)}

Each workmode contains a EventSet which is defines as:

• EventSet={Event|Event=(Name, TimeRef, TimeShift,
ParaSet, ResourceCostSet)}

In the definition of the event, the ‘TimeRef’ represents the

time reference, which can only be T0 and T1 representing

the start and end of the task respectively. The ‘TimeShift’

represents the time offset relative to the time reference. The

‘ParaSet‘ defines the device parameters to be adjusted for

this event. The ‘ResourceCostSet’ represents all the re-

source requirement of this event, which is defined as:

• ResourceCostSet={ResourceCost|ResourceCost=(Name,
Type , CostValue)}

Each ‘ResourceCost’ should specify the cost type, and the

cost value. The type can be ‘ByQuantity’ or ‘ByRatio’ epre-

senting quantitative consumption and constant speed con-

sumption respectively. Correspondingly, the ‘CostValue’

represents the amount of resources consumed at a time, or

the rate at which resources are consumed.

Constraint model

The constraint model consists of multiple time constraint.

A time constraint CT consists of a set of constraint relation-

ships and a set of constraint solvers.

• CT=(RelationSet, SolverSet)

The ‘RelationSet’ contains multiple constraint relation-

ship groups RG. If one of the constraint relationship groups

is satisfied, the constraint is considered to be satisfied. Each

constraint relationship group RG contains multiple con-

straint relationships r. When all the constraint relationships

r are satisfied, it is considered that the constraint relationship

group RG is satisfied.

• RelationSet={ RG | RG=r1&r2& ┅┅&rn }

the constraint relationship ‘r’ is a quad:

• r=(Nmaster, Nslave, type, value）

In the relationship r, the master node Nmaster and the

slave node Nslave can be expressed as:

• N=(Payload, Workmode, Event)

The ‘Payload’, ‘Workmode’ and ‘Event’ are correspond-

ing to the definition in the task model. They can also be

‘Any’, which represents arbitrary payload, arbitrary work-

mode, and arbitrary event, respectively, for the definition of

fuzzy constraint.

The type of the relationship ‘r’ can be defined as:

• type∈{ Lower, Upper, PointQualitative, IntervalQualita-
tive }

If the type is ‘Lower’ or ‘Upper’, the relationship is a

quantitative point constraint. The ‘value’ is a const, and re-

spectively represents:

Tslave – Tmaster > value

or Tslave – Tmaster < value

If the type is ‘PointQualitative’,

• value ∈{ before, ibefore, equal }

The ‘value’ can be ‘before’, ‘ibefore’ or ‘equal’, respec-

tively represents:

Tmaster < Tslave

Tmaster > Tslave

Tmaster = Tslave

If the type is ‘IntervalQualitative’,

• value ∈{ b, bi, =, m, mi, o, oi, d, di, s, si, f, fi}

The ‘value’ respectively represents the 13 time interval

relationships proposed by Allen (Allen 1983).

The constraint processor set ‘SolverSet’ represents a set

of operations that can be used to solve conflicts when the

task violates the constraint.

• SolverSet={SG|SG=S1&S2& ┅┅&Sn }

The ‘SolverSet’ contains multiple solver groups SG,

which are applied to solve the conflict, and only one SG is

selected from the set. The choice is determined by the con-

straint processing algorithm. Each solver group SG contains

multiple constraint solver S. If a solver group SG is applied,

all the solvers S in the group should be executed.

There are many types of constraint solvers. The opera-

tions of the various types of solvers that have been defined

so far are as follows:

• Si∈{Smerge,Sadd,Sremove,Sshift }

The meanings are:

• Smerge: merge two tasks

• Sadd：add a node(a workmode or a event)

• Sremove：delete a node

• Sshift：shift a node

The type of the constraint solver is not limited to the

above, the solver type can be increased as needed, and the

corresponding handler is added to the planner by means of

a plug-in.

Planning and Scheduling

There are many planners that use the temporal planning

paradigm, such as EUROPA(Barreiro et al. 2012), CASPER

(Chien et al. 2000), APSI (Fratini and Cesta 2012), etc.

In fact, the multi-payload planning problem does not re-

quire such a comprehensive planner. Instead, the planner

should only handle task conflicts according to predefined

rules. So we implement a planner based on the idea of plan-

space planning method, that the planner should extract con-

flict, select conflict and then solve conflict continuously.

Function ExtractConflict(TaskList, CTList)

Input: TaskList, CTList

Output: ConflictList

1. For task1 in TaskList

2. For task2 in TaskList

3. For CT in CTList

4. If consistency(task1, task2, CT) == false

5. ConflictListCT(task1,task2)

6. Return ConflictList

First of all, we need a conflict extraction function. This

function may extract all the conflict among the tasks input

the function according to the CT List.

Then, the planning and scheduling algorithm may search

through the Conflict List, and solve every conflict according

to the solvers which are provided by the constraint model.

Algorithm PS(TaskList, CTList)

Input: TaskList, CTList

Output: Plan

1. ConflictExtractConflict(TaskList, CTList)

2. While Conflict≠Ø do

3. Sort(Conflict)

4. For CT in Conflict do

5. SolverGroupNull

6. RemainConflictCount∞

7. For SG in SolverSet of CT(task1,task2) do

8. TrySolve(task1, task2, SG)

9. TExtractConflict([task1,task2],CTList)

10. If Length(T)<RemainConflictCount then

11. RemainConflictCountLength(T)

12. SolverGroupSG

13. Solve(task1,task2, SolverGroup)

14. TaskListUpdate(TaskList)

15. Conflict ExtractConflict(TaskList, CTList)

16. Return PlanTaskList

It is worth noting that the Solve(task1, task2, SG) func-

tion need the program entities corresponding to the solvers

SG defined in the constraint model.

Conclusion

Knowledge engineering for planning and scheduling

plays a key role in planning system development. In this pa-

per, we have presented a domain modeling method and pro-

vided a corresponding planning algorithm. It is a simplified

application of temporal planning method, which allows us-

ers to easily define constraint models and corresponding

conflict resolution operations.

References

Allen, James F. 1983. Maintaining Knowledge about Temporal In-
tervals. Communications of the ACM 26(11): 832–843.

Barreiro, Javier, Matthew Boyce, Minh Do, et al. 2012 .EUROPA:
A Platform for AI Planning, Scheduling, Constraint Programming,
and Optimization. 4th International Competition on Knowledge
Engineering for Planning and Scheduling (ICKEPS).

Chien, Steve A., Russell Knight, Andre Stechert, Rob Sherwood,
and Gregg Rabideau. 2000. Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling. In AIPS, 300–307.

Fratini, Simone, and Amedeo Cesta. 2012. The APSI Framework:
A Platform for Timeline Synthesis. In Proceedings of the Work-
shop on Planning and Scheduling with Timelines, 8–15. Sao Paulo,
Brazil: AAAI Press.

