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ABSTRACT

Data-parallel neural network training is network-intensive, so gradient dropping
was designed to exchange only large gradients. However, gradient dropping has
been shown to slow convergence. We propose to improve convergence by having
each node combine its locally computed gradient with the sparse global gradi-
ent exchanged over the network. We empirically confirm with machine trans-
lation tasks that gradient dropping with local gradients approaches convergence
48% faster than non-compressed multi-node training and 28% faster compared
to vanilla gradient dropping. We also show that gradient dropping with a local
gradient update does not reduce the model’s final quality.

1 INTRODUCTION

Training a neural network can be slow, especially with a large model or dataset (Raina et al., 2009;
Wen et al., 2017). Distributed training is becoming essential to speed up the process. In data-parallel
training, multiple workers optimize the same parameters based on different parts of the training data
then exchange parameters.

Data-parallel training is network intensive because workers send and fetch gradients that have
the same size as the model. Several techniques have been proposed to reduce the traffic in data-
parallelism training by using quantization to compress the gradient sent (Seide et al., 2014; Alistarh
et al., 2016) or selecting sparse matrices (Strom, 2015; Dryden et al., 2016; Aji & Heafield, 2017;
Lin et al., 2017).

Gradient dropping, and its extension Deep Gradient Compression (Lin et al., 2017), is a recent
approach that compresses the network by sending a small fraction (about 1%) of the largest gradients
(by absolute value). This technique is based on the observation that the gradient values are skewed,
as most are close to zero. An issue with gradient compression is that gradients are compressed so
much that it slows the model’s convergence rate and can reduce the model’s final quality (Aji &
Heafield, 2017).

In vanilla gradient dropping, all nodes update with the same sparse gradient exchanged over the
network, while other parameters are unchanged. However, each node has computed a local gradient
on its own data. Can we exploit this dense local gradient alongside the sparse global gradient to
improve convergence? We propose and evaluate three ways to combine them.

2 RELATED WORK ON GRADIENT COMPRESSION

Compression is a natural way to reduce network traffic. 1-Bit SGD (Seide et al., 2014) and QSGD
(Alistarh et al., 2016) quantize the gradient into a 1-bit matrix. Strom (2015) proposed a threshold-
based quantization where only gradients larger than the threshold are sent. Dryden et al. (2016) and
Aji & Heafield (2017) adapt this idea to instead send the top X% of the gradients. Alternatively,
gradients from several mini-batches can be accumulated before applying an update to reduce the
network cost (Dean et al., 2012; Ott et al., 2018; Bogoychev et al., 2018). Gradient compression can
be seen as a continuous version of gradient accumulation: instead of exchanging all gradients every
so often, large gradients are exchanged rapidly while small gradients accumulate locally.
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Algorithm 1 Gradient dropping on node n

1: procedure SPARSESGD(Ln
t )

2: . Ln
t is a local gradient computed by node n at step t.

3: En
t ← En

t−1 + Ln
t

4: threshold← K-th largest of |En
t |

5: mask ← |En
t | ≥ threshold

6: Sn
t ← mask � En

t
7: En

t ← ¬mask � En
t

8: Gt ← AllReduce(Sn
t )

9: ApplyOptimizer(Gt)
10: end procedure

2.1 GRADIENT DROPPING

Gradient dropping compresses communication by selecting the top 1% of gradients from each node
by absolute value. An optimizer, such as SGD or Adam (Kingma & Ba, 2015), uses the summed
sparse gradients from all nodes. An error feedback mechanism stores unsent gradients and adds
them to the next gradient update before compression (Seide et al., 2014). Without this mechanism,
the model will not converge.

Formally, gradient dropping is outlined in Algorithm 1. For each time step t, each node n produces
a local gradient Ln

t . First, we apply error feedback by adding the unsent gradients from past step
Et−1 to the local gradient Ln

t . The combined gradient is then broken into sparse gradient Sn
t and

residual Et. We combine sparse gradients from every node by using all-reduce and use it to update
the parameter. Although the gradient is sparse, we apply a parameter update on the entire parameter.
This is done to let the optimizer update its momentum and apply momentum movement to the entire
parameter.

Gradient dropping significantly reduces the communication cost in data-parallel training, making
each parameter update faster but degrading convergence per update. When network bandwidth is
the bottleneck, overall time to convergence is reduced.

2.2 DEEP GRADIENT COMPRESSION

Deep gradient compression (DGC) (Lin et al., 2017) introduces four modifications that reduces the
quality damage of gradient dropping. For momentum-based optimizers like Adam (Kingma & Ba,
2015), they apply a correction for missing gradients and masking in the error feedback mechanism.
Additionally, DGC applies gradient clipping locally before compression instead of globally before
applying an optimizer. DGC also warms up the compression rate, sending more in early training.
Our work differs in that we use the local gradients so every parameter has an update. Masking
therefore does not directly port to our work, while gradient clipping and compression warm-up are
equally applicable.

