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ABSTRACT

Deep neuroevolution and deep reinforcement learning (deep RL) algorithms are
two popular approaches to policy search. The former is widely applicable and
rather stable, but suffers from low sample efficiency. By contrast, the latter is
more sample efficient, but the most sample efficient variants are also rather un-
stable and highly sensitive to hyper-parameter setting. So far, these families of
methods have mostly been compared as competing tools. However, an emerging
approach consists in combining them so as to get the best of both worlds. Two
previously existing combinations use either an ad hoc evolutionary algorithm or
a goal exploration process together with the Deep Deterministic Policy Gradient
(DDPG) algorithm, a sample efficient off-policy deep RL algorithm. In this pa-
per, we propose a different combination scheme using the simple cross-entropy
method (CEM) and Twin Delayed Deep Deterministic policy gradient (TD3), an-
other off-policy deep RL algorithm which improves over DDPG. We evaluate the
resulting method, CEM-RL, on a set of benchmarks classically used in deep RL.
We show that CEM-RL benefits from several advantages over its competitors and
offers a satisfactory trade-off between performance and sample efficiency.

1 INTRODUCTION

Policy search is the problem of finding a policy or controller maximizing some unknown utility
function. Recently, research on policy search methods has witnessed a surge of interest due to the
combination with deep neural networks, making it possible to find good enough continuous action
policies in large domains. From one side, this combination gave rise to the emergence of efficient
deep reinforcement learning (deep RL) techniques (Lillicrap et al., 2015; Schulman et al., 2015;
2017). From the other side, evolutionary methods, and particularly deep neuroevolution methods
applying evolution strategies (ESs) to the parameters of a deep network have emerged as a competi-
tive alternative to deep RL due to their higher parallelization capability (Salimans & Kingma, 2016;
Conti et al., 2017; Petroski Such et al., 2017).

Both families of techniques have clear distinguishing properties. Evolutionary methods are sig-
nificantly less sample efficient than deep RL methods because they learn from complete episodes,
whereas deep RL methods use elementary steps of the system as samples, and thus exploit more
information (Sigaud & Stulp, 2018). In particular, off-policy deep RL algorithms can use a replay
buffer to exploit the same samples as many times as useful, greatly improving sample efficiency.
Actually, the sample efficiency of ESs can be improved using the ”importance mixing” mechanism,
but a recent study has shown that the capacity of importance mixing to improve sample efficiency by
a factor of ten is still not enough to compete with off-policy deep RL (Pourchot et al., 2018). From
the other side, sample efficient off-policy deep RL methods such as the DDPG algorithm (Lillicrap
et al., 2015) are known to be unstable and highly sensitive to hyper-parameter setting. Rather than
opposing both families as competing solutions to the policy search problem, a richer perspective
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consists in combining them so as to get the best of both worlds. As covered in Section 2, there are
very few attempts in this direction so far.

After presenting some background in Section 3, we propose in Section 4 a new combination method
that combines the cross-entropy method (CEM) with DDPG or TD3, an off-policy deep RL algorithm
which improves over DDPG. In Section 5, we investigate experimentally the properties of this CEM-
RL method, showing its advantages both over the components taken separately and over a competing
approach. Beyond the results of CEM-RL, the conclusion of this work is that there is still a lot of
unexplored potential in new combinations of evolutionary and deep RL methods.

2 RELATED WORK

Policy search is an extremely active research domain. The realization that evolutionary methods are
an alternative to continuous action reinforcement learning and that both families share some simi-
larity is not new (Stulp & Sigaud, 2012a;b; 2013) but so far most works have focused on comparing
them (Salimans et al., 2017; Petroski Such et al., 2017; Conti et al., 2017). Under this perspective, it
was shown in (Duan et al., 2016) that, despite its simplicity with respect to most deep RL methods,
the Cross-Entropy Method (CEM) was a strong baseline in policy search problems. Here, we focus
on works which combine both families of methods.

Synergies between evolution and reinforcement learning have already been investigated in the con-
text of the so-called Baldwin effect (Simpson, 1953). This literature is somewhat related to research
on meta-learning, where one seeks to evolve an initial policy from which a self-learned reinforce-
ment learning algorithm will perform efficient improvement (Wang et al., 2016; Houthooft et al.,
2018; Gupta et al., 2018). The key difference with respect to the methods investigated here is that
in this literature, the outcome of the RL process is not incorporated back into the genome of the
agent, whereas here evolution and reinforcement learning update the same parameters in iterative
sequences.

Closer to ours, the work of Colas et al. (2018) sequentially applies a goal exploration process (GEP)
to fill a replay buffer with purely exploratory trajectories and then applies DDPG to the resulting data.
The GEP shares many similarities with evolutionary methods, though it focuses on diversity rather
than on performance of the learned policies. The authors demonstrate on the Continuous Mountain
Car and HALF-CHEETAH-V2 benchmarks that their combination, GEP-PG, is more sample-efficient
than DDPG, leads to better final solutions and induces less variance during learning. However, due
to the sequential nature of the combination, the GEP part does not benefit from the efficient gradient
steps of the deep RL part.

