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ABSTRACT

This study considers the task of machine reading at scale (MRS)

wherein, given a question, a system first performs the informa-

tion retrieval (IR) task of finding relevant passages in a knowledge

source and then carries out the reading comprehension (RC) task

of extracting an answer span from the passages. Previous MRS

studies, in which the IR component was trained without consid-

ering answer spans, struggled to accurately find a small number

of relevant passages from a large set of passages. In this paper,

we propose a simple and effective approach that incorporates the

IR and RC tasks by using supervised multi-task learning in or-

der that the IR component can be trained by considering answer

spans. Experimental results on the standard benchmark, answer-

ing SQuAD questions using the full Wikipedia as the knowledge

source, showed that our model achieved state-of-the-art perfor-

mance. Moreover, we thoroughly evaluated the individual contri-

butions of our model components with our new Japanese dataset

and SQuAD. The results showed significant improvements in the

IR task and provided a new perspective on IR for RC: it is effective

to teach which part of the passage answers the question rather

than to give only a relevance score to the whole passage.
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1 INTRODUCTION

Creating an AI capable of answering questions as well as people

can has been a long-standing research problem. Recently, reading

comprehension (RC), a challenge to read a passage and then answer

questions about it, has received much attention. Large and high-

quality datasets that are sufficient to train deep neural networks

have been constructed; in particular, the SQuAD dataset [38] has
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Question : Where is the Asian influence strongest in Victoria?

Answer: Bendigo
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Figure 1: Our machine-reading-at-scale system uses a cor-

pus of passages as a knowledge source. Our neural network

learns IR and RC tasks jointly. Its IR component accurately

re-ranks the passages retrieved by using fast IR methods.

brought significant progress such that the RC performance of AI

is now comparable to that of humans.

In the SQuAD 1.1 dataset, each question refers to one passage

of an article, and the corresponding answer is guaranteed to be a

span in that passage 1. Thus, most of the current top-performing

RC methods such as BiDAF [40] and QANet [52] assume that one

relevant passage, which contains all the facts required to answer

the question, is given when answering the question.

We tackle the task of machine reading at scale (MRS) wherein,

given a question, a system retrieves passages relevant to the ques-

tion from a corpus and then extracts the answer span from the

retrieved passages. Chen et al. proposed DrQA, which is an open-

domain QA system using Wikipedia’s texts as a knowledge source

by simply combining an exact-matching IR method with an RC

method based on a neural network [5]. Their system showed promis-

ing results; however, the results indicated that the IRmethod, which

retrieved the top five passages from five million articles for each

question, was a bottleneck in terms of accuracy. It can retrieve pas-

sages that contain question words, but such passages are not al-

ways relevant to the question.

Here, we focus on the strong relationship between IR and RC.

The RC capability of identifying an answer span in a passage will

improve the IR capability of distinguishing between relevant and

irrelevant passages. However, applying a model trained in RC to

IR is not promising because the RC model, trained with only rele-

vant passages, cannot indicate that there is no answer in irrelevant

passages. We need to train a model so that it has both capabilities.

Recently, a joint neural model of IR and RC components, trained

with reinforcement learning, was examined [47]. It outperformed

DrQA; however, the IR component still was a bottleneck. The IR

component was indirectly trained with a distant supervision re-

ward, which indicates how well the answer string extracted by its

1The experiments reported in this paper used the SQuAD 1.1 dataset. SQuAD 2.0,
which was recently released, additionally contains unanswerable questions based on
one passage [37].
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RC component matches the ground-truth. We conjecture that this

reward, which does not consider the answer span, may prevent the

IR component from carefully considering the context of passages.

Our main research goal is to investigate the impact of learning

from answer spans in IR for RC. For this, we propose a neural model

that incorporates the IR and RC tasks by using supervised multi-

task learning (MTL). It shares the hidden layers between IR and

RC tasks and minimizes the joint loss of relevance scores in IR and

answer spans in RC. Our model can be trained using standard RC

datasets, such as SQuAD, consisting of the triples of a question, a

passage, and an answer span. We use the triples in the datasets as

positive (i.e., relevant) examples and generate negative examples

from the datasets for the learning of the IR component.

