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ABSTRACT

For a long time, designing neural architectures that exhibit high performance was
considered a dark art that required expert hand-tuning. One of the few well-known
guidelines for architecture design is the avoidance of exploding or vanishing gra-
dients. However, even this guideline has remained relatively vague and circum-
stantial, because there exists no well-defined, gradient-based metric that can be
computed before training begins and can robustly predict the performance of the
network after training is complete.
We introduce what is, to the best of our knowledge, the first such metric: the
nonlinearity coefficient (NLC). Via an extensive empirical study, we show that the
NLC, computed in the network’s randomly initialized state, is a powerful predictor
of test error and that attaining a right-sized NLC is essential for attaining an opti-
mal test error, at least in fully-connected feedforward networks. The NLC is also
conceptually simple, cheap to compute, and is robust to a range of confounders
and architectural design choices that comparable metrics are not necessarily ro-
bust to. Hence, we argue the NLC is an important tool for architecture search
and design, as it can robustly predict poor training outcomes before training even
begins.

1 INTRODUCTION

Designing neural architectures that perform well can be a difficult process. In particular, the ex-
ploding / vanishing gradient problem has been a major challenge for building very deep neural
networks at least since the advent of gradient-based parameter learning (Hochreiter, 1991; Hochre-
iter & Schmidhuber, 1997; Bengio et al., 1994). However, there is still no consensus about which
metric should be used for determining the presence of pathological exploding or vanishing gradi-
ents. Should we care about the length of the gradient vector (He et al., 2015), or about the size of
individual components of the gradient vector (Schoenholz et al., 2017; Yang & Schoenholz, 2017;
Glorot & Bengio, 2010), or about the eigenvalues of the Jacobian (Saxe et al., 2014; Pascanu et al.,
2013; Pennington et al., 2017)? Depending on the metric used, different strategies arise for combat-
ing exploding and vanishing gradients. For example, manipulating the width of layers as suggested
by e.g. Yang & Schoenholz (2018); Han et al. (2017) can greatly impact the size of gradient vector
components but tends to leave the length of the entire gradient vector relatively unchanged. The
popular He initialization for ReLU networks (He et al., 2015) is designed to stabilize gradient vec-
tor length, wheareas the popular Xavier initialization for tanh networks (Glorot & Bengio, 2010)
is designed to stabilize the size of gradient vector components. While the papers cited above pro-
vide much evidence that gradient explosion / vanishing when defined according to some metrics is
associated with poor performance when certain architectures are paired with certain optimization
algorithms, it is often unclear how general those results are.

We make the following core contributions.

1. We introduce the nonlinearity coefficient (NLC), a gradient-based measurement of the de-
gree of nonlinearity of a neural network (section 3).

2. We show that the NLC, computed in the networks randomly initialized state, is a powerful
predictor of test error and that attaining a right-sized NLC is essential for achieving an
optimal test error, at least in fully-connected feedforward networks (section 4).
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3. We explain that, by design, the NLC is not susceptible to a range of confounders that render
many other metrics unreliable, such as changes to input scale, width and bias (section 6).

We demonstrate the properties of the NLC via an extensive empirical study covering a wide range
of network architectures (section 4). The scope of our experiments exceeds that of the vast majority
of related work. We conduct 43.000 full training runs. As the NLC is also conceptually simple
and cheap to compute, it is a useful guide for architecture design and search. Architectures with a
sub-optimal NLC can be discarded a priori and computational resources don’t have to be spent on
training them.

The NLC (defined at the top of page 3) combines the Frobenius norm of the Jacobian of a neural
network with the global variability of the input data and the global variability of the network’s
outputs into a single metric. Despite its simplicity, it is tied to many important properties of the
network. It is a remarkably accurate predictor of the network’s nonlinearity as measured by the
relative diameter of the regions in input space that can be well-approximated by a linear function
(section 3 and figure 1). It is closely related to the nonlinearity of the individual activation functions
used in the network and the degree to which they can be approximated by a linear function (section
5). It is tied to the susceptibility of the network’s output to small random input perturbations.

2 NOTATION AND TERMINOLOGY

We define a neural network f as a function of the input x. Both x and the output f(x) are vectors of
fixed dimensionality din and dout respectively. We assume a prediction framework, where the output
is considered to be the prediction and the goal is to minimize the value of the ‘error’ e over this
prediction and the label y, in expectation over some data distribution D. I.e., we wish to minimize
E(x,y)∼D[e(f(x), y)]. In this paper, e is always classification accuracy. During training, we replace
D with the training set and ewith the surrogate loss function `, which in this paper is always softmax
plus cross-entropy. Let J (x) := df(x)

dx be the Jacobian of the output with respect to the input. x(i)
and f(x, j) denote the i’th component of the input vector and the j’th component of the output vector
respectively, where 1 ≤ i ≤ din and 1 ≤ j ≤ dout. Denote the component-wise standard deviation
of a (possibly multivariate) random variable X as S[X]. Finally, let the ‘quadratic expectation’ Q
of a random variable X be defined as Q[X] =

√
(E[X2]), i.e. the generalization of the quadratic

mean to random variables.

3 ON THE NONLINEARITY OF NEURAL NETWORKS - DERIVING THE NLC

Consider an arbitrary neural network f and assume it has a well-defined bounded domain D and
bounded co-domain F. Then the Jacobian J taken at some x ∈ D defines a local linear approxima-
tion of the function f around x, i.e. f(x + δ) ≈ f(x) + J (x)δ for sufficiently small δ. The key
insight behind the NLC and ultimately behind this paper is that there is a simple criterion for deter-
mining whether the approximation can be accurate for a given δ: If f(x) + J (x)δ is far away from
F, then because f(x+ δ) ∈ F, f(x)+J (x)δ is far away from f(x+ δ) and thus it is inaccurate. We
can use this insight to establish an approximate bound for the size of δ by referencing a well-known
property of the Frobenius norm.
Proposition 1. Let A be an m×n matrix and u a random n-dimensional vector of fixed length and
uniformly random orientation. Then ||A||F√

n
||u||2 = Qu||Au||2. (See section F for the short proof.)

As we also have f(x) ∈ F, we deduce that we must have ||J (x)||F√
din

||δ||2 / diameter(F) for the local
linear approximation at x to be accurate for a randomly oriented δ. In fact, an approximate bound for
the diameter of the linearly approximable region at x in a random direction is

√
dindiameter(F)
||J (x)||F . How-

ever, the size of this diameter by itself is not sufficient to judge the nonlinearity of f , because it does
not take into account the size of the domain D. If D fits entirely within the linearly approximable
region, then f is close to a linear function. If D is large compared to the linearly approximable
region, we consider f highly nonlinear at x. Hence, we consider instead the approximate bound for
the relative diameter of the linearly approximable region in a random direction,

√
dindiameter(F)

||J (x)||F diameter(D) .

We posit the inverse of this value, ||J (x)||F diameter(D)√
dindiameter(F)

, as our nonlinearity metric for f at x.
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Of course, in practice, a network might not have a well-defined, bounded domain and co-domain.
Here we make a final modeling assumption. We proxy the diameter with the quadratic expectation
of the distance of two random points from the data distribution. Thus our nonlinearity estimate
becomes ||J (x)||FQx,x′∼D||x−x

′||2√
dinQx,x′∼D||f(x)−f(x′)||2

. And as we further show in section F, the quadratic expectation
of this equals the NLC as defined below.

Definition 1. The nonlinearity coefficient (NLC) of a network f and inputs x ∼ D is

NLC(f,D) :=

(
Qx||J (x)||F

)(
Qi(Sxx(i))

)
√
doutQj(Sxf(x,j))

.

