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ABSTRACT

The role of mental simulation in human behavior for various physical tasks is
widely acknowledged, attributed to the generality of Intuitive Physics Engine
(IPE). However, it remains unclear whether mental simulation is consistently em-
ployed across scenarios of different simulation costs and where its boundary is.
Moreover, cognitive strategies beyond these boundaries have not been thoroughly
investigated. Here, we adopted a pouring-marble task containing various condi-
tions to study IPE’s limits and strategies beyond. A human study revealed two
distinct error patterns in predicting the pouring angle, differentiated by the simu-
lation time using a boundary. This suggests a possible switching of the underlying
reasoning strategies. Our initial experiment on IPE showed that its correlation with
human judgments diminished in scenarios requiring extended time of simulation.
This observation prompted the exploration of an alternative mechanism based on
heuristics for intuitive physics. We uncovered that a linear heuristic model, re-
lying exclusively on empirical data, replicated human prediction more accurately
when the simulation time exceeded a certain boundary. Motivated by these ob-
servations, we propose a new framework, Simulation-Heuristics Model (SHM),
which conceptualizes intuitive physics as a dual process: IPE is predominant only
in short-time simulation, whereas a heuristics-based approach is applied as IPE’s
simulation time extends beyond the simulation boundary. The SHM model aligns
more precisely with human behavior across various scenarios and demonstrates
superior generalization capabilities under different conditions. Crucially, SHM
integrates computational methods previously viewed as separate into a unified
model, quantitatively studying their switching mechanism.
Keywords: intuitive physics; physical reasoning; mental simulation; heuristic
model

1 INTRODUCTION

Humans demonstrate extraordinary abilities in understanding and reasoning about the physical world
even without formal training in physics (Piloto et al., 2022). This ability, known as intuitive physics
(Kubricht et al., 2017b), enables comprehending physical concepts (Baillargeon et al., 1985; Bail-
largeon and Graber, 1987; Kim and Spelke, 1992), predicting physical dynamics (Battaglia et al.,
2013; Bates et al., 2015; Davis et al., 2017), and interacting with the physical environments (Allen
et al., 2020). However, human intuitive physics may exhibit errors and biases in certain physical
scenarios, indicating deviations from classical Newtonian physics (McCloskey et al., 1980; 1983;
Kaiser et al., 1986; Kozhevnikov and Hegarty, 2001). Such errors and biases serve as a unique
aspect of human reasoning, offering a valuable avenue for studying the underlying mechanisms of
intuitive physics (Kubricht et al., 2017b).

A common perspective to understanding human intuitive physics is mental simulation: it hypoth-
esizes an approximate intuitive physics engine in the human mind (Battaglia et al., 2013; Smith
and Vul, 2013; Ullman et al., 2017; Smith et al., 2024). This simulation framework, grounded in
probabilistic inference, was found to be able to characterize human behavior across various physical
tasks, and also account for human errors and biases, further validating its relevance and applica-
bility (Battaglia et al., 2012; Kubricht et al., 2016; 2017a; Gerstenberg et al., 2017; Ullman et al.,
2018; Bass et al., 2021; Chen et al., 2023; Li et al., 2023). Nevertheless, the simulation model
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Figure 1: (A) Experimental design: Trials involved 3 cup shapes (H-shape, A-shape, V-shape),
3 object shapes (circle, triangle, trapezoid), 3 sizes (large, medium, small), and 2 filling heights
(full, half), totaling 54 unique conditions. Participants predicted the tilt angle for marbles to fall out
when cups are tilted to the left. (B) SHM hypothesis: Participants used either mental simulation,
simulating the tilting process until pouring out, or a heuristic strategy, reaching judgments from
physical features when the simulation exceeds a boundary. These methods could result in different
outcomes. (C) Human results: Each point represents a condition, illustrating human tendencies to
either overestimate or underestimate the pouring angle. The red and blue lines are the regression
results of IPE and the heuristic model, respectively. The SHM effectively captures human behavior
with a switching boundary.

fails to completely explain the variance in human behavior in some demanding or unfamiliar con-
ditions (Schwartz and Black, 1999; Kozhevnikov and Hegarty, 2001; Smith et al., 2018; Ludwin-
Peery et al., 2021), suggesting the existence of alternative cognitive mechanisms, possibly mental
shortcuts employed for certain physical scenarios, or heuristics (Kozhevnikov and Hegarty, 2001;
Kubricht et al., 2017b; Smith et al., 2018).