3 COMBINING WITH LOCAL GRADIENT

The issue with gradient dropping is that through the use of lossy compression to compress the
gradient, damage is caused in the gradient making the model harder to learn. DGC fixes this issue
to some extent, but the model still relies on a sparse gradient. We may as well also use the dense
locally computed gradient if we can find a way to combine the two.

Formally, we currently only use the compressed global gradient Gt, as in Algorithm 1 line 9, to
update the model. Instead, we incorporate the local gradient context to gain a better approximation
of the compressed gradient. Let Ln

t be gradient computed locally at time t on node n. Our goal is
to compute a combined gradient Cn

t incorporated with local gradient context from node n at time t.
As described in Algorithm 2, we propose three formulas to obtain Cn

t that will be used to update the
parameter.
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Algorithm 2 Gradient dropping with local gradient incorporation on node n

1: procedure SPARSESGD(Ln
t )

2: . Ln
t is a local gradient computed by node n at step t.

3: En
t ← En

t−1 + Ln
t

4: threshold← K-th largest of |En
t |

5: mask ← |En
t | ≥ threshold

6: Sn
t ← mask � En

t
7: En

t ← ¬mask � En
t

8: Gt ← AllReduce(Sn
t )

9: switch mode do
10: case SUM
11: Cn

t = (Gt + Ln
t )/2

12: case PARTIAL
13: Cn

t = Gt − Sn
t + Ln

t

14: case ERROR
15: Cn

t = Gt + En
t

16: En
t = 0

17: ApplyOptimizer(Cn
t )

18: end procedure

SUM We use the local gradient from each node to predict the general direction of the global gradient.
An arguably naı̈ve way to incorporate the local gradient is to add it to the sparse global
gradient by

Cn
t = (Gt + Ln

t )/2

where we divide the sum by 2 to avoid double counting the computed gradient. We can
ignore this if we apply a scale-invariant optimizer such as Adam.

PARTIAL Since some of the local gradients Ln
t make their way into the sparse global gradient Gt, it

seems unfair to count them twice in the SUM method. We can correct for this by subtracting
the locally-generated sparse gradients Sn

t .

Cn
t = Gt − Sn

t + Ln
t

where the term Gt−Sn
t is equal to the sum of the sparse gradients from every node except

the local node. Therefore, we only use sparse gradients from the other nodes while using a
non-sparsified local gradient.

ERROR Finally, we attempt to incorporate the residual error stored in En
t by simply adding them

to the sparse gradient. However, to avoid using the same gradient over and over, we have to
clear the residual. Therefore, in this approach, instead of accumulating the unsent gradients,
we just apply them as a local context instead. We update the parameter with

Cn
t = Gt + En

t

En
t = 0

Clearing the error at every step is equivalent to removing the error feedback mechanism.
As the error En

t is now only contains the current step’s unsent gradient which is equal to
Ln
t − Sn

t , ERROR is equivalent to PARTIAL without an error-feedback mechanism.

Parameters on each node will diverge because each local gradient is different. To resolve this,
we periodically average the parameters across nodes. Since we must communicate all parameters,
the synchronization should be infrequent enough that it does not significantly effect the overall
training speed in terms of words per second. In this research, we are also considering averaging the
parameters across all nodes for every 500 steps.
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4 EXPERIMENTAL SETUP

Using Marian (Junczys-Dowmunt et al., 2018) as the toolkit, we train on nodes with four P100s each.
Each node is connected with 40Gb Infiniband from Mellanox, and our multi-node experiments use
four nodes.

4.1 MODEL AND DATASET

We test our experiment on the following tasks.

Ro-En Machine Translation: We build a Romanian-to-English neural machine translation system
using all the parallel corpora in the constrained WMT 2016 task (Bojar et al., 2016). The dataset
consists of 2.6M pairs of sentences to which we apply byte-pair encoding (Sennrich et al., 2016a).
Our model is based on the winning system by Sennrich et al. (2016b) and is a single layer attentional
encoder-decoder bidirectional LSTM consisting of 119M parameters. We apply layer normalization
(Lei Ba et al., 2016) and exponential smoothing to train the model for up to 14 epochs or until no
improvement after five validations. We optimize the model with the Adam optimizer.

Training the Ro-En NMT system with this model is fast, so we primarily use the dataset and model
for our development experiments.