The terms Sxx(i) and Sxf(x, j) denote the standard deviation of the activation of the i’th input neu-
ron and j’th output neuron under the data distribution respectively. Qi(Sxx(i)) and Qj(Sxf(x, j))
denote the quadratic expectation of these values across all input / output neurons respectively. We

also have Qi(Sxx(i)) =
√

Tr(Cx)
din

and Qj(Sxf(x, j)) =
√

Tr(Cf )
dout

, where Cx and Cf are the co-
variance matrices of x and f(x) under the data distribution. Hence, the NLC can be re-written as√

Tr(ExJJ T ) Tr(Cx)
din Tr(Cf ) . As a sanity check, let’s look at the NLC of a linear network. In that case,

f(x) = Ax + b for some A and b. Then the NLC becomes
√

Tr(AAT ) Tr(Cx)
din Tr(ACxAT )

. This value equals 1,
for example, if Cx is a multiple of the identity or A is orthogonal. We further conjecture that this
value is close to 1 for large, random matrices A as they occur in practice in randomly initialized
neural networks, though this analysis goes beyond the scope of this paper.

Note that an alternative interpretation of the NLC is that it represents the expected sensitivity of the
network output with respect to small, randomly oriented changes to the input, normalized by the
global variability of the input, output and

√
dout. Finally, we refer readers interested in a pictorial

illustration of the NLC to section A in the appendix.

Computing the NLC It is worth noting that the NLC is cheap to (approximately) compute.
Throughout this study, we compute Qi(Sxx(i)) and Qj(Sxf(x, j)) exactly via a single pass over
the training set. Qx||J (x)||F can be computed stochastically by backpropagating Gaussian random
vectors from the output layer. See section G for details.

4 ON THE PREDICTIVE POWER OF THE NLC - LARGE-SCALE STUDY

Now we investigate the empirical properties of the NLC through a large-scale study.
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Figure 1: NLC vs the relative di-
ameter of linearly approximable
regions. See section E.1 for de-
tails.

Architectures used We sampled architectures at random by
varying the depth of the network, the scale of initial weights,
scale of initial bias, activation function, normalization method,
presence of skip connections, location of skip connections and
strength of skip connections. We chose from a set of 8 activa-
tion functions (table 1), which were further modified by random
dilation, lateral shift and debiasing. For now, we only con-
sidered fully-connected feedforward networks, as is (perhaps
unfortunately) common in analytical studies of deep networks
(e.g. Saxe et al. (2014); Balduzzi et al. (2017); Schoenholz et al.
(2017)). We have no reasons to suspect our results will not gen-
eralize to CNNs, and we plan to investigate this point in future
work. See section C for the full details of our architecture sam-
pling scheme.

Datasets used We studied three datasets: MNIST, CIFAR10
and waveform-noise. All our results were highly consistent
across these datasets. waveform-noise is from the UCI reposi-
tory of datasets popular for evaluating fully-connected networks
(Klambauer et al., 2017). See section D for further details on
dataset selection and preprocessing. We sampled 250 architectures per dataset, a total of 750.
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Figure 2: NLC versus test error. Points shown in red correspond to architectures with high output
bias (1000Qj(Sxf(x, j)) < Qj,xf(x, j)). Points shown in blue correspond to architectures that
have skip connections. Inset graphs in the bottom right are magnifications of the region 0.8 <
NLC < 100. See section E.2 for details.

Training protocol We trained each architecture with SGD with 40 different starting learning rates
and selected the optimal one via a held-out validation set, independently for each architecture. Dur-
ing each run, we reduced the learning rate 10 times by a factor of 3. All training runs were conducted
in 64 bit floating point. See section E for further experimental details and section B.1 for an analysis
of how the learning rate search and numerical precision contributed to the outcome of our study.

Presentation of results The results of this study are shown in figures 1, 2, 3, 4, 7, 8, 9 and 10. All
figures except figure 7 are scatter plots where each point corresponds to a single neural architecture.
In most graphs, we show the correlation and its statistical significance between the quantities on the
x and y axis at the top. Note that if any quantity is plotted in log-scale, the correlation is also using
the log of that quantity. For each architecture, we only studied a single random initialization. Given
a limited computational budget, we preferred studying a larger number of architectures instead. Note
that all values depicted that were computed after training, such as test error or ‘NLC after training’
in figure 3C, are based on the training run with the lowest validation error, as described above.

The NLC measures nonlinearity First, we verify that the NLC is indeed an accurate measure of
nonlinearity. In figure 1, we plot the relative diameter of the linearly approximable regions of the
network as discussed in section 3 and defined in section E.1 against the NLC in the randomly initial-
ized state. We find a remarkably close match between both quantities. This shows empirically that
our informal derivation of the NLC in section 3 leads to remarkably accurate nonlinearity estimates.

The NLC predicts test error In figure 2, we plot the NLC computed in the randomly initialized
state, before training, against the test error after training. We find that for all three datasets, the test
error is highly related to the NLC. Further, figure 2 indicates that one must start with an NLC in
a narrow range, approximately between 1 and 3, to achieve optimal test error, and the further one
deviates from that range, the worse the achievable test error becomes. It is worth noting that some
architectures, despite having an NLC in or close to this range, performed badly. One cause of this,
high output bias, is explored later in this section. To verify that our results were not dependent on
using the SGD optimizer, we re-trained all 250 waveform-noise architectures with Adam using the
same training protocol. In figure 3F, we find that the results closely match those of SGD from figure
2C. A caveat is that we do not currently have a way to detect the ideal NLC range for a given dataset,
except through observation, though we find this range to be consistent across our three datasets.

NLC after training In figure 3B, we plot the value of the NLC before training versus after train-
ing. Both values were computed on the training set. We find that for the vast majority of architec-
tures, the value of the NLC decreases. However, if the NLC is very large in the beginning, it remains
so. Overall, the before-training NLC significantly predicts the after-training NLC. In figure 3C, we
plot the after-training NLC versus test error. We find that unless the NLC lies in a narrow range, test
error is close to random. Interestingly, the after-training NLC has a significantly lower correlation
with test error than the before-training NLC.
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Figure 3: Detailed results from our empirical study. See main text for explanation and section E.2
(figures A/B/C/D/F) and section E.3 (figure E) for further details.

NLC predicts generalization, not trainability In figure 3D, we show the training error achieved
for 50 randomly selected architectures for waveform-noise. We re-trained those architectures with-
out using early stopping based on the validation error and considered an even larger range of starting
learning rates. We depict the lowest training classification error that was achieved across all learn-
ing rates. Points are shown in red for visibility. We find that independently of the NLC, the vast
majority of architectures achieve a zero or near-zero training error. This finding is the opposite of
that of Schoenholz et al. (2017) and Xiao et al. (2018), who claim that networks which are highly
sensitive to small input perturbations are untrainable. The reason we were able to train these archi-
tectures was our extensive learning rate search as well as our decision to train with 64 bit precision.
In fact, we found that architectures with high NLC often require very small learning rates and very
small parameter updates to train successfully. One architecture required a learning rate as small as
5e-18! See section B.1 for further analysis on this point. In summary, we find that many architec-
tures for which the NLC correctly predicts high test error are nonetheless trainable. Of course, one
might expect that a high sensitivity leads to poor generalization. As a sanity check, we conducted
an experiment where we corrupted the test set with small random perturbations and measured how
large these perturbations could be before the test error increased significantly. We plot this in figure
3E. As expected, for the majority of high-NLC architectures, labels can be corrupted and the error
increased with incredibly small perturbations.

Summary We interpret the results observed so far as follows. To generalize, the network must
attain a critical NLC after training. This is only possible in practice if the initial NLC is already
close. In that case, the networks often learns automatically to adopt a more ideal NLC. However,
unless the initial NLC is itself in the critical range, we cannot attain optimal performance.