Here we ask the following questions: Do humans consistently rely on mental simulation, or do they
employ alternative heuristic strategies under certain conditions? What are the circumstances that
prompt a switch between these two cognitive strategies?

Previous studies have investigated the interplay between simulation and heuristics, providing ev-
idence for qualitative insights. For instance, Kozhevnikov and Hegarty (2001) demonstrate that
people tend to use impetus heuristics in quick judgment scenarios, while Battaglia et al. (2013) find
that models based on height heuristics can more accurately explain human judgment in certain tasks,
such as predicting the falling distance of a block tower. Furthermore, Smith et al. (2017) suggest the
integration of these two cognitive strategies in a motion prediction task. However, there is currently
no study that has provided clear evidence supporting the relationship between these two strategies or
quantitatively demonstrated the transition between them. A comprehensive exploration is needed
to understand whether a switch of policies exists and, if so, how these switches operate, as well as
to identify alternative heuristics that could reverse engineer the human physical reasoning process,
including human biases.

In our study, we systematically investigate the switch between simulation and heuristic strategies in
intuitive physics, developing a computational model that offers improved explanatory power. We
hypothesize that: (i) the simulation strategy prevails in scenarios simple enough for reliable physical
unfolding; (ii) the heuristic strategy takes over when mental simulation becomes too costly; (iii)
the switching point of the two strategies correlates with the simulation cost, approximated via a
proxy of simulation time. Diverging from previous studies that often focused on simpler dynamics
or predictable outcomes (Battaglia et al., 2013; Smith and Vul, 2013; Smith et al., 2017), our study
engages in examining human reasoning across a range of simulation costs (Schwartz and Black,
1999; Kubricht et al., 2016; Davis et al., 2017). Inspired by previous pouring tasks in intuitive
physics (Schwartz and Black, 1999; Kubricht et al., 2016; Guevara et al., 2017; Lopez-Guevara
et al., 2020), we build a pouring marble task with more diverse physical properties and complexities.
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In this task, human participants are asked to judge the tilt angle needed to pour marbles from cups
under various setups (see fig. 1A).

We conducted four steps of experiment to validate the above hypotheses sequentially. The first step
examines whether there is a pattern switch regarding human judgment. A finding of two distinct
error patterns (i.e.overestimation and underestimation) supports the existence of two predominant
strategies that vary under different simulation times. The second step aims to test our hypothesis on
whether the IPE model can account for human judgments in simpler scenarios. The results show that
it aligns well with human judgments and exhibits the same overestimation when the actual pouring
angle is small. However, it fails to account for humans’ underestimation as the actual pouring
angle exceeds a certain boundary (see fig. 1C). Given that the pouring rate remains consistent, we
hypothesize longer simulation time leads to increased cost of physical unfolding, triggering the
transition to another cognitive strategy. Thus, we validate our second hypothesis by exploring an
alternative heuristic approach in the third step. We developed a linear heuristic model trained
on ground-truth data and found that, although less effective than IPE at smaller angles, the model
accurately captures the underestimation pattern when the pouring angle exceeds a certain boundary.
These results support our hypothesis of a cognitive shift to a heuristic strategy. To test our third
hypothesis, in the fourth step, we explore whether a novel framework, Simulation-Heuristics Model
(SHM), that combines these two models and toggles based on simulation cost, can explain human
judgments across all complexity levels (see fig. 1B). The results show that SHM aligns more closely
with human behavior across diverse scenarios and metrics, enhancing our understanding of intuitive
physical reasoning and highlighting the adaptability and versatility of human cognition.

2 RELATED WORK

Multiple systems in intuitive physics The computational mechanism in intuitive physics has at-
tracted significant attention since Battaglia et al. (2013). While previous studies have provided
empirical evidence on the adoption of either a simulation engine or heuristics (Kubricht et al., 2016;
Schwartz and Black, 1999), there is still no consensus on how these two strategies can coexist to
create a unified understanding of the physical world (Ludwin-Peery et al., 2021; Smith et al., 2023).
Currently, research tends to examine these strategies separately by adjusting task settings or stimulus
properties. For example, it has been observed that simulation-based reasoning is typically employed
when dealing with dynamic and natural stimuli, whereas heuristic reasoning is often used in re-
sponse to static or abstract stimuli, relying on rule-based shortcuts (Kaiser et al., 1992; Schwartz,
1995; Kozhevnikov and Hegarty, 2001). In our research, we aim to complement this qualitative per-
spective with a quantitative analysis, particularly focusing on capturing the switch point in strategy
selection.