Another approach related to ours is the work of Maheswaranathan et al. (2018), where the authors in-
troduce optimization problems with a surrogate gradient, i.e. a direction which is correlated with the
real gradient. They show that by modifying the covariance matrix of an ES to incorporate the infor-
mations contained in the surrogate, a hybrid algorithm can be constructed. They provide a thorough
theoretical investigation of their procedure, which they experimentally show capable of outperform-
ing both a standard gradient descent method and a pure ES on several simple benchmarks. They
argue that this method could be useful in RL, since surrogate gradients appear in Q-learning and
actor-critic methods. However, a practical demonstration of those claims remains to be performed.
Their approach resembles ours in that they use a gradient method to enhance an ES. But a notable
difference is that they use the gradient information to directly change the distribution from which
samples are drawn, whereas we use gradient information on the samples themselves, impacting the
distribution only indirectly.

The work which is the closest to ours is Khadka & Tumer (2018b). The authors introduce an al-
gorithm called ERL (for Evolutionary Reinforcement Learning), which is presented as an efficient
combination of a deep RL algorithm, DDPG, and a population-based evolutionary algorithm. It takes
the form of a population of actors, which are constantly mutated and selected in tournaments based
on their fitness. In parallel, a single DDPG agent is trained from the samples generated by the evo-
lutionary population. This single agent is then periodically inserted into the population. When the
gradient-based policy improvement mechanism of DDPG is efficient, this individual outperforms its
evolutionary siblings, it gets selected into the next generation and draws the whole population to-
wards higher performance. Through their experiments, Khadka & Tumer demonstrate that this setup
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benefits from an efficient transfer of information between the RL algorithm and the evolutionary al-
gorithm, and vice versa.

However, their combination scheme does not make profit of the search efficiency of ESs. This is
unfortunate because ESs are generally efficient evolutionary methods, and importance mixing can
only be applied in their context to bring further sample efficiency improvement.

By contrast with the works outlined above, the method presented here combines CEM and TD3 in
such a way that our algorithm benefits from the gradient-based policy improvement mechanism of
TD3, from the better stability of ESs, and may even benefit from the better sample efficiency brought
by importance mixing, as described in Appendix B.

3 BACKGROUND

In this section, we provide a quick overview of the evolutionary and deep RL methods used through-
out the paper.

3.1 EVOLUTIONARY ALGORITHMS, EVOLUTION STRATEGIES AND EDAS

Evolutionary algorithms manage a limited population of individuals, and generate new individuals
randomly in the vicinity of the previous elite individuals. There are many variants of such algo-
rithms, some using tournament selection as in Khadka & Tumer (2018b), niche-based selection or
more simply taking a fraction of elite individuals, see Back (1996) for a broader view. Evolution
strategies can be seen as specific evolutionary algorithms where only one individual is retained from
one generation to the next, this individual being the mean of the distribution from which new indi-
viduals are drawn. More specifically, an optimum individual is computed from the previous samples
and the next samples are obtained by adding Gaussian noise to the current optimum. Finally, among
ESs, Estimation of Distribution Algorithms (EDAs) are a specific family where the population is
represented as a distribution using a covariance matrix Σ (Larrañaga & Lozano, 2001). This co-
variance matrix defines a multivariate Gaussian function and samples at the next iteration are drawn
according to Σ. Along iterations, the ellipsoid defined by Σ is progressively adjusted to the top part
of the hill corresponding to the local optimum θ∗. Various instances of EDAs, such as the Cross-
Entropy Method (CEM), Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and PI2-CMA,
are covered in Stulp & Sigaud (2012a;b; 2013). Here we focus on the first two.

3.2 THE CROSS-ENTROPY METHOD AND CMA-ES

The Cross-Entropy Method (CEM) is a simple EDA where the number of elite individuals is fixed
to a certain value Ke (usually set to half the population). After all individuals of a population
are evaluated, the Ke fittest individuals are used to compute the new mean and variance of the
population, from which the next generation is sampled after adding some extra variance ε to prevent
premature convergence.

In more details, each individual xi is sampled by adding Gaussian noise around the mean of the
distribution µ, according to the current covariance matrix Σ, i.e. xi ∼ N (µ,Σ). The problem-
dependent fitness of these new individuals (fi)i=1,...,λ is computed, and the top-performing Ke

individuals, (zi)i=1,...,Ke are used to update the parameters of the distribution as follows:

µnew =

Ke∑
i=1

λizi (1)

Σnew =

Ke∑
i=1

λi(zi − µold)(zi − µold)T + εI, (2)

where (λi)i=1,...,Ke are weights given to the individuals, commonly chosen with λi = 1
Ke

or λi =
log(1+Ke)/i∑Ke
i=1 log(1+Ke)/i

(Hansen, 2016). In the former, each individual is given the same importance,
whereas the latter gives more importance to better individuals.
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Similarly to CEM, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an EDA where
the number of elite individuals is fixed to a certain value Ke. The mean and covariance of the
new generation are constructed from those individuals. However this construction is more elaborate
than in CEM. The top Ke individuals are ranked according to their performance, and are assigned
weights based on this ranking. Those weights in turn impact the construction of the new mean and
covariance. Quantities called ”Evolutionary paths” are also used to accumulate the search directions
of successive generations. In fact, the updates in CMA-ES are shown to approximate the natural
gradient, without explicitly modeling the Fisher information matrix (Arnold et al., 2011).

A minor difference between CEM and CMA-ES can be found in the update of the covariance matrix.
In its standard formulation, CEM uses the new estimate of the mean µ to compute the new Σ, whereas
CMA-ES uses the current µ (the one that was used to sample the current generation) as is the case
in (2). We used the latter as Hansen (2016) shows it to be more efficient. The algorithm we are
using can thus be described either as CEM using the current µ for the estimation of the new Σ,
or as CMA-ES without evolutionary paths. The difference being minor, we still call the resulting
algorithm CEM. Besides, we add some noise in the form of εI to the usual covariance update to
prevent premature convergence. We choose to have an exponentially decaying ε, by setting an initial
and a final standard deviation, respectively σinit and σend, initializing ε to σinit and updating ε at
each iteration with ε = τcemε+ (1− τcem)σend.