Further predictors: bias and skip connections In figure 2, we mark in red all points correspond-
ing to architectures that have a very biased output, i.e. 1000Qj(Sxf(x, j)) < Qj,xf(x, j). We note
that all of these architecture attain a high test error, even if their NLC is small. In figure 3A, we plot
the output bias before training against test error. We find that indeed, to achieve an optimal test error,
a low initial bias is required. In section B.2, we further show that just as the NLC, the bias also tends
to decline throughout training and that attaining a very low bias after training is even more essential.
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ReLU SELU tanh sigmoid even tanh Gaussian square odd square

Formula max(s, 0) 1 tanh(s) 1

1+e−s
tanh(|s|) 1√

2π
e−

s2

2 s2 s ∗ |s|

Illustration

(A)NLCτ (1) 1.211 1.035 1.085 1.017 2.335 1.577 1.414 1.155
(B) NLC depth 2 1.22 1.05 1.09 1.03 2.34 1.61 1.48 1.20
(C)NLCτ (1)48 9793 5.21 50.19 2.25 4.76e17 3.13e9 1.67e7 1009
(D) NLC depth 49 7376 7.06 59.9 3.06 4.90e17 3.74e9 4.28e12 1.38e11
(E) Lin. app. err. 0.222 0.030 0.075 0.0024 0.276 0.155 2.000 0.178

Table 1: Activation functions used in this study with important metrics. See main text for explanation
and section E.4 for details.

In figure 2, we plot in blue all points corresponding to architectures that have skip connections.
Philipp et al. (2018) argued that skip connections reduce the gradient growth of general architec-
tures as well as make a further contribution to performance. Correspondingly, we find that skip
connections lead to lower NLC values and to lower test errors for a given NLC level. To enable a
more convenient visual comparison, we plot results for architectures with and without skip connec-
tions separately in section B.3.

5 ON THE LINEAR APPROXIMABILITY OF ACTIVATION FUNCTIONS

In this section, we expose the connection between the NLC and low-level properties of the activation
functions the network uses. Given a 1d activation function τ , we define

NLCτ (σ) :=
σ

Ss∼N (0,σ)τ(s)
Qs∼N (0,σ)τ

′(s)

It is easy to check that if the input x is distributed according to a Gaussian with zero mean
and covariance matrix σI , and f simply applies τ to each input component, then we have
NLC(f,D) = NLCτ (σ). Consider a randomly initialized network where each layer is made
up of a fully-connected linear operation, batch normalization, and an activation function τ that is
applied component-wise. It turns out that if the network is sufficiently wide, the pre-activations of
τ are approximately unit Gaussian distributed. This follows from the central limit theorem (Poole
et al., 2016). Hence, we expect each layer to contribute approximately NLCτ (1) to the nonlinearity
of the entire network. To verify this, we train a 2-layer network with batchnorm, which contains
a single copy of τ at the single hidden layer. In table 1, we show NLCτ (1) for all 8 activation
functions we used (line A), as well as the median empirical NLC over 10 random initializations of
the 2-layer network (line B). We indeed find a close match between the two values. We then mea-
sure the NLC of 49-layer batchnorm networks, which contain 48 activation functions. For 6 out of
8 activation functions, this NLC (line D) closely matches the exponentiated NLCτ (1)48 (line C).
Hence, we find that nonlinearity compounds exponentially and that the NLC of a network is closely
tied to which activation function is used. Note that the reason that the NLC value of the ‘square’
and ‘odd square’ activation functions diverge from NLCτ (1)depth−1 at high depth is because those
activation functions are unstable, which causes some inputs to growth with depth whereas the vast
majority of inputs collapse to zero.

We then verified that NLCτ is a meaningful measure of nonlinearity for an activation function. We
computed the best linear fit for each τ given unit Gaussian input and then measured the ratio of the
power of the signal filtered by this best linear fit over the power of the preserved signal. In table
1(line E), we find that for ReLU, SELU, tanh, sigmoid and Gaussian activation functions, there is
a close correspondence in that this linear approximation error is around NLCτ (1) − 1. While this
relationship breaks down for the 3 most nonlinear activation functions, their linear approximation
error still exceeds those of the other 5. We conclude that NLCτ is a meaningful measure of nonlin-
earity and that the NLC of an architecture can be calibrated by changing the linear approximability
of the activation functions used.

1
1s>01.0507s+ 1s<01.75814(e

s − 1) (Klambauer et al., 2017)
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6 ON THE ROBUSTNESS OF THE NLC VS OTHER METRICS - RELATED WORK

In this section, we discuss how the NLC compares against other metrics that are used for predicting
test error in the deep learning field. We focus our analysis on five popular and representative ex-
amples: the gradient vector components, the size of gradient vector length, the Lipschitz constant,
correlation information preservation, and depth. We find that each metric is susceptible to very sim-
ple confounders that render them unreliable in practice. The NLC, by design, is invariant to all these
confounders.

Gradient vector component size Historically, there has not been a well-accepted metric for de-
termining the presence of pathological exploding or vanishing gradients. Recently, Schoenholz et al.
(2017); Yang & Schoenholz (2017); Glorot & Bengio (2010) used the magnitude of gradient vector
components for this job. We paraphrase this metric as Qi,x d`dx (i) and abbreviate it as GVCS. This
metric has at least two drawbacks that render it unreliable in practice.

The first drawback is that this metric is confounded by simple multiplicative rescaling. For example,
assume we are using a plain network that begins with a linear operation followed by batch normal-
ization or layer normalization (Ba et al., 2016). Then we can re-scale the input data with an arbitrary
constant c and not only preserve the output of the network in the initialized state, but the entire tra-
jectory of the parameter during training and therefore the final test error. Yet, multiplying the input
by c causes the GVCS to shrink by c. Thus we can arbitrarily control GVCS while preserving test
error, and therefore GVCS cannot be used as a direct predictor of test error. We observe a similar
effect when the network output is re-scaled with a constant c. This causes GVCS to grow by c. As
long as the loss function can handle large incoming values, which softmax+cross-entropy can do
at least in some circumstances (Yang & Schoenholz, 2017), we can again control GVCS arbitrarily
without compromising performance.

This drawback shows up in even more insidious ways. Consider a plain network with activation
functions of form τ(s) = 1 + 1

k sin(ks). As k → ∞, τ eliminates all meaningful structure in
the input data. The NLC converges to infinity to reflect this. Yet, GVCS is stable. Examining the
NLC, we find that the increase in nonlinearity is captured by the Qi(Sxf(x, i)) term, but not by the
gradient. The crux is that the variability of the network output is down-scaled in proportion to the
increase in nonlinearity, and this confounds the GVCS. The same effect occurs with He-initialized
plain ReLU networks as depth increases.

The second drawback is that the GVCS is also confounded by changing the width of the network.
For example, consider a network that begins with a linear operation and has input dimension din.
Then we can increase the input dimension by an integer factor c by duplicating each input dimension
c times. We can approximately maintain the learning dynamics by reducing the scale of initial
weights of the first linear operator by

√
c and the learning rate for that operator by c. Again, this

transformation leaves the NLC unchanged but reduces GVCS by
√
c, allowing us again to control

GVCS without compromising performance.

Gradient vector length / Lipschitz constant While less popular than GVCS, these two metrics
are also used as a predictor for network performance (e.g. He et al. (2015) / Cisse et al. (2017)
respectively). Both metrics are susceptible to multiplicative scaling just as GVCS, and the same
examples apply. However, in contrast to GVCS, they are not susceptible to a change in input width.