Tasks in intuitive physics Research has focused on a variety of physical scenarios: determining
the heavier of two objects post-collision (Gilden and Proffitt, 1994; Sanborn et al., 2013; Todd and
Warren Jr, 1982), predicting the stability of stacked block towers (Battaglia et al., 2013; Groth
et al., 2018; Lerer et al., 2016), assessing whether water will pour at the same angle from different
containers (Kubricht et al., 2016; Schwartz and Black, 1999), and understanding the behavior of
various materials in dynamic contexts (Kubricht et al., 2017a). However, it has been challenging
to determine whether the choice between rules and simulation is a deliberate decision or a fixed
response based on the problem at hand. This is because either the available rules or heuristics are
significantly less helpful than simulation and are therefore never chosen, or they are overly helpful
and are consistently chosen over simulation (Kozhevnikov and Hegarty, 2001; Kubricht et al., 2016;
Smith et al., 2017; Kubricht et al., 2017b). In this work, we design multiple controllable variables
to create diverse scenarios for human participants to choose their preferred strategies.

3 MODELS

3.1 MENTAL SIMULATION

Recent work explains human intuitive physics understanding by assuming an approximate simula-
tion engine in the human mind (Battaglia et al., 2013; Lake et al., 2017; Kubricht et al., 2016). This
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engine serves to simulate the future physical unfolding, akin to a computational physics engine but
incorporates noise into the physical properties of objects.

Following this approach, our model utilizes an IPE that runs noisy simulations as in Battaglia et al.
(2013). The model takes an initial physical scene S0 and external forces f0:T−1 to derive the judg-
ment J . This process involves predicting the intermediate states S1:T over a time span T :

P (J |S0, f0:T−1) =

∫
S1:T

P (J |S1:T )P (S1:T |S0, f0:T−1)dS1:T , (1)

where St+1 = ϕ(St + ϵ, ft) with noise ϵ ∼ N (0, σ2), and ϕ(·) deterministic physical dynamics.
We simplify the mapping from the initial state to the final judgment as M(S0; f, ϵ).

In our implementation using the flexible physics engine Pymunk, the IPE utilizes all physical vari-
ables to simulate future dynamics with added Gaussian noise N (0, σ2) to each marble’s position
horizontally and vertically during the simulation process. The noise level σ2 is varied from 0.1 to 1
to observe its impact on the simulation results. Additionally, we manipulate the rotational speed of
the cup to assess its influence on the outcomes.

We perform 30 noisy IPE simulations per trial. During each simulation, an automatic detection
system is integrated to identify the moment when the marbles fall out, which serves as the ground
truth. The final pouring angle is determined from the average of the 30 results. This setup allows us
to mimic the variability and uncertainty in human cognition, as outlined in prior studies (Smith and
Vul, 2013), and to explore how these factors influence judgment in physical tasks.

3.2 HEURISTIC MODEL

Prior studies often employ predefined heuristics to elucidate human biases (Schwartz and Black,
1999; Kozhevnikov and Hegarty, 2001; Smith et al., 2017) or fit heuristic models on human data to
evaluate the influence of physical attributes (Gerstenberg et al., 2017). While these approaches offer
insights for specific tasks, a systematic methodology for learning heuristics in complex scenarios is
lacking.

Our heuristic model is designed to learn from a subset of physical attributes, fitting ground-truth
data through a direct mapping g from the initial scene S0 to the final judgment J , bypassing the
intermediate states. This model is advantageous as it approximates humans’ real-world physics
understanding by a limited set of attributes, and circumvents the need for computationally heavy
physics simulation. In particular, we employ a linear model with learnable parameters:

J = g(S1
0 , ..., S

n
0 ) =

n∑
i=1

ωiS
i
0 + b, (2)

where {Si
0} are different physical variables in S0 and we set n = 4 in our study. Specifically, the

model considers the following four variables: object size, filling height, object shape, and cup shape.
Instead of directly predicting the pouring angle, the model predicts the difference between the actual
pouring angle and a reference 90-degree angle. This design choice was made based on preliminary
observation from a familiarization experiment that an H-shape cup containing little marbles almost
always pours out at 90 degrees. The model is optimized using the mean squared error. Future
exploration may consider nonlinear heuristic models using symbolic regression (Xu et al., 2021).