Although our neural model can alleviate the bottleneck of IR

accuracy, adapting it to the whole of a large-scale corpus causes

computational complexity problems. We therefore introduce tele-

scoping settings [27], where our IR model component re-ranks the

outputs of fast exact-matching models that focus on eliminating

higher irrelevant passages (Figure 1). This idea enables our model

to perform at a practical speed without loss of generality.

The main contributions of this study are as follows.

• Wedeveloped a Retrieve-and-Readmodel for supervisedMTL

of IR and RC tasks that shares its hidden layers between the

two tasks and minimizes the joint loss.

• Our model with a telescoping setting exceeded the state-of-

the-art by a significant margin on a large-scale MRS task,

answering SQuAD questions using the full Wikipedia as the

knowledge source.

• We created a new dataset, Jp-News, which is based on Japan-

ese news articles. This dataset is more difficult for IR mod-

els than SQuAD because of the existence of similar passages

and articles on the same topics.

• We thoroughly evaluated the effectiveness of MTL by in-

vestigating the individual contributions of our model com-

ponents. We confirmed significant improvements in IR by

learning from answer spans.

2 PROBLEM STATEMENT

Let us state the problem that this study addresses.

Problem 1 (Machine Reading at Scale; MRS). Given a question,

an MRS system retrieves k passages relevant to the question in a

corpus D (IR task) and extracts an answer from the retrieved pas-

sages (RC task).

Definition 1. A question, q, is a sentence in natural language.

Definition 2. A passage, x , is a short part of a document in natural

language. It does not contain any non-textual information.

Definition 3. A corpus, D, is a collection of passages.

Definition 4. An answer is a span of arbitrary length within a pas-

sage. Its type is not limited to single words or named entities. It is

extracted (not synthesized and generated) from the passage.

Definition 5. A relevant passage to a question is one that contains

all textual facts required to answer the question. The IR task re-

quires such relevant passages to be found.
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Figure 2: Retrieve-and-Read model architecture.

3 PROPOSED MODEL

Our Retrieve-and-Read model is based on the bi-directional atten-

tion flow (BiDAF) model [40], which is a standard RC model. As

shown in Figure 2, it consists of six layers:

1. The word embedding layer maps all words to a vector space

using pre-trained word embeddings.

2. The contextual embedding layer encodes the temporal inter-

actions between words.

3. The attentionflow layer couples question and passage vectors

and produces a sequence of question-aware passage word vectors.

4. The modeling layer captures the interaction among passage

words conditioned on the question.

5. The comprehension layer outputs an answer to the question.

6. The retrieval layer provides the relevance of the passage.

The first four layers of our model are shared by the IR and RC

tasks, and it has a new task-specific layer for the IR task. Themodel

jointly learns the two tasks by combining their loss functions. In

addition to the attention mechanism in the shared layers, the re-

trieval layer calculates a binary exact-match channel to capture

the question intent clearly and has a self-attention mechanism to

retain important word representations for retrieval. We note that

the RC component trained with single-task learning (STL) is essen-

tially equivalent to BiDAF, except for the word embedding layer

that has been modified to improve accuracy.

3.1 Word embedding layer

Let x = {x1, . . . , xT } and q = {q1, . . . ,q J } represent one-hot vec-

tors of words in the input passage and question. This layer projects

each of the one-hot vectors (size ofV ) into av-dimensional contin-

uous vector space with a weight matrixW e ∈ Rv×V .

The embedding vectors are passed to a two-layer highway net-

work [43] that is shared for the question and passage. The outputs

are two sequences of v-dimensional vectors: X ∈ Rv×T for the

passage (T words) and Q ∈ Rv×J for the question (J words).

Note that the original BiDAF uses a pre-trained GloVe [35] and

also trains character-level embeddings by using a CNN [25] in or-

der to handle out-of-vocabulary (OOV) or rare words. Instead of



using GloVe and CNN, our model uses fastText [3] for the fixed

pre-trained word vectors and removes character-level embeddings.

The fastText model takes into account subword information and

can obtain valid representations even for OOV words.

3.2 Contextual embedding layer

This layer has a single-layer LSTM [18] in the forward and back-

ward directions and concatenates thed-dimensional outputs of the

two LSTMs. It has learnable parameters for both directions. It ob-

tains H ∈ R2d×T from X and U ∈ R2d×J from Q .