Correlation information Correlation information was recently proposed by Schoenholz et al.
(2017); Yang & Schoenholz (2017). They claim that preserving the correlation of two inputs as
they pass through the network is essential for trainability, and hence also for a low test error. How-
ever, this metric also has an important confounder: additive bias.

Assume we are using a network that employs batchnorm. Then biases in the features of the input
do not significantly affect learning dynamics, as this bias will be removed by the first batchnorm
operation. Yet, adding a constant c to the input can arbitrarily increase correlation between inputs
without affecting the correlation of the outputs. So, again, the degree of correlation change through
the network can be increased arbitrarily without altering network performance.
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Figure 4: Depth versus test error.

Depth A large body of work has detailed the benefits of depth
in neural networks (e.g. Montafur et al. (2014); Delalleau &
Bengio (2011); Martens et al. (2013); Bianchini & Scarselli
(2014); Shamir & Eldan (2015); Telgarsky (2015); Mhaskar &
Shamir (2016)). Most of these works focus on finding specific
functions which can be represented easily by deep networks, but
require a prohibitively large number of neurons to represent for
a shallow network. In figure 4, we plot the test error achieved by
our architectures on CIFAR10 against depth. We find that there
is actually a positive correlation between both quantities. We
suspect this is mainly because deeper networks tend to have a
larger NLC. Of course, depth cannot be used as a direct predic-
tor of performance as it does not account for all the confounders
discussed throughout this section.

7 DISCUSSION AND CONCLUSION

We introduced the nonlinearity coefficient, a measure of neural
network nonlinearity that is closely tied to the relative diameter of linearly approximable regions in
the input space of the network, to the sensitivity of the network output with respect to small input
changes, as well as to the linear approximability of activation functions used in the network. Because
of this conceptual grounding, because its value in the randomly initialized state is highly predictive
of test error while also remaining somewhat stable throughout training, because it is robust to simple
network changes that confound other metrics such as raw gradient size or correlation information,
because it is cheap to compute and conceptually simple, we argue that the NLC is the best standalone
metric for predicting test error in fully-connected feedforward networks. It has clear applications to
neural architecture search and design as it allows sub-optimal architectures to be discarded before
training. In addition to a right-sized NLC, we also found that avoiding excessive output bias and
using skip connections play important independent roles in performance.

This paper makes important contributions to several long-standing debates. We clearly show that
neural networks are capable of overfitting when the output is too sensitive to small changes in the
input. In fact, our random architecture sampling scheme shows that such architectures are not un-
likely to arise. However, overfitting seems to be tied not to depth or the number of parameters, but
rather to nonlinearity. In contrast to Schoenholz et al. (2017); Xiao et al. (2018), we find that a very
high output sensitivity does not harm trainability, but only generalization. This difference is likely
caused by our very extensive learning rate search and 64 bit precision training.

While the popular guidance for architecture designers is to avoid exploding and vanishing gradients,
we argue that achieving an ideal nonlinearity level is the more important criterion. While the raw
gradient is susceptible to confounders and cannot be directly linked to meaningful network proper-
ties, the NLC captures what appears to be a deep and robust property. It turns out that architectures
that were specifically designed to attain a stable gradient, such as He-initialized ReLU networks, in
fact display a divergent NLC at great depth.

It has been argued that the strength of deep networks lies in their exponential expressivity (e.g.
Raghu et al. (2017); Telgarsky (2015)). While we show that the NLC indeed exhibits exponential
behavior, we find this property to be largely harmful, not helpful, as did e.g. Schoenholz et al. (2017).
While very large datasets likely benefit from greater expressivity, in our study such expressivity only
leads to lack of generalization rather than improved trainability. In fact, at least in fully-connected
feedforward networks, we conjecture that great depth does not confer significant practical benefit.

In future work, we plan to study whether the ideal range of NLC values we discovered for our
three datasets (1 / NLC / 3) holds also for larger datasets and if not, how we might predict this
ideal range a priori. We plan to investigate additional causes for why certain architectures perform
badly despite a right-sized NLC, as well as extend our study to convolutional and densely-connected
networks. We are interested in studying the connection of the NLC to e.g. adversarial robustness,
quantizability, sample complexity, training time and training noise. Finally, unfortunately, we found
the empirical measurement of the NLC to be too noisy to conclusively detect an underfitting regime.
We plan to study this regime in future.
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depth 2 5 10 15 20 25 50
NLC 1.22 2.25 5.97 15.2 37.7 95.8 9952

Illustration

Table 2: Illustration of the function computed by fully-connected batchnorm-ReLU networks at
different depths in the randomly initialized state. Each disc represents a 2D subspace of the input
space and each color corresponds to a different region of the output space. CIFAR10 was used to
compute the NLC.

A THE NLC EXPLAINED PICTORIALLY
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Figure 5: 1d pictorial illustration
of the NLC

The goal of this section is to provide an intuitive, graphical ex-
planation of the NLC in addition to the mathematical derivation
and analysis in section 3 for readers interested in developing a
better intuition of this concept.

A.1 1D TOY EXAMPLE

In figure 5, we illustrate the meaning of the NLC in the case of
an example function f with a single input and output dimension,
and a bounded domain D and co-domain F. f is a simple sin
curve, shown in blue. x1 and x2 are two sample inputs. We plot
the location of (x1, f(x1)) in red and the location of (x2, f(x2))
in olive. The thick red and olive lines correspond to the local
linear approximation of f at x1 and x2 respectively, which is
simply the tangent line of the blue curve. The shaded olive and
red regions correspond to the intervals in which the local linear
approximations fall inside the co-domain F.

It is easy to check that the proportion of the domain covered
by the red interval and olive interval is diameter(F)

f ′(x1)diameter(D) and
diameter(F)

f ′(x2)diameter(D) respectively. The insight behind the NLC is that
both linear approximations can only be accurate while they remain inside their respective shaded
area, or at least close to it. This is evidently true in both cases, as both tangent lines quickly move
away from the co-domain outside the shaded region. In the case of x2, this bound is also tight as
the tangent tracks f closely everywhere in the olive region. However, in the case of x1, the bound is
loose, as the red line completely decoupled from f throughout a large part of the red region.

The inverse value, f
′(x)diameter(D)

diameter(F) , can be viewed as the number of shaded regions required to cover
the entire domain. The NLC is simply the generalization of this concept to multiple dimensions,
where the diameter is proxied with the average distance of two points, and the expectation is taken
over the data distribution. It is worth noting that the NLC attempts to measure the ratio of diameter
of domain and linearly approximable region, not the ratio of volumes. Informally speaking, the
number of linearly approximable regions required to cover the domain behaves as NLCdin .

A.2 2D NEURAL NET EXAMPLE

In this section, we illustrate the function computed by neural networks at varying levels of non-
linearity. Specifically, in Table 2, we depict the function computed by plain, fully-connected, He-
initialized batchnorm-ReLU networks at seven different depths in their randomly initialized state.

We set dout = 3 and set the width of all other layers to 100. We then generated three 100-dimensional
Gaussian random inputs x(1), x(2) and x(3). We associated each point (a, b, c) that lies on the unit
sphere in R3, i.e. that has a2 + b2 + c2 = 1, with the value ax(1) + bx(2) + cx(3). We call the sphere
of points (a, b, c) associated with these inputs the “input sphere”.

11



Under review as a conference paper at ICLR 2019

Training run index (training error)

F
re
q
u
en
cy

waveform-noise(B)CIFAR10(A)

6050403020100

8

7

6

5

4

3

2

1

0

Training run index (validation error)

F
re
q
u
en
cy

CIFAR10(A)

4035302520151050

60

50

40

30

20

10

0

Figure 7: Frequency with which each training run minimized the validation error on CIRAR10 (A)
/ training error on waveform-noise (B). Note: Architectures which did not achieve a better-than-
random test error were omitted in (A) and architectures that did not achieve a better-than-random
training error were omitted in (B). We set those thresholds at 80% for CIFAR10 (10 different labels)
and 50% for waveform-noise (3 different labels).