3.3 DUAL-PROCESS MODEL

Building on the notion that human cognition might employ multiple systems (Kahneman, 2011), we
introduce a dual-process model in the context of intuitive physics, termed SHM. This model hypoth-
esizes that humans alternate between two strategies—mental simulation and heuristic reasoning—
based on the duration of the task. Specifically, for duration time below a critical boundary θ, IPE is
favored, whereas beyond θ, a heuristic strategy is triggered. This adaptive approach is formalized
as: {

J = Eϵ[M(S0; ϵ)], if T ≤ θ,

J =
∑n

i=1 ωiS
i
0 + b, if T > θ

. (3)
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where we drop the dependency on f , which remains constant across the same set of experiments. We
employ a grid search method to optimize both θ for the strategic transition and the noise parameters
σ for the IPE, in addition to a group of heuristic parameters ω derived from linear regression.

4 EXPERIMENT

4.1 PARTICIPANTS

A total of 43 college students (55% male, 45% female; mean age = 21.77 ± 4.45) were recruited
to participate in in-person experiments. Participants were compensated either with course credits or
monetary rewards. One participant was excluded from the analysis due to minimal variation in their
responses. It’s important to note that we have obtained IRB approval from the Committee for Ethics
and the Protection of Human and Animal Welfare at the local institution.

4.2 STIMULI

Stimuli were generated using Pymunk in various configurations, encompassing three cup shapes
(H-shape, A-shape, and V-shape), three object shapes (circle, triangle, and trapezoid), three object
sizes (large, medium, and small), and two filling heights (half and full), totaling up to 54 different
conditions. These stimuli were then rendered using Pygame.

In each condition, marbles were randomly placed inside cups, and their layouts were automatically
adjusted by Pymunk’s physics engine to create physically plausible scenarios. For each condition,
three random layouts were generated. The selection of images as stimuli occurred when the marbles
reached a stable state. The marbles were designed to have neither friction nor elasticity and equal
mass since the estimation of those variables brings additional costs for participants and disturbs the
results. The marbles were assigned colors randomly from a grayscale palette to eliminate any prior
knowledge of material properties.

Pouring angles for each trial were determined through controlled simulations, with cups undergoing
slow rotations. The angle at which marbles began falling out—identified when a marble’s mass
center aligned with the cup’s top-left corner—was measured. This measurement involved calculating
each marble’s dynamics at an FPS of 120 and automatically detecting the falling-out event. The tilt
angles, indicating changes in the central axis of the cups, were referenced to ensure accuracy in each
trial’s pouring angles. Example stimuli are presented in fig. 2a.

4.3 PROCEDURES

A within-subjects design was implemented, where each participant completed all 54 conditions.
Stimuli were navigated in a counter-balanced order with randomly selected layouts, and the experi-
ment lasted approximately 30 minutes.

Familiarization After completing a consent form, participants were asked to read instructions and
complete a familiarization session involving videos of pouring two small marbles; see appendix A
and appendix B for details. This session is aimed at familiarizing participants with (i) the properties
of marbles and their physical dynamics, (ii) the definition of the tilt angle, and (iii) the concept of
“pouring out.” Quizzes were conducted after each concept familiarization to ensure the participant’s
full understanding. The first quiz required participants to determine the angle of two tilted empty
cups. The following quiz asked participants to select the moment when marbles would pour out
from cups in three different scenarios. Only upon passing these quizzes were participants permitted
to proceed to the next experiment phase.

Experiment Participants were required to complete 54 trials consecutively. In each trial, a static
image of a non-rotated cup from various setups was presented. The tilt angle necessary for the cup
to begin pouring out marbles was estimated by the participants using a slider bar with a range of
0 to 135 degrees. To reduce potential biases from inaccurate angle perception, a dial marked with
angle measurements was provided in each trial. Demographic information along with the responses
for the pouring angles across all 54 trials, including the total duration, were recorded for subsequent
analysis.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

B
e

fo
re

 t
h

e
 b

o
u

n
d

Pouring out scene Initial scene Pouring out sceneInitial scene

C
lo

s
e

 t
o

 t
h

e
 b

o
u

n
d

A
ft

e
r 

th
e

 b
o
u

n
d

(a)

IPE Heuristic model0

5

10

15

20

25

Ab
so

lu
te

 e
rro

r (
de

gr
ee

)

**

**

Performance gap before and after boundary
before boundary
after boundary

(b)

Figure 2: Visualizations of stimuli and error analysis. (a) Example stimuli. The top (red), middle
(black), and bottom (blue) rows depict two scenarios each, with pouring angles that are smaller,
close to, and larger than the established simulation bound, respectively. (b) The mean absolute error
between model and human results (with SEM). The IPE model exhibits a larger absolute error when
the simulation time exceeds the boundary. Conversely, the heuristic model shows contrary results,
indicating its effectiveness in these scenarios.