Note that, in practice Σ can be too large for computing the updates and sampling new individuals.
Indeed, if n denotes the number of actor parameters, simply sampling from Σ scales at least in
O(n2.3), which becomes quickly intractable. Instead, we constrain Σ to be diagonal. This means
that in our computations, we replace the update in (2) by

Σnew =

Ke∑
i=1

λi(zi − µold)2 + εI, (3)

where the square of the vectors denote the vectors of the square of the coordinates.

3.3 DDPG AND TD3

The Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) and Twin Delayed Deep
Deterministic policy gradient (TD3) (Fujimoto et al., 2018) algorithms are two off-policy, actor-
critic and sample efficient deep RL algorithms. The DDPG algorithm suffers from instabilities partly
due to an overestimation bias in critic updates, and is known to be difficult to tune given its sensitivity
to hyper-parameter settings. The availability of properly tuned code baselines incorporating several
advanced mechanisms improves on the latter issue (Dhariwal et al., 2017). The TD3 algorithm rather
improves on the former issue, limiting the over-estimation bias by using two critics and taking the
lowest estimate of the action values in the update mechanisms.

4 METHODS

As shown in Figure 1a, the CEM-RL method combines CEM with either DDPG or TD3, giving rise to
two algorithms named CEM-DDPG and CEM-TD3. The mean actor of the CEM population, referred
to as πµ, is first initialized with a random actor network. A unique critic network Qπ managed
by TD3 or DDPG is also initialized. At each iteration, a population of actors is sampled by adding
Gaussian noise around the current mean πµ, according to the current covariance matrix Σ. Half of
the resulting actors are directly evaluated. The corresponding fitness is computed as the cumulative
reward obtained during an episode in the environment. Then, for each actor of the other half of the
population, the critic is updated using this actor and, reciprocally, the actor follows the direction of
the gradient given by the critic Qπ for a fixed number of steps. The resulting actors are evaluated
after this process. The CEM algorithm then takes the top-performing half of the resulting global
population to compute its new πµ and Σ. The steps performed in the environment used to evaluate
all actors in the population are fed into the replay buffer. The critic is trained from that buffer
pro rata to the quantity of new information introduced in the buffer at the current generation. For
instance, if the population contains 10 individuals, and if each episode lasts 1000 time steps, then
10,000 new samples are introduced in the replay buffer at each generation. The critic is thus trained
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Figure 1: Architectures of the CEM-RL (a) and ERL (b) algorithms

for 10,000 mini-batches, which are divided into 2000 mini-batches per learning actor. This is a
common practice in deep RL algorithms, where one mini-batch update is performed for each step
of the actor in the environment. We also choose this number of steps (10,000) to be the number of
gradient steps taken by half of the population at the next iteration. A pseudo-code of CEM-RL is
provided in Algorithm 1.

In cases where applying the gradient increases the performance of the actor, CEM benefits from
this increase by incorporating the corresponding actors in its computations. By contrast, in cases
where the gradient steps decrease performance, the resulting actors are ignored by CEM, which
instead focuses on standard samples around πµ. Those poor samples do not bring new insight on the
current distribution of the CEM algorithm, since the gradient steps takes them away from the current
distribution. However, since all evaluated actors are filling the replay buffer, the resulting experience
is still fed to the critic and the future learning actors, providing some supplementary exploration.

This approach generates a beneficial flow of information between the deep RL part and the evolu-
tionary part. Indeed, on one hand, good actors found by following the current critic directly improve
the evolutionary population. On the other hand, good actors found through evolution fill the replay
buffer from which the RL algorithm learns.

In that respect, our approach benefits from the same properties as the ERL algorithm (Khadka &
Tumer, 2018b) depicted in Figure 1b. But, by contrast with Khadka & Tumer (2018b), gradient
steps are directly applied to several samples, and using the CEM algorithm makes it possible to use
importance mixing, as described in Appendix B. Another difference is that in CEM-RL gradient steps
are applied at each iteration whereas in ERL, a deep RL actor is only injected to the population from
time to time. One can also see from Figure 1 that, in contrast to ERL, CEM-RL does not use any
deep RL actor. Other distinguishing properties between ERL and CEM-RL are discussed in the light
of empirical results in Section 5.2.

Finally, given that CMA-ES is generally considered as more sophisticated than CEM, one may wonder
why we did not use CMA-ES instead of CEM into the CEM-RL algorithm. Actually, the key contribu-
tion of CMA-ES with respect to CEM consists of the evolutionary path mechanism (see Section 3.2),
but this mechanism results in some inertia in Σ updates, which resists to the beneficial effect of
applying RL gradient steps.