Figure 6: Coloring of the output
sphere used for the illustrations
in table 2, shown as an azimuthal
projection.

We propagate each of those inputs forward through the net-
work. We obtain a 3-dimensional output, which we divide by
its length. Now the output lies on the unit sphere in R3. Each
point on that “output sphere” is associated with a color as shown
in figure 6. Finally, we color each point on the input sphere ac-
cording to its respective color on the output sphere.

These colored input spheres are shown in table 2 as azimuthal
projections. The RGB values of colors on the output sphere are
chosen so that the R component is largest whenever the first out-
put neuron is largest, the G component is largest whenever the
second output neuron is largest and the B component is largest
whenever the third output neuron is largest. If we imagine that
the output is fed into a softmax operation for 3-class classifica-
tion, then “purer” colors correspond to more confident predic-
tions.

For comparison, we show the NLC on CIFAR10 for batchnorm-
ReLU networks of the same depth (median of 10 random initial-
izations). We find that as depth and the NLC of the network in-
creases, the color, and thus the value of the output, change more
and more quickly. Of course, this chaotic behavior of the output correspondingly implies smaller
linearly approximable regions.

B LARGE-SCALE EMPIRICAL STUDY - ADDITIONAL RESULTS

In this section, we expand upon findings from our large-scale empirical study that were outlined in
section 4.

B.1 WHAT IS THE IDEAL LEARNING RATE?

One of the hallmarks of our study was the fact that we conducted an exhaustive search over the
starting learning rate for training with SGD. We trained our 750 architectures with 40 different
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Figure 8: Starting learning rate of the selected training run for minimizing validation error on CI-
FAR10 (A) and minimizing training error on waveform-noise (B). Note: Architectures which did not
achieve a better-than-random test error were omitted in (A) and architectures that did not achieve a
better-than-random training error were omitted in (B). We set those thresholds at 80% for CIFAR10
(10 different labels) and 50% for waveform-noise (3 different labels).

starting learning rates each. Those learning rates formed a geometric sequence with spacing factor
3. The sequence was not the same for each architecture. In fact, the smallest of the 40 learning rates
was chosen so that the weight update could still be meaningfully applied in 32 bit precision. See
section E.2 for details. Of course, this was simply a heuristic, with the aim of providing a range of
learning rates that would contain the ideal learning rate with very high probability.

To verify that this goal was achieved, in figure 7A, we plot a histogram of the index of the training
run that yielded the lowest validation error for CIFAR10. The training run with index 1 used the
lowest starting learning rate, whereas the training run with index 40 used the largest starting learning
rate. Note that we did not plot architectures that did not attain a test error of under 80%, i.e. a non-
random test error, as for those architectures the learning rate was not chosen meaningfully. We find
that while a wide range of training run indeces were chosen, there was a wide margin on each side of
training runs that were never chosen. This is precisely what that confirms that, with high probability,
we found the ideal learning rate for each architecture that has the potential to generalize.

We also retrained 50 randomly chosen waveform-noise architectures without applying early stop-
ping based on the validation error. Instead, we continued training to determine the lowest training
classification error that could be achieved. The results were plotted in figure 3D. For this exper-
iment, we used 60 training runs. Here, the smallest starting learning rate was chosen so that the
weight updates could still be meaningfully applied in 64 bit precision. In figure 7B, we find that
indeed the range of training run indeces used is much wider. For 2 architectures, the chosen training
run falls outside the range of the original 40 training runs.

We hypothesized that architectures that have very high NLCs and cannot generalize are nonethe-
less trainable with very small learning rates in 64 bit precision. This is precisely what we find in
practice. In figure 8, we plot the NLC in the randomly initialized state against the starting learning
rate corresponding to the chosen training run. Figure 8A depicts learning rates which minimized
validation error on CIFAR10 and figure 8B depicts learning rates which minimized training error
on waveform-noise. In other words, we show the same training runs as in figure 7, and again we
removed architectures for which generalization / training failed completely, respectively. While the
range of learning rates that lead to good generalization falls in a comparatively smaller range, some
architectures can be trained successfully with a learning rate as small as 5e-18!

In general, the reason for this trend is that a large NLC is associated with large gradients, and these
gradients need to be down-scaled to keep weight updates bounded. Intriguingly, figure 8B suggests
that as the NLC grows, the learning rate should decay as the square of the NLC. This observation
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Figure 9: Detailed results from our empirical study. See main text for explanation and section E.2
and E.3 for further details.

mirrors that of Philipp et al. (2018), who observed that the magnitude of weight updates should scale
inversely as the gradient increases, which would require the learning rate to scale with the inverse
square.

B.2 THE IMPORTANCE OF AVOIDING EXCESSIVE OUTPUT BIAS

In figure 3A, we show that high bias before training, defined as Qj,xf(x,j)
Qj(Sxf(x,j)) , leads to high test error.

In figure 9, we investigate this quantity further. In figure 9A, we find that just like the NLC, the
bias decreases during training in many cases. In fact, it often reaches a near-zero value. In figure
9B, we find that this is in fact necessary for the network to achieve a better-than-random test error
at all. This is not entirely surprising for a dataset like CIFAR10, where each label occurs equally
frequently. In figure 9C, we show that many architectures (those near the bottom of the chart) attain
a high bias but a low NLC. This confirms that a high makes an independent contribution to test error
prediction. All bias values were computed on the training set.

Finally, we note that at the time of writing, we are working on an “improved” version of SGD
that can successfully train high-bias architectures and enable them to generalize. Discussing this
algorithm, as well as the other signals that exist in figure 9 (many architectures cluster around 1D
subspaces in all three graphs ...), unfortunately, goes beyond the scope of this paper.

B.3 THE VALUE OF USING SKIP CONNECTIONS

In figure 2, we show in blue all architectures that have skip connections, whereas we show in black
architectures without skip connections. In that figure, we find that architectures with skip connec-
tions not only exhibit a lower NLC overall, but also tend to outperform architectures without skip
connections that have similar NLCs.

As it can be hard to distinguish colors in a scatter plot, in figure 10, we plot the results for both
types of architectures separately. Both the first row of graphs (A/B/C) and the second row of graphs
(D/E/F) are identical to figure 2, except the top row shows only architectures without skip connec-
tions and the bottom row shows only architectures with skip connections. The difference in behavior
is clear.

C ARCHITECTURE SAMPLING

In this section, we describe the randomly sampled architectures that we used for our large-scale
study.

Each network layer is composed out of a fully-connected linear operation with bias and an activation
function. Some architectures have a normalization operation between the linear operation and the
activation function. The last layer does not contain an activation function. Some architectures have
skip connections, which always bypass two layers as in He et al. (2016). They start after either the
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Figure 10: Both the first row of graphs (A/B/C) and the second row of graphs (D/E/F) are identical
to figure 2, except the top row shows only architectures without skip connections and the bottom
row shows only architectures with skip connections. Again, red color indicates architectures with
high output bias.

linear operation or after the normalization operation. They end after the linear operation. The first
skip connection begins after the linear or normalization operation in the first layer. The last skip
connections ends after the linear operation in the last layer. All skip connections are identity skip
connections, except the last skip connection, which has different input and output widths dskip in and
dskip out respectively. The last skip connection multiplies the incoming signal with a dskip out×dskip in
submatrix of a max(dskip in, dskip out) ×max(dskip in, dskip out) uniformly random orthogonal matrix,

multiplied by max(1,
√

dskip out

dskip in
). The multiplier is chosen to approximately preserve the scale of

the incoming signal in the forward pass. This projection matrix is not trained and remains fixed
throughout training.