Feedback A feedback session was held post-experiment to gather participants’ comments, partic-
ularly focusing on the strategies employed during the task.

5 RESULTS

In this section, we follow a four-step approach to validate our hypothesis. First, we analyze par-
ticipants’ error patterns, which suggest a shift in reasoning strategies. Second, we test the IPE to
account for human judgment, but it falls short in explaining the observed underestimation pattern.
Third, we enhance the IPE by integrating a heuristic model that considers key physical attributes.
Finally, in the fourth step, we develop a hybrid model that incorporates both simulation and heuristic
models, using a switching mechanism to best explain human judgments across all conditions.

5.1 A SWITCHING IN ERROR PATTERNS

Human results show overestimation and underestimation of the pouring angle compared with the
ground truth. These two error patterns may indicate different strategies of physical reasoning. To
examine whether there is a switching mechanism between the two patterns among those conditions,
we employed symbolic regression to automatically identify an explainable factor and its correspond-
ing switching point that best distinguishes between the two patterns. We considered all experimental
design factors, including cup shape, object shape, object size, and filling height, along with the ob-
ject number and simulated pouring angle. Our analysis shows that the simulated pouring angle
effectively differentiates between the reversal patterns observed in human participants’ estimations
of tilt angles for pouring (see fig. 1C). We identified the optimal boundary for distinguishing these
patterns to be 65 degrees by searching from 20 to 120 with an interval of 1. Initially, participants
tended to overestimate these angles when the simulated pouring angles were relatively small (mean
discrepancy = 7.76 ± 13.67). As the angle increases, this trend shifts to consistent underestimation
(mean discrepancy = -9.89 ± 8.75). Given the consistent tilting speed, the observed pattern switch as
the pouring angle increases suggests a hypothesis that the physical reasoning strategy may change
when the simulation time exceeds a certain resource boundary.
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5.2 IPE FAILS TO EXPLAIN ALL TRIALS

To validate our hypothesis, we first experiment with the IPE model. Fitting human judgments in the
overestimation phase with IPE supports our hypothesis of the simulation strategy’s dominance in the
shorter time span. Note that as the angular speed remains constant in our experiments, the simulation
time is proportional to the degree of angle. When the positional noise and rotational speeds of the
IPE model were optimized (see section 3.1 for details), the results were closely aligned with human
performance, explaining the overestimation pattern effectively (r = .890).

However, once the pouring angle exceeded the 65-degree boundary, IPE’s prediction error signif-
icantly increased (t(52) = -3.354, p = .002; see fig. 2b for absolute error comparison on the left).
No parameter combination in the IPE model could well explain the underestimation pattern, indi-
cating the existence of an alternative strategy other than IPE. See visualization of IPE simulation in
appendix C.

5.3 LEARNED HEURISTIC MODEL COMPLEMENTS IPE

Table 1: Categories, coefficients, and p-values
of physical variables in the learned heuristic
model. All physical variables except the object
shape show significant contributions to the out-
comes.

Variable Category Coefficients p

Cup shape

H-shape

-11.528 0.000A-shape

V-shape

Object shape

Circle

1.577 0.073Triangle

Trapezoid

Object size

Small

7.029 0.000Medium

Large

Filling height
Half

-19.955 0.000
Full

To better explain the underestimation pattern in
human behavior, we devised a heuristic model
incorporating key physical attributes rooted in
our experiments: filling height, cup shape, ob-
ject shape, and object size. This model effec-
tively compensated for the discrepancies unex-
plained by the IPE model. The heuristic model
performed well when the actual pouring angle
exceeded 65 degrees (r = .841), but its accu-
racy diminished below this boundary (Mann-
Whitney U test, p = .003; see fig. 2b for ab-
solute error comparison on the right).