3.3 Attention flow layer

This layer computes attentions in two directions in order to fuse

information from the passage (i.e., context) to the question (i.e.,

query) words as well as from the question to the passage. It first

computes a similarity matrix S ∈ RT×J ,

St j = w
s T[Ht ;Uj ;Ht ⊙ Uj ], (1)

that indicates the similarity between the t-th passage word and

the j-th question word. ws ∈ R6d are learnable parameters, the

⊙ operator denotes the Hadamard product, and the [; ] operator is

vector concatenation across the rows.

Context-to-query attention signifies which question words

are most relevant to each passage word. It outputs Ũt =
∑

j at jUj ∈

R
2d , where at = so�maxj (St ) ∈ R

J .

Query-to-contextattention signifies which passage words have

the closest similarity to one of the question words. It outputs h̃ =
∑

t btHt ∈ R2d , where b = so�maxt (maxj (S)) ∈ R
T . It then ob-

tains H̃ ∈ R2d×T by tiling the vector T times across the columns.

Bi-directional attention computesG to obtain a question-aware

representation of each passage word,

G = [H ;Ũ ;H ⊙ Ũ ;H ⊙ H̃ ] ∈ R8d×T . (2)

3.4 Modeling layer

This layer uses a single-layer bi-LSTM and obtains M ∈ R2d×T

from G. The output is passed on to the task-specific layers.

3.5 Comprehension layer

The RC task requires themodel to find a phrase to answer the ques-

tion. This layer uses the concept of pointer networks [46], where

the phrase is derived by predicting the start and end indices in the

passage.

First, this layer passes the output of the modeling layer M to

another single-layer bi-LSTM and obtains M1 ∈ R2d×T . It then

calculates the probability distribution of the start index,

p1 = so�maxt (w
1T[G;M1]) ∈ RT , (3)

where w1 ∈ R10d are learnable parameters.

Next, it calculates an attention-pooling vector, m̃1
=

∑

t p
1
tM

1
t ∈

R
2d , and tiles it T times to obtain M̃1 ∈ R2d×T . Then, it passes the

concatenated matrix of [G;M1; M̃1;M1⊙ M̃1] ∈ R14d×T to another

single-layer bi-LSTM and obtainsM2 ∈ R2d×T .

Finally, it calculates the probability distribution of the end index,

p2 = so�maxt (w
2T[G;M2]) ∈ RT , (4)

where w2 ∈ R10d are learnable parameters.

3.6 Retrieval layer

The IR task requires the model to find relevant passages that meet

the information needs of the question. This layer maps the output

of themodeling layer to the relevance score of the passage by using

a binary exact-matching and a self-attention mechanism.

First, for capturing question words clearly, this layer calculates

a binary exact-match channel, B̃. Let B ∈ RJ×T be a matrix such

that the entry at position (j, t) is 1 if the j-th question word is an

exact match to the t-th passage word in the passage and 0 other-

wise. It performs a max-pooling of B over all the question words

to obtain B̃ ∈ R1×T .

Then, it passes [M ; B̃] ∈ R(2d+1)×T to another single-layer bi-

LSTM and obtains Mr ∈ R2d×T . To retain important word repre-

sentations for retrieval, it calculates an attention-pooling ofMr ,

m̃r
=

∑

t
βtM

r
t ∈ R2d . (5)

The element of the attention β ∈ RT is computed as the inner

product between a question-aware representation of each passage

word and a self-attention context vector,wc :

βt = exp(mt
Twc )/

∑

t ′
exp(mt ′

Twc ), (6)

wheremt =W
aMr

t + b
a .W a ∈ Rc×2d and ba,wc ∈ Rc are learn-

able parameters.

Finally, it calculates the relevance of the passage to the question,

pr = sigmoid(wr Tm̃r ) ∈ [0, 1], (7)

where wr ∈ R2d are learnable parameters.

3.7 Multi-task learning

We define the training loss as the sum of losses in IR and RC,

L(θ) = LRC + λLIR , (8)

where θ is the set of all learnable parameters of the model and λ is

a balancing parameter. Our model uses question-answer-passage

triples in the training set as positive examples and generates nega-

tive examples from the set. We explain the negative sampling pro-

cedure used in our experiments in Section 4.4.3.