5 EXPERIMENTAL STUDY

In this section, we study the CEM-RL algorithm to answer the following questions:

• How does the performance of CEM-RL compare to that of CEM and TD3 taken separately?
What if we remove the CEM mechanism, resulting in a multi-actor TD3?
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Algorithm 1 CEM-RL

Require: max steps, the maximum number of steps in the environment
τCEM, σinit, σend and pop size, hyper-parameters of the CEM algorithm
γ, τ, lractor and lrcritic, hyper-parameters of DDPG

1: Initialize a random actor πµ, to be the mean of the CEM algorithm
2: Let Σ = σinitI be the covariance matrix of the CEM algorithm
3: Initialize the critic Qπ and the target critic Qπt
4: Initialize an empty cyclic replay bufferR

5: total steps, actor steps = 0, 0
6: while total steps < max steps:

7: Draw the current population pop from N (πµ,Σ) with importance mixing (see Algorithm 2
in Appendix B)

8: for i← 1 to pop size/2:
9: Set the current policy π to pop[i]

10: Initialize a target actor πt with the weights of π
11: Train Qπ for 2 ∗ actor steps / pop size mini-batches
12: Train π for actor steps mini-batches
13: Reintroduce the weights of π in pop

14: actor steps = 0
15: for i← 1 to pop size:
16: Set the current policy π to pop[i]
17: (fitness f , steps s)← evaluate(π)
18: FillR with the collected experiences
19: actor steps = actor steps + s

total steps = total steps + actor steps

20: Update πµ and Σ with the top half of the population (see (1) and (2) in Section 3.2)

21: end while

• How does CEM-RL perform compared to ERL? What are the main factors explaining the
difference between both algorithms?

Additionally, in Appendices B to E, we investigate other aspects of the performance of CEM-RL such
as the impact of importance mixing, the addition of action noise or the use of the tanh non-linearity.

5.1 EXPERIMENTAL SETUP

In order to investigate the above questions, we evaluate the corresponding algorithms in several
continuous control tasks simulated with the MUJOCO physics engine and commonly used as policy
search benchmarks: HALF-CHEETAH-V2, HOPPER-V2, WALKER2D-V2, SWIMMER-V2 and ANT-
V2 (Brockman et al., 2016).

We implemented CEM-RL with the PYTORCH library 1. We built our code around the DDPG and
TD3 implementations given by the authors of the TD3 algorithm2. For the ERL implementation, we
used one given by the authors3.

Unless specified otherwise, each curve represents the average over 10 runs of the corresponding
quantity, and the variance corresponds to the 68% confidence interval for the estimation of the mean.
In all learning performance figures, dotted curves represent medians and the x-axis represents the

1The code for reproducing the experiments is available at https://github.com/apourchot/
CEM-RL.

2Available at https://github.com/sfujim/TD3.
3Available at https://github.com/ShawK91/erl_paper_nips18.
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total number of steps actually performed in the environment, to highlight potential sample efficiency
effects, particularly when using importance mixing (see Appendix B).

Architectures of the networks are described in Appendix A. Most TD3 and DDPG hyper-parameters
were reused from Fujimoto et al. (2018). The only notable difference is the use of tanh non lin-
earities instead of RELU in the actor network, after we spotted that the latter performs better than
the former on several environments. We trained the networks with the Adam optimizer (Kingma &
Ba, 2014), with a learning rate of 1e−3 for both the actor and the critic. The discount rate γ was
set to 0.99, and the target weight τ to 5e−3. All populations contained 10 actors, and the standard
deviations σinit, σend and the constant τcem of the CEM algorithm were respectively set to 1e−3,
1e−5 and 0.95. Finally, the size of the replay buffer was set to 1e6, and the batch size to 100.

5.2 RESULTS

We first compare CEM-TD3 to TD3, TD3 and a multi-actor variant of TD3, then CEM-RL to ERL based
on several benchmarks. A third section is devoted to additional results which have been rejected in
appendices to comply with space constraints.

5.2.1 COMPARISON TO CEM, TD3 AND A MULTI-ACTOR TD3

(a) (b) (c)

Figure 2: Learning curves of TD3, CEM and CEM-RL on the HALF-CHEETAH-V2, HOPPER-V2, and
WALKER2D-V2 benchmarks.

In this section, we compare CEM-TD3 to three baselines: our variant of CEM, TD3 and a multi-actor
variant of TD3. For TD3 and its multi-actor variant, we report the average of the score of the agent
over 10 episodes for every 5000 steps performed in the environment. For CEM and CEM-TD3, we
report after each generation the average of the score of the new average individual of the population
over 10 episodes. From Figure 2, one can see that CEM-TD3 outperforms CEM and TD3 on HALF-
CHEETAH-V2, HOPPER-V2 and WALKER2D-V2. On most benchmarks, CEM-TD3 also displays
slightly less variance than TD3. Further results in Appendix G show that on ANT-V2, CEM-TD3
outperforms CEM and is on par with TD3. More surprisingly, CEM outperforms all other algorithms
on SWIMMER-V2, as covered in Appendix E.

One may wonder whether the good performance of CEM-TD3 mostly comes from its ”ensemble
method” nature (Osband et al., 2016). Indeed, having a population of actors improves exploration
and stabilizes performances by filtering out instabilities that can appear during learning. To answer
this question, we performed an ablative study where we removed the CEM mechanism. We consid-
ered a population of 5 actors initialized as in CEM-TD3, but then just following the gradient given
by the TD3 critic. This algorithm can be seen as a multi-actor TD3 where all actors share the same
critic. We reused the hyper-parameters described in Section 5.2. From Figure 2, one can see that
CEM-TD3 outperforms more or less significantly multi-actor TD3 on all benchmarks, which clearly
suggests that the evolutionary part contributes to the performance of CEM-TD3.