Further analysis of specific heuristics revealed
that filling height, cup shape, and object size
significantly influence heuristic judgment (see
table 1, p = .000 for all three variables). The
model’s coefficients allowed a quantitative as-
sessment of these variables’ impact. For ex-
ample, V-shaped cups, with outwardly sloping
walls, require smaller tilt angles for pouring,
typically 11.528 degrees earlier than H-shaped
cups. Larger marbles increased the tilt angle re-
quired for pouring by 7.029 degrees compared
to smaller ones. Cups filled to a higher level
poured out earlier, 19.955 degrees less than
half-filled ones on average. Despite the simplicity and approximate encoding, this linear heuristic
model captured basic physical intuition effectively. The findings align with our second hypothesis,
suggesting the adoption of heuristic strategies when mental simulation reaches its boundary.

5.4 SHM EXPLAINS HUMAN JUDGMENTS ON ALL CONDITIONS

Building upon our findings, we constructed the Simulation-Heuristics Model (SHM), a dual-process
model integrating both simulation and heuristic strategies, to optimally predict human performance
across all trials. Instead of relying on actual simulation time in humans, which is unavailable, we
instead based the transition criterion in SHM on IPE’s simulation time. A grid search identified the
boundary of 68.2 degrees in simulation time and a dynamic positional noise of 0.2 as optimal for
mirroring human judgments.

In predicting overall human performance, SHM surpassed three baseline models: the deterministic
physics model, IPE, and the purely heuristic model. SHM exhibited the highest correlation and
lowest RMSE (r = .834, RMSE = 10.002), as shown in fig. 3. Although IPE was correlated with
human judgments (r = .772), it showed high error in making human-like predictions (RMSE =

7
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Figure 3: Comparison between SHM and other baseline models. The correlation and RMSE be-
tween model predictions and human predictions across all 54 conditions are compared. Among the
four models evaluated, SHM demonstrates the highest correlation and the lowest RMSE, indicating
its superior predictive accuracy.
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Figure 4: Comparison of four models’ RMSE on different conditions. RMSE is calculated as
the root mean square error between the model’s predicted pouring angle and the human judgments.
The bottom right figure represents the performance across all 54 trials. A dashed line is included to
indicate the RMSE of the SHM, showing a clear advantage when compared with other models.

17.457). On the contrary, the heuristic model could predict human judgments with smaller RMSE
but failed to better explain the variance (r = .733, RMSE = 12.085).

The fitted SHM model exhibited strong generalization across various scenarios (e.g., different cup
shapes, object shapes, sizes, and filling heights). It consistently showed the lowest RMSE, except in
specific scenarios where the heuristic model was parallel (fig. 4). The model explained maximum
variance in almost all cases, with comparable performance to IPE in scenarios involving large or
trapezoidal marbles. Notably, in situations where IPE minimally correlated with human judgments
(e.g., A-shaped cups, r = .461), SHM maintained effectiveness (A-shaped cups, r = .647). It also
significantly improved correlation in scenarios poorly addressed by the heuristic model (full filling
height, r improved to .673 from .377). These results highlight SHM’s capability to synergize the
strengths of both IPE and the heuristic model, enabling robust predictions across diverse scenarios.
Consequently, the SHM model, with its transition mechanism based on simulation time, aligns with
our third hypothesis and effectively accounts for a wide range of conditions and metrics.
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6 DISCUSSION

Contributions The novelty of our study resides in its quantitative analysis of the simulation and
heuristic strategies and their transition mechanism. We introduced and validated the SHM model,
which illuminates an intriguing pattern: as simulation cost increases (indicated by simulation time in
our experiments), the cognitive strategy shifts from detailed simulation to more generalized heuris-
tic reasoning based on key physical attributes. These heuristic methods, despite biased, facilitate
quick and reasonably accurate judgments in complex scenarios. Our pouring task results show that
the heuristic model leans towards slight underestimation, a conservative strategy that potentially
ensures safety in execution. The SHM model’s efficacy is highlighted by its improved correlation
with human judgments and reduced error rates compared to models relying solely on simulation or
heuristic approaches. These results underline the significance of a hybrid model in capturing human
cognitive processes, especially in intuitive physics. Apart from offering insights into human cog-
nitive adaptability, our findings have implications for advancing computational models in artificial
intelligence, integrating dynamic prediction capabilities with heuristics-based reasoning for a more
nuanced understanding of the physical world.