The loss of the IR task, LIR , is the binary cross entropy between

the true and predicted relevance scores averaged over all examples:

LIR = −
1

N

∑

i

(

ri logp
r
+ (1 − ri ) log(1 − pr )

)

, (9)

where N is the number of examples and ri is the true relevance

score (1 if the i-th example is positive, 0 otherwise).

The loss of the RC task, LRC , is the negative log probabilities of

the true start and end indices given by the predicted distributions

averaged over all positive examples:

LRC = −
1

Npos

∑

i
ri

(

logp1
y1
i

+ logp2
y2
i

)

, (10)

where Npos is the number of positive examples, and y1i and y
2
i are

the true start and end indices. Note that negative examples are ig-

nored in the loss function for RC because they do not have the

correct answer spans for the query.



3.8 Test process

3.8.1 IR task. Given a question q, our model outputs the top-k

passages, Rk , ordered by the relevance pr for each passage x ∈ D

and q.

3.8.2 RC task. Our model outputs an answer for each passage in

the retrieved set. In total, it outputsk answers. Given x ∈ Rk and q,

it chooses the answer span (t1, t2)where t1 ≤ t2 with themaximum

value ofp1t1p
2
t2
, which can be computed in linear timewith dynamic

programming. It then outputs an answer as a substring of x with

the chosen span.

3.8.3 MRS task. Our model returns a final answer with weighted

majority voting from the k outputs of the RC component. It uses

exp(pr /τ ) for each RC output as a weight, where τ is a temperature

parameter that controls the voting. It sums the weights of each

answer string and selects the most voted for answer as the final

answer. Note that we do not use the RC score for the voting.

3.9 Telescoping setting

It is difficult to adapt neural networks to the whole of a large-scale

corpus due to their computational cost; so, we consider using a

telescoping setting that uses chaining of different IR models, where

each successive model re-ranks a smaller number of passages [27].

Without loss of generality, we can use a telescoping setting with

our model, where our IR component finds relevant passages in a

subset of a corpus D retrieved by chaining of different IR models.

That is, the initial rankers focus on eliminating higher irrelevant

passages, and our model operates as a re-ranker for determining

the existence of answer phrases within the remaining passages. We

explain the settings used in our experiments in Section 4.4.4.

4 EXPERIMENTS

4.1 Datasets

4.1.1 Training. We used SQuAD 1.1 [38], which is a standard RC

dataset based on Wikipedia articles, and Jp-News, which was cre-

ated by crowdworkers in the same way as SQuAD. For each ques-

tion, we defined that the single passage corresponding to the ques-

tion in the dataset is relevant and the others are not relevant. That

is, our IR component used question-answer-passage triples in the

training set as positive examples. It generated negative examples

from the set, as described in Section 4.4.3.

Table 1 shows the statistics of the datasets. The main character-

istic of Jp-News is the use of a set of Japanese news articles that

contain similar passages on the same topics. These similar passages

make it difficult for IR models to find the most relevant passage to

each question. See the Appendix A for details of the data collection

and analysis of the Jp-News dataset.

4.1.2 Evaluations. We used a benchmark for MRS, SQuADfull [5],

to evaluate ourmodel trainedwith SQuAD. It takes only the question-

answer pairs of the SQuADdevelopment set and uses the fullWikipedia

as the knowledge source (5,075,182 articles). In this end-to-end set-

ting, no relevance information for IR is given. To evaluate the indi-

vidual contributions of our model components precisely, we con-

ducted additional experiments using the passages of the SQuAD

Table 1: Number and mean length (in tokens) of each item

in the training datasets.

SQuAD Jp-News

train dev train dev test

No. articles 442 48 4,000 500 500

No. questions 87,599 10,570 66,073 8,247 8,272

No. passages 18,896 2,067 10,024 1,214 1,247

No. answers 87,599 34,726 179,908 22,500 22,500

Len. questions 11.4 11.5 21.9 21.8 21.9

Len. passages 140.3 144.5 181.4 176.2 177.7

Len. answers 3.5 3.3 4.3 4.5 4.2

development set (denoted as SQuADdev) or those of Jp-News as

the knowledge source.

As in the training set, the question-answer-passage triples in

the development set were used as positive examples. Our IR evalu-

ation using binary relevance scores is more rigorous than distant-

supervision evaluations based on whether the ground-truth ap-

pears in the retrieved passages [5, 47].