Each architecture was selected independently at random via the following procedure.

• depth: Depth is chosen uniformly from the set of odd numbers between and including 3
and 49. We used odd numbers to avoid conflicts with our skip connections, each of which
bypass two linear operations but do not bypass the first linear operation.

• width: Width was chosen automatically as a function of depth so that the number of train-
able parameters in the network is approximately 1 million. The width of all layers except
the input and output layer, which are determined by the data, is identical.

• linear operation: A doutgoing × dincoming-dimensional weight matrix is initialized as a
doutgoing × dincoming-submatrix of a max(dincoming, doutgoing) × max(dincoming, doutgoing) uni-

formly random orthogonal matrix, multiplied by max(1,
√

doutgoing

dincoming
). The advantages of

orthogonal over Gaussian matrices have been documented by e.g. Saxe et al. (2014); Pen-
nington & Worah (2017); Helfrich et al. (2018); Arjovsky et al. (2016); Xiao et al. (2018);

Pennington et al. (2017). We used the multiplier of max(1,
√

doutgoing

dincoming
) so that the scale of

the signal is approximately preserved as it passes forward through the weight matrix, which
is a well-accepted practice for avoiding exponential growth or decay in the forward pass
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used in e.g. He initialization (He et al., 2015) and SELU initialization (Klambauer et al.,
2017). With a probability of 50%, we initialize the all trainable bias vectors as zero vectors
and with a probability of 50%, we initialize their components as independent zero mean
Gaussians with a variance of 0.05. We took the 0.05 value from Schoenholz et al. (2017). If
the biases are initialized as nonzero, we scale the weight matrices with a factor of

√
0.95 to

approximately preserve the scale of the output of the entire linear operation. Finally, with
a 25% probability, we then additionally multiply all weight matrices and biases jointly by
0.9 and with a 25% probability, we multiply them jointly by 1.1.

• normalization: With a 50% probability, no normalization is used. With a 25% probability,
batch normalization (Ioffe & Szegedy, 2015) is used. With a 25% probability, layer nor-
malization (Ba et al., 2016) is used. Normalization operations do not use trainable bias and
variance parameters.

• activation function: We select one of the 8 activation functions shown in figure 1. We select
ReLU, SeLU and Gaussian with probability 2

11 each and tanh, even tanh, sigmoid, square
and odd square with probability 1

11 each. We downweighted the probabilities of tanh,
even tanh and sigmoid as we considered them similar. The same holds for square and odd
square. After choosing the initial activation function, we added additional modifications.
If the initial activation function is τ(s), we replace it by cτ(ds + t) + b. First, d and t
are chosen. d is 1 with a 50% probability, 1.2 with a 25% probability and 0.8 with a 25%
probability. t is 0 with a 50% probability, 0.2 with a 25% probability and -0.2 with a 25%
probability. Then, with a 50% probability, we set b so that if s follows a unit Gaussian
distribution, τ(s) is unbiased, i.e. Es∼N (0,1)τ(s) = 0. Debiasing follows the example of
Arpit et al. (2016). Finally, we always set c so that if s is a unit Gaussian, then Qsτ(s) = 1.
Again, this follows the principle of avoiding exponential growth / decay in the forward pass
as mentioned above. d, b, c and t are fixed throughout training.

• skip connections: With a 50% probability, no skip connections are used. With a 25%
probability, skip connections of strength 1 are used, as is usually done in practice. With a
25% chance, we choose a single value uniformly at random between 0 and 1 and set the
strength of all skip connections to that value. With a 50% chance, all skip connections start
after the linear operation. With a 50% chance, they start after the normalization operation.
We introduced these variations to obtain a more diverse range of NLCs amongst networks
with skip connections. Note that normalizing the signal between skip connections rather
than only within a skip block reduces the gradient damping of the skip connections for
reasons related to the k-dilution principle (Philipp et al., 2018).

After sampling, we apply one step of post-processing. All networks that have square or odd square
activation functions, or skip connections, that also do not have normalization were assigned either
batch normalization or layer normalization with 50% probability each. This is, again, to avoid
exponential instability in the forward pass. This post-processing lead to the following changes in
aggregate frequencies: no normalization - 20.4%, batchnorm - 39.8%, layer norm - 39.8%.

We sampled 250 architectures for each of three datasets. Results pertaining to those architectures
are shown in figures 1, 2, 3, 4, 7, 8 and 9.

We used softmax+cross-entropy as the loss function, as is done in the overwhelming number of
practical cases. Crucially, after initializing each architecture, we measured the scale c of activations
fed into the loss function, i.e. c = Qx,jf(x, j). We then had the loss function divide the incoming
activations by c before applying softmax. This was done so that the loss functions, which yields
very different training dynamics when presented with inputs of different sizes, did not confound the
outcomes of our study. We believe that the preference of softmax+cross-entropy for outputs of a
certain size has confounded the results of studies in the past. c remained fixed throughout training.

When designing our sampling scheme, we attempted to strike a balance between relevance and
diversity. On the one hand, we did not want to include architectures that are pathological for known
reasons. We initialized all architectures so that the signal could not grow or decay too quickly in
the forward pass. Also, we always used orthogonal initialization. The advantages of orthogonal
initialization over Gaussian initialization, at least for fully-connected layers has, in our opinion,
been demonstrated to the point where we believe this should be the default going forward.
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On the other hand, we introduced many variations such as activation function dilation and shift, and
skip connection strength that made our architectures more diverse. While those variations are not
necessarily common in practice, we made sure that we never deviated from the “default case” by a
large amount in any particular area.

D DATASETS

D.1 SELECTION

We wanted to conduct experiments on three different datasets. First, we chose MNIST and CIFAR10
as they are the two most popular datasets for evaluating deep neural networks, and are small enough
so that we could conduct a very large number of training runs with the computational resources
we had available. The MNIST dataset is composed of 28 by 28 black and white images of hand-
written digits associated with a digit label that is between 0 and 9 (citation: MNIST-dataset). The
CIFAR10 dataset is composed of 32 by 32 color images of objects from 10 categories associated
with a category label (citation: CIFAR10-dataset).

We decided to choose our third dataset from the UCI repository of machine learning datasets. Klam-
bauer et al. (2017) recently validated the SELU nonlinearity, which has since become popular, on a
large number of datasets from this repository. We wanted to choose a dataset that Klambauer et al.
(2017) also used. To decide upon the specific dataset, we applied the following filters:

• The most frequent class should not be more than 50% more frequent than the average class.

• The dataset should contain between 1.000 and 100.000 datapoints.

• Datapoints should contain at least 10 features.

• The dataset should not be composed of images, as we already study 2 image datasets.

• The dataset should not contain categorical or very sparse features.

• We only considered datasets that we were actually able to find on the repository website.

After applying all these filters, we were left with two datasets: waveform and waveform-noise. They
are very similar. We chose the latter because of the greater number of input features. The inputs of
the waveform-noise dataset are composed of wave attributes. Each input is associated with one of
three category labels based on the wave type (citation: waveform-noise dataset).

D.2 PROCESSING

For waveform-noise, we normalized the mean and variance of the features. We processed CIFAR10
via the following procedure.

1. We normalize the mean and variance of each datapoint.

2. We normalize the mean of each feature.

3. Via PCA, we determine the number of dimensions that hold 99% of the variance. That
number is 810.

4. We map each datapoint to an 810-dimensional vector via multiplication with a 3072× 810
submatrix of a 3072× 3072 uniformly random orthogonal matrix.