Limitations Our study suggests a possible method for distinguishing between two cognitive strate-
gies. However, it is crucial to recognize that individuals may not consistently adhere to one strategy
during a trial. This is particularly true in complex situations where transitions between strategies
may occur during the decision-making process. Investigating these transitions within a single sce-
nario poses significant challenges. The main difficulty arises in detecting and interpreting intermedi-
ate signals that may not display distinct patterns, complicating the analysis compared to identifying
the primary strategy that impacts final decisions. Furthermore, certain outlier cases remain un-
explained by existing models, indicating a need for more nuanced modeling to better capture the
variability in human judgment.

Future work Future research could expand upon our findings by exploring various physical sce-
narios. While the use of pouring angles as a transition metric is specific to our task, the underly-
ing transition mechanism based on simulation time might have broader applicability across various
contexts. Additionally, incorporating nuanced cognitive factors could deepen our understanding of
intuitive physics. Although simulation time emerged as a significant predictor of human judgment,
we observed improved model performance when considering shifts in simulation time influenced by
cup shapes. This suggests that other criteria, such as the complexity of the simulation process or
scenario familiarity, might also play crucial roles. Future studies could aim to quantify these aspects
to better explain transitions in intuitive physics strategies.

In different scenarios, the dual-process model used by humans may utilize different physical vari-
ables as heuristics. For example, when estimating the collapse of a block tower, the height of the
tower might serve as a heuristic, while in predicting the motion of a group of balls, an approximate
distribution of the balls’ positions could be used as a heuristic. Despite these variances and the diver-
sity of heuristic strategies, it would be intriguing to explore whether our proposed learning approach
remains effective across different contexts.

7 CONCLUSION

In this work, we design a pouring-marble task to study the computational mechanism in intuitive
physics. The sequential experiments underscore that while the IPE effectively predicts human judg-
ments in scenarios with short simulation times, its efficacy diminishes as these times extend. This
limitation of IPE paves the way for the implementation of a heuristic approach that shows greater
accuracy in scenarios necessitating longer simulations. The introduction of the SHM model, which
integrates these two cognitive strategies based on the simulation cost of the task as approximated by
simulation time, not only aligns more closely with human behavior but also enhances the model’s
generalization capabilities across varied conditions. By bridging the gap between mental simulation
and heuristic approaches, the SHM model offers a robust framework that captures the complex-
ity and adaptability of human cognition in intuitive physics. This model serves as a pivotal step
in exploring computational methods that mimic human-like reasoning, providing insights into the
cognitive mechanisms that govern our interactions with the physical world.
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A INSTRUCTIONS TO PARTICIPANTS

Your task is to judge the angle at which a tilted container will begin to pour out its contents. Please
read the following instructions carefully.

• In each trial of this experiment, you will be given an image of a container filled with objects.

• The objects have no friction and no elasticity.

• The masses of objects are the same although their colors may be different.

• The container will be tilted slowly to the left at a very slow speed (!!!), and objects will start to pour
out at a certain angle (the tilting angle indicates the change of the central axis of the container).

• However, you will only be given the static image of the initial scene rather than the whole tilting
process.

• The pouring-out time is the moment when the center of mass of any object exceeds the top-left
corner of the cup.

• Your judgment should be as accurate as possible.

• For your reference, you can also see an image of visualized angles and drag it to the cup with your
mouse to measure the angle:

Here are three videos to help you familiarize yourself with the settings.

Please note that:

• You are only allowed to play each video two times at most.

• Pay attention to how objects move and the pouring out moment.

• The video is accelerated to save you time.

B SCREENSHOTS

We present the screenshots of our two familiarization quizzes. The first quiz assesses their under-
standing of tilting angles as shown in fig. A1, while the second quiz focuses on their grasp of the
pouring out concept as shown in fig. A2.
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Figure A1: Screenshot of the familiarization quiz about titling angle.

Figure A2: Screenshot of the familiarization quiz about pouring out moment.
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Figure A3: Stimuli examples.

C VISUALIZATION

We present an example of IPE simulation results in fig. A4 to show how different noise perturbations
can affect the physical dynamics in our pouring-marble task.
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Figure A4: Visualization of IPE simulation. The shown condition includes a regular cup fully
filled with medium-sized triangle marbles. The three cases show the dynamics altered by different
noise perturbations from a specified distribution.
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