4.2 Evaluation metrics

4.2.1 IR Task. We used metrics for binary relevance judgments

to evaluate the individual contributions of our IR component. Suc-

cess@k (S@k) is the percentage of times that a relevant document

is in the top-k retrieved documents, Rk , for a query [9].MRR@k

(M@k) is themean reciprocal rank of the first relevant document [8].

4.2.2 RC and MRS Tasks. We evaluated the models with the same

metrics used in SQuAD. EM (Exact match) measures the percent-

age of predictions that match the ground truth exactly. F1 (Macro-

averaged F1 score) measures the average overlap between the bag

of words of the prediction and that of the ground truth [38].

4.3 Baselines

4.3.1 MRS task. We used two state-of-the-art models: DrQA [5]

and R3 [47] in the end-to-end setting. Moreover, for the detailed

evaluations, we used a simple pipeline of a TF-IDF model (with-

out re-ranking) and our RC component trained with STL. This

structure corresponds to the one of DrQA [5]. We also evaluated a

pipeline of our IR component trainedwith STL (used as a re-ranker)

and our RC component trained with STL.

4.3.2 IR task. For the individual evaluations, we used two recent

neural IR models as re-ranker baselines. Duet [31] is a recent stan-

dard neural IR model. It consists of two separate CNNs: one that ex-

actlymatches question and passage words and another thatmatches

the question and the passage by using learned distributed represen-

tations. In [31], Mitra et al. reported that Duet significantly outper-

formed non-neural IR models such as BM25 [39] and LSA [11] and

also earlier neural IR models such as DSSM [19] and DRMM [16].

Match-tensor [22] is a recent model that uses RNNs for the encod-

ing of the input query and passage. It uses soft-matching between

each question and passage word encoded by a bi-LSTM and uses

2D convolutions that map the matching tensor to the relevance

score. Although Duet does not assume that queries are given in



the form of natural language, Match-tensor can carefully consider

the context of question and passage sentences with RNNs.

4.3.3 RC task. In order to confirm that our MTL approach does

not degrade RC performance, we used BiDAF [40], which is a base

model of our model, and Document Reader [5], which is the RC

component of DrQA.

4.4 Model configuration

4.4.1 Preprocess. We used the Stanford CoreNLP tokenizer [26]

(JTAG tokenizer [14]) on the SQuAD (Jp-News) dataset. Ourmodel

used pre-trained 300-dimensional fastText embeddings [3] in a case-

sensitive manner, and they were fixed during training. We used the

2016-03-05 (2017-11-03) dump of English (Japanese) Wikipedia ar-

ticles for pre-training.

4.4.2 Training process. Weused the same configuration for all datasets.

We trained our model with 10 GPUs (GeForce GTX 1080 Ti). Each

GPU processed a minibatch of size 60, consisting of 30 positive and

30 negative examples. The LSTM hidden size, d , and the context

vector size, c , were set to 100. Weights were initialized using the

Xavier uniform initializer [15], except that the biases of all the lin-

ear transformations were initialized with zero vectors. A dropout

[42] rate of 0.2 was used for all highway and LSTM layers and each

linear transformation before the softmax and sigmoid for the out-

puts. We used SGD with a momentum of 0.9 and an initial learning

rate of 1. The number of epochs was 15, and the learning rate was

reduced by a factor of 0.9 every epoch. The balancing factor of

MTL, λ, was set to 1. During training, the moving average of each

weight was maintained with an exponential decay rate of 0.99. At

test time, the moving average was used instead of the raw weight.

Single-task learning (STL) was conducted by changing the training

loss function. We used L(θ) = LIR for the IR task and L(θ) = LRC
for the RC task.

4.4.3 Negative sampling. Negative examples for trainingwere gen-

erated from positive examples. Each negative example consisted of

the same question and a similar passage, which was randomly sam-

pled among the top-15 most similar passages in a TF-IDF vector

space of the training set, to the corresponding positive example.

Preliminary experiments showed that negative examples consist-

ing of a question and a passage that were randomly sampled from

the whole training set were not effective at training IR modules.