En-De Machine Translation: We train another machine translation system on English-to-German
for our large and high-resource model. The corpus consists of 19.1M pairs of sentences after back-
translation. The model is based on the winning system by Sennrich et al. (2017) with eight layers of
LSTM consisting of 225M parameters. The configuration is similar to the previous system as we use
layer normalization and exponential smoothing, train the model for up to eight epochs and optimize
with Adam. Concerned with time to convergence of a single model, we report single model scores
rather than ensemble scores.

4.2 HYPERPARAMETERS

The baseline systems were trained on a single node (Sennrich et al., 2017) but our experiments focus
on multi-node settings. Thus, we apply several adjustments to the hyperparameters to accommodate
the larger effective batch size of synchronous stochastic gradient descent. These hyperparameters
are used in multi-node baselines and experimental conditions.

Synchronous: We follow Lin et al. (2017) in applying synchronous stochastic gradient descent,
so that nodes can easily aggregate internally amongst their GPUs and exchange one copy of the
gradients externally. This differs from Aji & Heafield (2017) where experiments were asynchronous
but confined within a node.

Batch size: Prior work (Aji & Heafield, 2017; Lin et al., 2017) on gradient dropping used relatively
small batch sizes even though larger batches are generally faster due to using more of the GPU. In
all our experiments, we use a workspace of 10GB and dynamically fit as many sentences as possible
for each batch, which provides an average of 450 and 250 sentences per batch per GPU for Ro-En
and En-De, respectively.

Learning rate: The Adam optimizer is scale-invariant, so the parameter moves at the same mag-
nitude with both single and multi-node settings despite having approximately 4x larger gradients in
the multi-node. Therefore, we linearly scale the learning rate by 4x in all experiments to resolve
this, as suggested by Goyal et al. (2017). We use a learning rate of 0.002 in the Ro-En multi-node
and 0.0005 in the Ro-En single-node. Similarly, we use a learning rate of 0.0012 in the En-De
multi-node and 0.0003 in the En-De single-node.

Warm-up: Learning rate warm-up also helps in training with large mini-batch scenario to overcome
model instability during the early stages of training (Goyal et al., 2017). So, we add a learning rate
warm-up for all multi-node experiments by linearly increasing the rate until it reaches the desired
amount after several steps. We apply a warm-up for the first 2000 steps in the Ro-En and 4000 steps
in the En-De experiments. To provide a fair comparison, we also apply the warm-up for the same
number of examples in the multi-node and single-node experiments.

The remaining hyperparameters are equivalent in both single-node and multi-node settings.

4



Under review as a conference paper at ICLR 2019

0 2 4 6 8 10 12 14
Epoch

0

5

10

15

20

25

30

35

BL
EU

BLEU by epoch

baseline
baseline+drop
baseline+drop+DGC
baseline+drop+warmup

Figure 1: Convergence by epoch on Romanian–English training. Gradient dropping takes more
epochs (but not necessarily time) to reach peak performance even with deep gradient compression
and ratio warm-up.

5 RESULTS AND ANALYSIS

5.1 DROP RATIO WARM-UP

Gradient dropping increases the raw training speed from 73k words/second to 116k words/second
in the multi-node Ro-En experiment. However, gradient dropping also damages convergence in the
sense that it takes more epochs to reach peak performance.

DGC is proposed to minimize the convergence damage caused by gradient dropping. While DGC
typically performs better than gradient dropping, we argue that most of the improvement is due to
the compression ratio warm-up. To confirm this, we ran an experiment on the multi-node Ro-En
with a drop ratio warm-up. At the tth step, we discard Rt of the gradient, defined below, with a
warm-up period T . In this case we set T = 1000, which is equal to 3 epochs in Ro-En experiment.

Rt = 0.99max(1,Tt )

The result shown in Figure 1 suggests that the compression ratio warm-up can improve the conver-
gence with gradient dropping. On the other hand, there is no contrast in terms of convergence by
other methods proposed in DGC. Based on this result, we choose to use compression ratio warm-up
for the remainder of the experiments.

5.2 LOCAL GRADIENT UPDATE

We test our proposed techniques to incorporate the local gradient while performing a sparse gradient
update. We base the experiment in a multi-node setting with gradient dropping configured with a
dropping ratio of 99% and a dropping rate warm-up for the first three epochs on the Ro-En dataset.
We also apply each of our local gradient update techniques.

Figure 2 shows convergence after incorporating the local gradient. Using the PARTIAL or SUM
update techniques improves the convergence curve in the early stages of the training as the conver-
gence curves are closer to the baseline. However, the curves are becoming unstable after several
epochs. Finally, we can see that their final qualities are lower, which we attribute to divergence of
the models. However, it is interesting that the models are still capable of learning even with model
inconsistencies between workers.
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Figure 2: Convergence per step of gradient drop-
ping with various local gradient update tech-
niques on the Ro-En multi-node experiment.
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Figure 3: Convergence per step of gradient drop-
ping with various local gradient update tech-
niques and periodic model synchronization on
the Ro-En multi-node experiment.