5. Finally, we multiply the entire dataset with a single constant so that we obtain Qx,ix(i) = 1.

We used the exact same procedure for MNIST, except that the number of dimensions of the final
dataset was 334 instead of 810.

During preliminary experiments, we found that this pre-processing scheme lead to faster training
and lower error values than training on the raw data where only the features are normalized. The
reason we designed this scheme in the first place was to reduce input dimensionality so that we could
avoid an excessive amount of computation being allocated to the first layer, which would strain our
computational budget.
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The MNIST dataset contains 60.000 training data points and 10.000 test data points. The training
data was randomly split into a training set of size 50.000 and validation set of size 10.000. The
CIFAR10 dataset contains 50.000 training data points and 10.000 test data points. The training
data was randomly split into a training set of size 40.000 and a validation set of size 10.000. The
waveform-noise dataset contains 5.000 data points, which were randomly split into a training set of
size 3.000, a validation set of size 1.000 and a test set of size 1.000.

As mentioned, for CIFAR10, our input dimensionality was 810. For MNIST, it was 334. For
waveform-noise, it was 40. For CIFAR10 and MNIST, the output dimensionality / number of classes
was 10. For waveform-noise, it was 3.

E EXPERIMENTAL DETAILS

E.1 LINEARLY APPROXIMABLE REGIONS STUDY (FIGURE 1)

We begin by defining the relative diameter of a linearly approximable region for a given network
f , input x from distribution D, input direction u ∈ Rdin and output direction v ∈ Rdout . Starting
from x, traversing the input space k times for some fractional value k in the direction of u yields
x′′ := x + ku

||u||22Qi(Sxx(i)) . As in the definition of the NLC, we use 2Qi(Sxx(i)) as a proxy for
the diameter of the input space. The radius of the linearly approximable region, relative to the size
of the input space, is then the largest value of k such that the linear approximation induced by the
Jacobian at x is still close to the true value of f at x′′. Therefore, we take the diameter of the
linearly approximable region, relative to the size of the input space, as the largest value of k such
that the linear approximation induced by the Jacobian at x is still close to the true value of f at
x′ = x+ ku

||u||2Qi(Sxx(i)) . (Note that x′ is simply twice as far from x as x′′.) Specifically, we define
“close” as 1

2 (f(x′) − f(x))T v ≤ (J (x)(x′ − x))T v ≤ 2(f(x′) − f(x))T v. In plain words, the
change in function value in the direction of v predicted by the local linear approximation must be at
least half and at most 2 times the actual change in function value.

We now generalize this quantity to minibatches, in order for it to be meaningfully defined for net-
works using batchnorm. Again, consider some network f . Now also consider a data batch X ∈
Rdin×b containing b randomly drawn datapoints from D. Also consider an input direction matrix
U ∈ Rdin×b and output direction matrix V ∈ Rdout×b. Now we define the relative diameter of the lin-
early approximable region as the largest k such that when settingX ′ = X+ kU

||U ||2Qi(Sx a column ofXx(i)) ,
we have 1

2 (f(X ′)− f(X)).V ≤ (J (X)(X ′−X)).V ≤ 2(f(X ′)− f(X)).V . Here f can be taken
to be applied independently to each column of X if it does not use batchnorm and is taken to be
applied jointly to all inputs in X if f does contain batchnorm.

The “largest k” is computed by starting with k = 10−9 and then checking the condition for in-
creasing k until it fails. The values of k we checked formed a geometric series with spacing factor
10

1
10 . We could not reliably check smaller values of k due to numerical underflow, which is why

architectures with an NLC less than 10−9 are not shown in figure 1.

For each architecture, we considered a single random initialization. All values were computed in
the randomly initialized state. No training was conducted. We use 10 minibatches of size 250 from
the respective dataset and draw 10 random Gaussian U and 10 random Gaussian V . We obtain one
relative region size value for each of 10 ∗ 10 ∗ 10 = 1000 configurations. Finally, in figure 1, we
report the median across those 1000 values for each architecture.

The NLC is computed as described in section G.

E.2 PREDICTIVENESS STUDY (FIGURES 2, 3, 4, 7, 8, 9 AND 10)

For each architecture, we considered a single random initialization. We trained them with SGD
using minibatches of size 250. To ensure that there is no bias with regards to learning rate, we
tuned the starting learning rate independently for each architecture by conducting a large number
of training runs with various starting learning rates. A training run is conducted as follows. We
train with the starting learning rate until the validation classification error (VCE) has not decreased
for 10 epochs. Then we rewind the state of the network by 10 epochs (when the lowest VCE was
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achieved), divide the learning rate by 3 and continue training until the validation classification error
has not improved for 5 epochs. We divide the learning rate by 3 again, rewind and continue training
until the validation classification error has not improved for 5 epochs. This process continues until
the step size has been divided by 3 ten times. When the VCE has again not improved for 5 epochs,
we rewind one last time and terminate the training run.

For each architecture we completed 40 total training runs with 40 different starting learning rates
that form a geometric series with spacing factor 3. For each architecture, the smallest starting
learning rate considered was computed as follows. We ran the SGD optimizer for 1 epoch with
a learning rate of 1 without actually applying the updates computed. For the weight matrix in each
layer, we thus obtained one update per minibatch. Let δWlb denote the update obtained for layer
l and minibatch b and Wl the initial value of the weight matrix in layer l. Finally, we used the
value 10−8

∑
l
Qb||δWlb||F
||Wl||F as our smallest starting learning rate. The rational behind this choice

was that no individual weight matrix update obtained with the smallest starting learning rate would
perturb any weight matrix during any iteration by more than approximately 10−8. We chose 10−8

specifically so that our smallest starting learning rate would be less than the smallest learning rate
that can be meaningfully used under 32 bit precision. Nonetheless, we trained all networks using 64
bit precision.

Of course, this choice of smallest starting learning rate is merely a heuristic. We validated this
heuristic by checking that no architecture that obtained a non-random test error attained its lowest
validation error with either the smallest five or largest five starting learning rates. This condition
was fulfilled for all architectures and datasets. Henceforth, we refer to the ‘trained network’ as the
network that was obtained during the training run that yielded the lowest validation classification
error and the ‘initial network’ as the network in the randomly initialized state.

In figure 7, we show which training runs were used and in figure 8, we show which learning rates
were used, plotted against the NLC of the initial network. The NLC was computed as in section G.

In figure 2, we plot the test error of the trained network against the NLC of the initial network,
again, computed as in section G. We mark in red all points corresponding to architectures for which
1000Qj(Sxf(x, j)) < Qj,xf(x, j) for the initial network. We mark in blue all points corresponding
to architectures that have skip connections. In figure 4, we plot depth versus test error of the trained
network.

In figure 3A, we plot the bias value Qj,xf(x,j)
Qj(Sxf(x,j)) of the initial network against the test error of the

trained network. In figure 3B, we plot the NLC of the initial network against the NLC of the trained
network. If figure 3C, we plot the NLC of the trained network against the test error of the trained
network. In both 3B and 3C, the NLC was computed on the training set. However, the value of the
NLC computed on the test set was very similar.

We further compare the bias of the initial network against the bias of the trained network, against
test error and against the NLC of the initial network in figure 9. The bias and NLC were always
computed on the training set. In figure 10, we break down the results of figure 2 into architectures
with skip connections and architectures without skip connections.