4.4.4 Telescoping se�ings. We used two settings: T1 and T2.

T1. For SQuADfull, we used chaining of two exact-matching IR

models and one neural IR model. The first model retrieved five ar-

ticles from about five million articles, and the second one retrieved

200 passages from the five articles. Articles were split into pas-

sages by one or more line breaks, as in [5]. We used Document

Retriever [5], which is a model based on bigram hashing and TF-

IDF matching, for both the first and second retrievals. Finally, the

IR component of our model found the top-1 passage from the 200

passages and passed it to our RC component.

T2. For the individual evaluations using SQuADdev and Jp-News,

one TF-IDF model retrieved 200 passages from the whole passages

in the evaluation set, and our neural IR component retrieved the

Table 2: MRS using full Wikipedia results. S, DS, DS’, and E

mean supervised learning, distant supervision with SQuAD

and with other datasets, and ensemble model, respectively.

The results of our single model and R3 are averages of five

runs; the superscript is the standard error.

SQuADfull

S DS DS’ E EM F1

DrQA X 27.1 –

DrQA+DS X X 28.4 –

DrQA+DS+MTL X X X 29.8 –

R3 X 29.1.2 37.5.2

Retrieve-and-Read (single) X 32.7.2 39.8.2

Retrieve-and-Read (ensemble) X X 35.6 42.6

top-k passage. k was varied from 1 to 5. The temperature parame-

ter for voting, τ , was set to 0.05.

4.4.5 Baseline se�ings. ForMRS and RCbaselines with the SQuAD

dataset, we used the results reported in their studies. For Jp-News,

we trained and evaluated BiDAF and Document Reader using the

original configuration of each study.We trained GloVe embeddings

with the sameWikipedia articles that ourmodel used for pre-training.

We did not use the lemma, POS, or NER features for Document

Reader, because they degraded accuracy.

The IR baselines used the same telescoping settings as ourmodel.

We used the original configuration of each IR method, except as

follows. We used the 300-dimensional fastText (which our model

used) for the fixed embeddings. Although the original Duet uses

character n-grams for learning the word embeddings, it does not

work well when there is not much training data.

4.5 Results

The reported results of all neural models with different initializa-

tions are means over five trials.

Does our system achieve state-of-the-art performance on a

large-scale MRS task?

We evaluated the overall performance of our single and ensemble

models with SQuADfull and the T1 telescoping setting. The ensem-

ble model consists of five training runs with the identical architec-

ture and hyper-parameters. It chooses the answer with the highest

sum of confidence scores amongst the five runs for each question.

Table 2 shows that our models outperformed the state-of-the-art

by a significant margin. The improvement of our single (ensemble)

model over R3, whichwas trainedwithout using answer spans, was

up to 3.6% (6.5%) in EM and 2.3% (5.3%) in F1. This result indicates

the effectiveness of learning from answer spans in IR.

Does our MTL improve the accuracy of STL, which does not

consider answer spans, in IR?

The individual contributions of our neural IR component on SQuADdev

and Jp-News were evaluated using the T2 telescoping setting. Ta-

ble 3 shows that our IR component trained with MTL significantly

outperformed STL. The IR component shares hidden layers with

the RC component in order that it can learn from answer spans,



Table 3: Averaged IR (re-ranking) results. The initial ranker

was TF-IDF.

SQuADdev Jp-Newsdev Jp-Newstest
IR re-ranker S@1 M@5 S@1 M@5 S@1 M@5

(None) 0.748 0.810 0.713 0.824 0.692 0.804

Duet 0.665 0.743 0.573 0.698 0.564 0.692

Match-tensor 0.732 0.791 0.725 0.821 0.704 0.806

Our IR (STL) 0.707 0.773 0.690 0.800 0.673 0.787

Our IR (MTL) 0.811 0.863 0.753 0.842 0.737 0.830

Table 4: Averaged standard RC (reading one relevant pas-

sage) results for a single model.

SQuADdev Jp-Newsdev Jp-Newstest
RC model EM F1 EM F1 EM F1

BiDAF 67.7 77.3 76.9 88.1 77.3 88.3

Document Reader 69.5 78.8 75.9 87.6 76.2 87.8

Our RC (STL) 69.1 78.2 77.4 88.4 78.3 88.8

Our RC (MTL) 69.3 78.5 78.0 88.8 78.8 89.2

and this sharing contributed to statistically significant improve-

ments over all baselines (t-test; p < .001) for all datasets.