As a summary, Table 1 gives the final performance of methods compared in this Section. We con-
clude that CEM-TD3 is generally superior to CEM, TD3 and multi-actor TD3. More precisely, in
environments where TD3 provides a useful gradient information, CEM-TD3 enhances CEM by ac-
celerating updates towards better actors, and it enhances TD3 by reducing variance in the learning
process.
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CEM TD3
Environment Mean Var. Median Mean Var. Median

HALF-CHEETAH-V2 2940 12% 3045 9630 2.1% 9606
HOPPER-V2 1055 1.3% 1040 3355 5.1% 3626
WALKER2D-V2 928 5.4% 934 3808 8.9% 3882
SWIMMER-V2 351 2.7% 361 63 14% 47
ANT-V2 487 6.7% 506 4027 10% 4587

TD3 Multi-Actor CEM-TD3
Environment Mean Var. Median Mean Var. Median

HALF-CHEETAH-V2 9662 2.8% 9710 10725 3.7% 11539
HOPPER-V2 2056 20% 2376 3613 2.9% 3722
WALKER2D-V2 3934 4.1% 3954 4711 3.3% 4637
SWIMMER-V2 76 14% 60 75 15% 62
ANT-V2 3567 22% 3911 4251 5.9% 4310

Table 1: Final performance of CEM, TD3, multi-actor TD3 and CEM-TD3 on 5 environments. We
report the mean ands medians over 10 runs of 1 million steps. For each benchmark, we highlight the
results of the method with the best mean.

(a) (b) (c)

Figure 3: Learning curves of ERL, CEM-DDPG and CEM-TD3 on HALF-CHEETAH-V2, HOPPER-V2,
ANT-V2 and WALKER2D-V2. Both CEM-RL methods are only trained 1 million steps.

5.2.2 COMPARISON TO ERL

In this section, we compare CEM-RL to ERL. The ERL method using DDPG rather than TD3, we
compare it to both CEM-DDPG and CEM-TD3. This makes it possible to isolate the effect of the
combination scheme from the improvement brought by TD3 itself. Results are shown in Figure 3.
We let ERL learn for the same number of steps as in Khadka & Tumer, namely 2 millions on HALF-
CHEETAH-V2 and SWIMMER-V2, 4 millions on HOPPER-V2, 6 millions on ANT-V2 and 10 millions
on WALKER2D-V2. However, due to limited computational resources, we stop learning with both
CEM-RL methods after 1 million steps, hence the constant performance after 1 million steps.

Our results slightly differ from those of the ERL paper (Khadka & Tumer, 2018b). We explain this
difference by two factors. First, the authors only average their results over 5 different seeds, whereas
we used 10 seeds. Second, the released implementation of ERL may be slightly different from the
one used to produce the published results4, raising again the reproducibility issue recently discussed
in the reinforcement learning literature (Henderson et al., 2017).

Figure 3 shows that after performing 1 million steps, both CEM-RL methods outperform ERL on
HALF-CHEETAH-V2, HOPPER-V2 and WALKER2D-V2. We can also see that CEM-TD3 outperforms
CEM-DDPG on WALKER2D-V2. On ANT-V2, CEM-DDPG and ERL being on par after 1 million steps,
we increased the number of learning steps in CEM-DDPG to 6 millions. The corresponding results
are shown in Figure 10b in Appendix G. Results on SWIMMER-V2 are covered in Appendix E.

4personal communication with the authors
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ERL CEM-DDPG CEM-TD3
Environment Mean Var. Median Mean Var. Median Mean Var. Median

HALF-CHEETAH-V2 8684 1.5% 8675 11035 2.7% 11276 10725 3.7% 11539
HOPPER-V2 2288 10.5% 2267 3444 1.6% 3499 3613 2.9% 3722
WALKER2D-V2 2188 15% 2338 2865 7.6% 2958 4711 3.3% 4637
SWIMMER-V2 350 2.41% 360 268 12% 279 75 15% 62
ANT-V2 3716 18.1% 4240 2170 52% 3574 4251 5.9% 4310

Table 2: Final performance of ERL, CEM-DDPG and CEM-TD3 on 5 environments. We report the
mean ands medians over 10 runs of 1 million steps. For each benchmark, we highlight the results of
the method with the best mean.

One can see that, beyond outperforming ERL, CEM-TD3 outperforms CEM-DDPG on most bench-
marks, in terms of final performance, convergence speed, and learning stability. This is especially
true for hard environments such as WALKER2D-V2 and ANT-V2. The only exception in SWIMMER-
V2, as studied in Appendix E.

Table 2 gives the final best results of methods used in this Section. The overall conclusion is that
CEM-RL generally outperforms ERL.

5.2.3 ADDITIONAL RESULTS

In this section, we outline the main messages arising from further studies that have been rejected in
appendices in order to comply with space constraints.

In Appendix B, we investigate the influence of the importance mixing mechanism over the evolution
of performance, for CEM and CEM-RL. Results show that importance mixing has a limited impact
on the sample efficiency of CEM-TD3 on the benchmarks studied here, in contradiction with results
from Pourchot et al. (2018) obtained using various standard evolutionary strategies. The fact that
the covariance matrix Σ moves faster with CEM-RL may explain this result, as it prevents the reuse
of samples.

In Appendix C, we analyze the effect of adding Gaussian noise to the actions of CEM-TD3. Unlike
what Khadka & Tumer (2018b) suggested using ERL, we did not find any conclusive evidence that
action space noise improves performance with CEM-TD3. This may be due to the fact that, as
further studied in Appendix D, the evolutionary algorithm in ERL tends to converge to a unique
individual, hence additional noise is welcome, whereas evolutionary strategies like CEM more easily
maintain some exploration. Indeed, we further investigate the different dynamics of parameter space
exploration provided by the ERL and CEM-TD3 algorithms in Appendix D. Figure 6 and 7 show that
the evolutionary population in ERL tends to collapse towards a single individual, which does not
happen with the CEM population due to the sampling method.