Table 1: Performance of local gradient update on the Ro-En multi-node experiment.

Model time to reach training time CE Dev. Test
34.5 BLEU BLEU BLEU

baseline 1.38h 3.00h 50.6 35.59 34.45
baseline+drop 1.28h 2.81h 51.4 35.6 33.89
baseline+drop+ERROR 2.08h 2.91h 53.0 35.05 33.33
baseline+drop+ERROR+sync 1.64h 2.91h 52.2 35.36 33.8
baseline+drop+PARTIAL 1.33h 2.91h 51.1 35.4 34.34
baseline+drop+PARTIAL+sync 1.19h 2.58h 50.8 35.6 34.45
baseline+drop+SUM 1.31h 2.97h 51.1 35.36 34.15
baseline+drop+SUM+sync 1.07h 2.91h 51.1 35.64 34.34

We apply periodic model synchronization by doing model averaging across all workers at every 500
steps. As shown in Figure 3, the model is capable of learning and maintaining the same final quality
as the baseline.

To understand the performance better, we capture several details provided in Table 1. Without
synchronization, the model suffers a reduced quality in the development and test BLEU scores.
Using the ERROR local gradient update technique does not seem to benefit the model. On the other
hand, using PARTIAL or SUM with periodic synchronization significantly improves the convergence
curve of the gradient dropping technique, and using PARTIAL appears to provide a more stable result
compared to SUM. PARTIAL also helps the model obtain better cross-entropy and reach convergence
faster, thereby reducing the training time.

5.3 END-TO-END EXPERIMENTS

We train a model on 4 nodes with 4 GPUs each (henceforth 4x4) with gradient dropping, drop ratio
warm-up for 1000 steps, local gradient update using the PARTIAL strategy, and periodic synchroniza-
tion. The baselines are a single-node configuration with 4 GPUs (denoted 1x4) and a 4x4 multi-node
configuration, both with ordinary synchronous SGD. Additionally, we try a 4x4 configuration with
gradient dropping with drop ratio warmup for 1000 steps.

Table 2 summarizes our end-to-end experimental results. In the ideal case, using 4x more workers
should provide a 4x speed improvement. Compressing the gradient reduces the network cost and
significantly improves the raw words/second speed by about 3x over a single-node experiment. Us-
ing local gradient update slightly decreases the average speed as it requires extra communication
cost for the periodic synchronization.
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Table 2: Performance of gradient dropping with local gradient update on different tasks.

Ro-En
Model words/ time to reach training time CE Dev. Test.

second 34.5 BLEU BLEU BLEU
Single-node (1x4) 36058 2.55h 6.39h 50.1 35.56 34.4
Multi-node (4x4) 73216 1.38h 3.00h 50.6 35.59 34.45
+ gradient dropping 116424 1.28h 2.81h 51.4 35.6 33.89
+ local gradient update 112060 1.19h 2.58h 50.8 35.6 34.45

En-De
Model words/ time to reach training time CE Dev. Test.

second 33.5 BLEU BLEU BLEU
Single-node (1x4) 19007 24.94h 63.71h 37.4 34.38 27.48
Multi-node (4x4) 41020 11.69h 31.67h 35.7 34.45 27.81
+ gradient dropping 58000 10.12h 23.58h 36.1 34.38 27.50
+ local gradient update 56836 7.89h 24.37h 35.8 34.52 27.68
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Figure 4: Convergence over time of gradient
dropping with local gradient update on the Ro-
En task.
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Figure 5: Convergence over time of gradient
dropping with local gradient update on the En-
De task.

Although slightly slower, local gradient update significantly improves the convergence speed as
shown in Figures 4 and 5. In both cases, vanilla gradient dropping massively increases the raw speed,
there is no clear improvement on overall convergence time compared to the uncompressed multi-
node training. We significantly reduce training time and the time to reach a near-convergence BLEU
by using a local gradient update. It also shows that local gradient update reduces the quality damage
caused by gradient dropping. Note that the improvement in words/second is greater compared to the
training time in the En-De experiment because the model spends additional time for data and I/O
operations (e.g., model saving and loading or data shuffling and reading).

6 CONCLUSION

We significantly reduce convergence damage caused by compressing the gradient through gradient
dropping in data-parallelism training. We utilize a locally-computed gradient to predict and recon-
struct the dense gradient. Our experiments show that we can improve the training time up to 45%
faster compared to a non-compressed multi-node system and 3x faster compared to a single-node
system. Local gradient update is also empirically shown to negate the quality loss caused by gradient
dropping.
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