We then selected 50 random architectures from our 250 waveform-noise architectures. We then
trained these architectures again, with two changes to the protocol: We reduced the learning rate
by a factor of 3 only once the training classification error had not been reduced for 10 / 5 epochs
respectively; and we considered 60 different step sizes which formed a geometric series with spacing
factor 3 and start value 10−16

∑
l
Qb||δWlb||F
||Wl||F . Therefore, we considered even the smallest step size

that was meaningful for 64 bit precision training. This change allowed us to successfully train even
architectures with very high NLC. See section B.1 for an analysis on this point. The reason we only
trained 50 architectures for this scenario is because training can take a very long time without using
the validation set for early stopping, leading to considerable computational expense. The results are
presented in figure 3D.

Finally, for figure 3F, we re-trained our 250 waveform-noise architectures with Adam instead of
SGD. The protocol was the same (40 training runs), except before obtaining our measurements for
δWlb, we first ran Adam for 4 epochs, again without applying updates, in order to warm-start the
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running averages. Only then did we run it for another epoch where we actually gathered values for
δWlb. Again, we verified that the first and last 5 training runs were never used.

E.3 ERROR ROBUSTNESS STUDY (FIGURE 3)

We computed the maximal error-preserving perturbation shown in figure 3E similarly to the linearly
approximable region relative diameter in section E.1. The difference is that instead of requiring that
the local linear approximation be close to the true function, we required that the test error over the
path from X to X ′ be at most 5% higher than than the test error at X . The test error ‘over the
path’ is defined as the fraction of inputs in the batch that were correctly classified everywhere on
the line from X to X ′. Again, we started with k = 10−9 and increased it by 10

1
10 at each step,

checking whether each input is correctly or incorrectly classified. We chose the 5% threshold so that
architectures with a test error of around 90% on CIFAR10 / MNIST would yield finite outcomes.
The values shown in figure 3E are the median over 10 ∗ 10 = 100 values obtained from 10 random
minibatches of size 250 and 10 Gaussian random direction matrices U . The random direction matrix
V used in section E.1 does not come into play here.

E.4 APPROXIMABILITY STUDY (TABLE 1)

NLCτ (1) was computed as defined in section 5. NLCτ (1)48 is simply the exponentiated value.
The linear approximation error is computed as (

Qs∼N(0,1)(τ(s)−τ̄(s))

Qs∼N(0,1)τ̄(s) )2, where τ̄ is the best linear fit
to τ for inputs drawn from N (0, 1), i.e. arg minτ̄ linear Qs∼N (0,1)(τ(s)− τ̄(s)).

NLC was computed as in section G. We show the median across 10 random initializations. The
values for different initializations show little variation except for 49-layer networks with square or
odd square activation functions.

F PROOF OF PROPOSITION 1 AND DERIVING THE FORM OF THE NLC

Let A be an m× n matrix and u a random vector of fixed length and uniformly random orientation.
Then we have

Qu||Au||2

= Qu

√√√√ m∑
i=1

(

n∑
j=1

A(i, j)u(j))2

= Qu

√√√√ m∑
i=1

n∑
j=1

n∑
k=1

A(i, j)u(j)A(i, k)u(k)

=

√√√√Eu
m∑
i=1

n∑
j=1

n∑
k=1

A(i, j)u(j)A(i, k)u(k)

=

√√√√ m∑
i=1

n∑
j=1

n∑
k=1

A(i, j)A(i, k)Euu(j)u(k)

=

√√√√ m∑
i=1

n∑
j=1

n∑
k=1

A(i, j)A(i, k)
||u||22
n

δj,k

=
||u||2√
n

√√√√ m∑
i=1

n∑
j=1

A(i, j)2

=
||A||F√

n
||u||2
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as required.

Further, we have

Qx
||J (x)||FQx,x′ ||x− x′||2√
dinQx,x′ ||f(x)− f(x′)||2

=
Qx||J (x)||FQx,x′ ||x− x′||2√
dinQx,x′ ||f(x)− f(x′)||2

=
Qx||J (x)||F

√
Ex,x′ ||x− x′||22√

din
√

Ex,x′ ||f(x)− f(x′)||22

=
Qx||J (x)||F

√
dinEiEx,x′(x(i)− x′(i))2

√
din
√
doutEjEx,x′(f(x, j)− f(x′, j))2

=
Qx||J (x)||F

√
Ei[2Exx(i)2 − 2(Exx(i))2]

√
dout

√
Ej [2Exf(x, j)2 − 2(Exf(x, j))2]

=
Qx||J (x)||F

√
Ei[Exx(i)2 − (Exx(i))2]

√
dout

√
Ej [Exf(x, j)2 − (Exf(x, j))2]

=
Qx||J (x)||FQi

√
Exx(i)2 − (Exx(i))2

√
doutQj

√
Exf(x, j)2 − (Exf(x, j))2

=
Qx||J (x)||FQi(Sxx(i))√

doutQj(Sxf(x, j))

= NLC(f,D)

Here, both x and x′ are drawn independently from D.

G COMPUTING THE NLC

Both Qi(Sxx(i)) and Qj(Sxf(x, j)) can be computed exactly over the dataset in trivial fashion
if f does not use batchnorm. If f does use batchnorm, however, Qj(Sxf(x, j)) depends on
the batch selection. In this case, we replace Qj(Sxf(x, j)) in the definition with the NLC by
Qj(SX,βf(X, j, β)). Here, X is a data batch matrix of dimensionality din × b, where b is the mini-
batch size, each column of X is an independently drawn input from D and β is uniformly drawn
from {1, .., b}. f(X, j, β) is the (j, β)’th entry of the output of f when X is jointly propagated
through the network. In plain terms, we generalize the NLC to batchnorm networks by joining each
input x with every possible minibatch X . We compute Qj(SX,βf(X, j, β)) in practice by simply
dividing the dataset once into minibatches of size 250 and then taking the standard deviation of all
output activation values observed during this single pass.

Now we turn our attention to Qx||J (x)||F . Before we tackle this quantity, we show a property of
the Frobenius norm similar to that shown in proposition 1. Let A be a m× n matrix and let u be an
m-dimensional unit Gaussian vector. Then we have
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Qu||uA||2

= Qu

√√√√ n∑
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m∑
i=1

m∑
k=1

A(i, j)A(k, j)Euu(i)u(k)

=

√√√√ n∑
j=1

m∑
i=1

m∑
k=1

A(i, j)A(k, j)δi,k

=

√√√√ n∑
j=1

m∑
i=1

A(i, j)2

= ||A||F

So, specifically, we have Qx||J (x)||F = Qx,u||uJ (x)||2 for unit Gaussian u. Therefore, we can
estimate Qx||J (x)||F stochastically by replacing the loss gradient at the output layer with Gaussian
random vectors during backpropagation and taking the quadratic expectation over the input gradi-
ent. In practice, we compute Qx||J (x)||F by sampling 100 minibatches of size 250 and clamping
independently drawn unit Gaussian random vectors at the output each time.

Finally, let’s look at Qx||J (x)||F for batchnorm networks. Again, this quantity is dependent on
batch selection. In fact, in the definition of the NLC, we replace Qx||J (x)||F by 1√

b
QX ||J (X)||F ,

where J (X) is a bdout × bdin matrix that contains the gradient of every component of f(X) with
respect to every component of X . It is easy to check that this value equals Qx||J (x)||F for net-
works without batchnorm. In that case, J (X) simply takes the form of a block-diagonal matrix
with the individual J (x) from the batch forming the blocks. As before, we have QX ||J (X)||F =
Qu,X ||uJ (X)||2, where u is a bdout-dimensional unit Gaussian random vector. Hence, just as be-
fore, we can stochastically compute QX ||J (X)||F by sampling random minibatches and back-
propagating what is now effectively a dout× b-dimensional unit Gaussian matrix, and computing the
quadratic expectation on the resulting input gradient. As before, we sample 100 random minibatches
of size 250.
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