In Appendix E, we highlight the fact that, on the SWIMMER-V2 benchmark, the performance of the
algorithms studied in this paper varies a lot from the performance obtained on other benchmarks.
The most likely explanation is that, in SWIMMER-V2, any deep RL method provides a deceptive
gradient information which is detrimental to convergence towards efficient actor parameters. In this
particular context, ERL better resists to detrimental gradients than CEM-RL, which suggests to design
a version of ERL using CEM to improve the population instead of its ad hoc evolutionary algorithm.

Finally, in Appendix F, we show that using a tanh non-linearity in the architecture of actors often
results in significantly stronger performance than using RELU. This strongly suggests performing
”neural architecture search” (Zoph & Le, 2016; Elsken et al., 2018) in the context of RL.

6 CONCLUSION AND FUTURE WORK

We advocated in this paper for combining evolutionary and deep RL methods rather than opposing
them. In particular, we have proposed such a combination, the CEM-RL method, and showed that in
most cases it was outperforming not only some evolution strategies and some sample efficient off-
policy deep RL algorithms, but also another combination, the ERL algorithm. Importantly, despite
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being mainly an evolutionary method, CEM-RL is competitive to the state-of-the-art even when con-
sidering sample efficiency, which is not the case of other deep neuroevolution methods (Salimans
et al., 2017; Petroski Such et al., 2017).

Beyond these positive performance results, our study raises more fundamental questions. First,
why does the simple CEM algorithm perform so well on the SWIMMER-V2 benchmark? Then,
our empirical study of importance mixing did not confirm a clear benefit of using it, neither did
the effect of adding noise on actions. We suggest explanations for these phenomena, but nailing
down the fundamental reasons behind them will require further investigations. Such deeper studies
will also help understand which properties are critical in the performance and sample efficiency
of policy search algorithms, and define even more efficient policy search algorithms in the future.
As suggested in Section 5.2.3, another avenue for future work will consist in designing an ERL
algorithm based on CEM rather than on an ad hoc evolutionary algorithm. Finally, given the impact
of the neural architecture on our results, we believe that a more systemic search of architectures
through techniques such as neural architecture search (Zoph & Le, 2016; Elsken et al., 2018) may
provide important progress in performance of deep policy search algorithms.
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A ARCHITECTURE OF THE NETWORKS

Our network architectures are very similar to the ones described in Fujimoto et al. (2018). In par-
ticular, the size of the layers remains the same. The only differences resides in the non-linearities.
We use tanh operations in the actor between each layer, where Fujimoto et al. use RELU and we
use leaky RELU in the critic, where Fujimoto et al. use simple RELU. Reasons for this choice are
presented in Appendix F.

Table 3: Architecture of the networks (from the input layer (top line) to the output layer (bottom
line)

Actor Critic
(state dim, 400) (state dim + action dim, 400)

tanh leaky RELU
(400, 300) (400, 300)

tanh leaky RELU
(300, action dim) (300, 1)

tanh

B IMPORTANCE MIXING

Importance mixing is a specific mechanism designed to improve the sample efficiency of evolution
strategies. It was initially introduced in Sun et al. (2009) and consisted in reusing some samples
from the previous generation into the current one, to avoid the cost of re-evaluating the correspond-
ing policies in the environment. The mechanism was recently extended in Pourchot et al. (2018) to
reusing samples from any generation stored into an archive. Empirical results showed that impor-
tance sampling can improve sample efficiency by a factor of ten, and that most of these savings just
come from using the samples from the previous generation, as performed by the initial mechanism.
A pseudo-code of the importance mixing mechanism is given in Algorithm 2.

In CEM, importance mixing is implemented as described in (Pourchot et al., 2018). By contrast,
some adaptation is required in CEM-RL. Actors which take gradient steps can no longer be regarded
as sampled from the current distribution of the CEM algorithm. We thus choose to apply importance
mixing only to the half of the population which does not receive gradient steps from the RL critic.
In practice, only actors which do not take gradient steps are inserted into the actor archive and can
be replaced with samples from previous generations.

From Figure 4, one can see that in the CEM case, importance mixing introduces some minor in-
stability, without noticeably increasing sample efficiency. On HALF-CHEETAH-V2, SWIMMER-V2
and WALKER2D-V2, performance even decreases when using importance mixing. For CEM-RL, the
effect varies greatly from environment to environment, but the gain in sample reuse is almost null

12



Published as a conference paper at ICLR 2019

Algorithm 2 Importance mixing

Require: p(z,θnew): current probability density function (pdf), p(z,θold): old pdf, gold: old gen-
eration

1: gnew ← ∅
2: for i← 1 to N

3: Draw rand1 and rand2 uniformly from [0, 1]

4: Let zi be the ith individual of the old generation gold
5: if min(1, p(zi,θnew)

p(zi,θold)
) > rand1:

6: Append zi to the current generation gnew

7: Draw z′i according to the current pdf p(.,θnew)

8: if max(0, 1− p(z′i,θold)
p(z′i,θnew) ) > rand2:

9: Append z′i to the current generation gnew

10: size = |gnew|
11: if size ≥ N : go to 12

12: if size > N : remove a randomly chosen sample
13: if size < N : fill the generation sampling from p(.,θnew)
14: return gnew

(a) (b) (c)

(d) (e)

Figure 4: Learning curves of CEM-TD3 and CEM with and without importance mixing on the HALF-
CHEETAH-V2, HOPPER-V2, WALKER2D-V2, SWIMMER-V2 and ANT-V2 benchmarks.

as well, though an increase in performance can be seen on SWIMMER-V2. The latter fact is con-
sistent with the finding that the gradient steps are not useful in this environment (see Appendix E).
On HOPPER-V2 and HALF-CHEETAH-V2, results with and without importance mixing seem to be
equivalent. On WALKER2D-V2, importance mixing decreases final performance. On ANT-V2, im-
portance mixing seems to accelerate learning in the beginning, but final performances are equivalent
to those of CEM-RL. Thus importance mixing seems to have a limited impact in CEM-TD3.

This conclusion seems to contradict the results obtained in Pourchot et al. (2018). This may be due
to different things. First, the dimensions of the search spaces in the experiments here are much larger
than those studied in Pourchot et al. (2018), which might deteriorate the estimation of the covariance
matrices when samples are too correlated. On top of this, the MUJOCO environments are harder than
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CEM-TD3 CEM-TD3 + IM
Environment Mean Var. Median Mean Var. Median

HALF-CHEETAH-V2 10725 3.7% 11147 10601 4.9% 11539
HOPPER-V2 3613 2.9% 3722 3589 1.2% 3616
WALKER2D-V2 4711 3.3% 4637 4420 2.3% 4468
SWIMMER-V2 75 15% 62 117 11% 135
ANT-V2 4251 5.9% 4310 4235 7.8% 4013

Table 4: Final performance of CEM-TD3 with and without importance mixing on the HALF-
CHEETAH-V2, HOPPER-V2, SWIMMER-V2, ANT-V2 and WALKER2D-V2 environments. We report
the mean ands medians over 10 runs of 1 million steps. For each benchmark, we highlight the results
of the method with the best mean.

the ones used in Pourchot et al. (2018). In particular, we can see from Figure 2 that CEM is far from
solving the environments over one million steps. Perhaps a study over a longer time period would
make importance mixing relevant again. Besides, by reusing old samples, the importance mixing
mechanism somehow hinders exploration (since we evaluate less new individuals), which might
be detrimental in the case of MUJOCO environments. Finally, and most importantly, the use of RL
gradient steps accelerates the displacement of the covariance matrix, resulting in fewer opportunities
for sample reuse.

C EFFECT OF ACTION NOISE

In Khadka & Tumer (2018b), the authors indicate that one reason for the efficiency of their approach
is that the replay buffer of DDPG gets filled with two types of noisy experiences. On one hand, the
buffer gets filled with noisy interactions of the DDPG actor with the environment. This is usually
referred to as action space noise. On the other hand, actors with different parameters also fill the
buffer, which is more similar to parameter space noise (Plappert et al., 2017). In CEM-RL, we only
use parameter space noise, but it would also be possible to add action space noise. To explore this
direction, each actor taking gradient steps performs a noisy episode in the environment. We report
final results after 1 million steps in Table 5. Learning curves are available in Figure 5.

(a) (b) (c)

(d) (e)

Figure 5: Learning curves of CEM-RL with and without action space noise on the HALF-CHEETAH-
V2, HOPPER-V2, WALKER2D-V2, SWIMMER-V2 and ANT-V2 benchmarks.
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Unlike what Khadka & Tumer (2018b) suggested, we did not find any conclusive evidence that
action space noise improves performance. In CEM-TD3, the CEM part seems to explore enough of
the action space on its own. It seems that sampling performed in CEM results in sufficient exploration
and performs better than adding simple Gaussian noise to the actions. This highlights a difference
between using an evolutionary strategy like CEM and an evolutionary algorithm as done in ERL.
Evolutionary algorithms tend to converge to a unique individual whereas evolutionary strategies
more easily maintain some exploration. These aspects are further studied in Appendix D.

CEM-TD3 CEM-TD3 + AN CEM-TD3- RELU
Environment Mean Var. Median Mean Var. Median Mean Var. Median

HALF-CHEETAH-V2 10725 3.7% 11147 11006 2.7% 11086 10267 3.7% 10133
HOPPER-V2 3613 2.9 % 3722 3541 5.7% 3761 3604 2.6% 3716
WALKER2D-V2 4711 3.3% 4637 4542 5.7% 4392 4311 7.5% 4534
SWIMMER-V2 75 15% 62 74 15% 62 118 21% 114
ANT-V2 4251 5.9% 4310 3711 7.9% 3604 2264 16% 2499

Table 5: Final Performance of CEM-RL with and without action noise (AN), with DDPG, and with
RELU non-linearities in MUJOCO environments. We report the mean ands medians over 10 runs of 1
million steps. For each benchmark, we highlight the results of the method with the best mean.

D PARAMETER SPACE EXPLORATION IN CEM-RL AND ERL

In this section, we highlight the difference in policy parameter update dynamics in CEM-RL and
ERL. Figure 6 displays the evolution of the first two parameters of actor networks during training
with CEM-RL and ERL on HALF-CHEETAH-V2. For ERL, we plot the chosen parameters of the DDPG
actor with a continuous line, and represent those of the evolutionary actors with dots. For CEM-RL,
we represent the chosen parameters of sampled actors with dots, and the gradient steps based on the
TD3 critic with continuous lines. The same number of dots is represented for both algorithms.

(a) (b)

Figure 6: Evolution of the first two parameters of the actors when learning with (a) ERL and (b)
CEM-TD3. Dots are sampled parameters of the population and continuous lines represent parameters
moved through RL gradient steps.

One can see that, in ERL the evolutionary population tends to be much less diverse that in CEM-RL.
There are many redundancies in the parameters (dots with the same coordinates), and the population
seems to converge to a single individual. On the other hand, there is no such behavior in CEM-RL
where each generation introduces completely new samples. As a consequence, parameter space
exploration looks better in the CEM-RL algorithm.

To further study this loss of intra-population diversity in ERL, we perform 10 ERL runs and report in
Figure 7 an histogram displaying the distribution of the population-wise similarity with respect to
the populations encountered during learning. We measure this similarity as the average percentage
of parameters shared between two different individuals of the said population. The results indicate
that around 55% of populations encountered during a run of ERL display a population-similarity of
above 80%.
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Figure 7: Histogram of the average similarity in populations during learning with the ERL algorithm.
Results are averaged over 10 runs. As usual, the variance corresponds to the 68% confidence interval
for the estimation of the mean.

One can also see the difference in how both methods use the gradient information of their respective
deep RL part. In the case of ERL, the parameters of the population concentrate around those of
the DDPG actor. Each 10 generations, its parameters are introduced into the population, and since
DDPG is already efficient alone on HALF-CHEETAH-V2, those parameters quickly spread into the
population. Indeed, according to Khadka & Tumer (2018b), the resulting DDPG actor is the elite
of the population 80% of the time, and is introduced into the population 98% of the time. This
integration is however passive: the direction of exploration does not vary much after introducing
the DDPG agent. CEM-RL integrates this gradient information differently. The short lines emerging
from dots, which represent gradient steps performed by half of the actors, act as scouts. Once CEM
becomes aware of better solutions that can be found in a given direction, the sampling of the next
population is modified so as to favor this promising direction. CEM is thus pro-actively exploring in
the good directions it has been fed with.

E THE CASE OF THE SWIMMER-V2 BENCHMARK

Experiments on the SWIMMER-V2 benchmark give results that differ a lot from the results on other
benchmarks, hence they are covered separately here. Figure8a shows that CEM outperforms TD3,
CEM-TD3, multi-actor TD3. Besides, as shown in Figure 8b, ERL outperforms CEM-DDPG, which
itself outperforms CEM-TD3.

(a) (b)

Figure 8: Learning curves on the SWIMMER-V2 environment of (a): CEM and TD3, multi-actor TD3
and CEM-RL; (b) ERL, CEM-DDPG and CEM-TD3.

All these findings seem to show that being better at RL makes you worse at SWIMMER-V2. The
most likely explanation is that, in SWIMMER-V2, any deep RL method provides a deceptive gradient
information which is detrimental to convergence towards efficient actor parameters. This conclusion
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could already be established from the results of Khadka & Tumer (2018b), where the evolution
algorithm alone produced results on par with the ERL algorithm, showing that RL-based actors
were just ignored. In this particular context, the actors using TD3 gradient being deteriorated by
the deceptive gradient effect, CEM-RL is behaving as a CEM with only half a population, thus it is
less efficient than the standard CEM algorithm. By contrast, ERL better resists than CEM-RL to the
same issue. Indeed, if the actor generated by DDPG does not perform better than the evolutionary
population, then this actor is just ignored, and the evolutionary part behaves as usual, without any
loss in performance. In practice, Khadka & Tumer note that on SWIMMER-V2, the DDPG actor was
rejected 76% of the time. Finally, by comparing CEM and ERL from Figure 8a and Figure 8b, one
can conclude that on this benchmark, the evolutionary part of ERL behaves on par with CEM alone.
This is at odds with premature convergence effects seen in the evolutionary part of ERL, as studied
in more details in Appendix D. From all these insights, the SWIMMER-V2 environment appears
particularly interesting, as we are not aware of any deep RL method capable of solving it quickly
and reliably.

F USING THE RELU OR TANH NON-LINEARITY

In this section, we explore the impact on performance of the type of non-linearities used in the actor
of CEM-TD3. Table 5 reports the results of CEM-TD3 using RELU non-linearities between the linear
layers, instead of tanh.

(a) (b) (c)

(d) (e) (f)

Figure 9: Learning curves of CEM-RL with tanh and RELU as non-linearities in the actors, on the
(a) HALF-CHEETAH-V2, (b) HOPPER-V2, (c) SWIMMER-V2, (d) ANT-V2 and (e) WALKER2D-V2
benchmarks. (f) shows the same of CEM on the SWIMMER-V2 benchmark.

Figure 9 displays the learning performance of CEM-TD3 and CEM on benchmarks, using either the
RELU or the tanh nonlinearity in the actors. Results indicate that on some benchmarks, changing
from tanh to RELU can cause a huge drop in performance. This is particularly obvious in the
ANT-V2 benchmark, where the average performance drops by 46%. Figure 9(f) shows that, for the
CEM algorithm on the SWIMMER-V2 benchmark, using RELU also causes a 60% performance drop.
As previously reported in the literature (Henderson et al., 2017), this study suggests that network
architectures can have a large impact on performance.

G ADDITIONAL RESULTS ON ANT-V2

Figure 10 represents the learning performance of CEM, TD3, multi-actor TD3, CEM-DDPG and CEM-
TD3 on the ANT-V2 benchmark. It is discussed in the main text.
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(a) (b)

Figure 10: Learning curves of CEM-RL, CEM and TD3 on the SWIMMER-V2 and ANT-V2 bench-
marks.
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