Other re-rankers did not clearly outperform TF-IDF. Interest-

ingly, our IR component trained with STL performed significantly

worse than TF-IDF and Match-tensor. This result indicates that it

is important to teach which part of the passage meets the informa-

tion needs rather than to give only a relevance score to the whole

passage and that our MTL approach allows for accurate learning

from a small amount of data. We should note that the experiments

conducted on Duet and Match-tensor in their original studies used

a set of approximately one million documents, so they would out-

perform TF-IDF when there is a large amount of data.

Does our MTL improve the accuracy of STL in RC?

We evaluated the individual contributions of our RC component

using with SQuADdev and Jp-News. Table 4 and Figure 3 show the

results for the standard RC task, where each model was given one

relevant passage for each question. As shown in Figure 3, our MTL

approach performed statistically significantly better than STL in

terms of EM and F1 of each epoch (Two-way repeated-measures

ANOVA; p < .05) for all datasets. Although our RC component

based on a vanilla BiDAF was not competitive among the current

state-of-the-art methods such as QANet [52], we confirmed that

our MTL does not degrade RC performance and it is comparable

to the Document Reader model, which is used in DrQA [5].

Does our MTL improve the accuracy of pipeline

approaches in MRS?

We compared our MTL approach with a pipeline of our compo-

nents trained with STL, by using SQuADdev and Jp-News. We also

evaluated a simple pipeline of TF-IDF finding the top-1 passage and

our RC component trained with STL. Table 5 shows that our MTL

approach with the T2 telescoping setting (k = 1) statistically sig-

nificantly outperformed the pipeline approaches (t-test; p < .001)
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Figure 3: Averaged learning curves of our RC component

trained with MTL or STL. (a) EM and (b) F1 metrics on

SQuADdev set. Error bars are for over five trials.

Table 5: MRS results of our single and ensemble models.

The initial ranker was TF-IDF. (IR, RC) = (None, STL) corre-

sponds to the pipeline of TF-IDF and a neural RCmodel [5].

Single model (mean performance over five trials)

SQuADdev Jp-Newsdev Jp-Newstest
Our IR Our RC EM F1 EM F1 EM F1

(None) STL 53.9 61.6 65.6 78.0 65.6 77.9

STL STL 52.2 59.9 64.9 77.2 65.5 77.7

MTL MTL 60.0 68.1 69.5 81.7 70.6 82.7

Ensemble model consisting of five single models

Our IR Our RC EM F1 EM F1 EM F1

(None) STL 56.6 63.6 68.2 79.7 67.9 79.4

STL STL 56.3 63.2 68.8 80.2 68.8 80.4

MTL MTL 64.5 71.8 73.5 84.5 75.0 85.9

for all datasets. As shown in Tables 3 and 4, the improvements in

our IR component were responsible for this progress.

Does our whole system run at a practical speed?

The test process for SQuADdev using our single model with (with-

out) the T2 telescoping setting, where our neural model processed

200 (2,047) passages for each question, took 1.5 (17.1) seconds per

question. The time taken by the TF-IDF search was very short

(less than 10 milliseconds). Also, the test process for SQuADfull,

in which the mean length of the passages is shorter than in that

of SQuADdev, took 1.0 second per question when using our single

model with the T1 telescoping setting.

To summarize, the whole system could run at a practical speed

under the telescoping settings, and the computational order of the

systemwas dependent on the size of the subset retrieved by TF-IDF

and on the lengths of the question and passages.

Does the telescoping setting degrade accuracy in IR?

We evaluated the accuracy of the initial ranker, TF-IDF, on the

SQuADdev and Jp-News datasets, when it retrieved 200 passages in

the T2 telescoping setting. We confirmed that it eliminated higher

irrelevant passages with almost no deterioration in accuracy: the

Success@200 rate was 0.991 (0.997) on the SQuAD (Jp-News) de-

velopment set, while the Success@1 rate was 0.748 (0.713).
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Figure 4: Attention of our IR components trained with (a)

STL and (b) MTL to passage words. Darker red signifies

greater attention.
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Figure 5: Success@1 rates broken down by the ten most-

frequent first words in the question on the SQuAD dev. set.

Table 6: Ablation test of our IR re-rankermodel. The results

are averages over five trials.

SQuADdev Jp-Newsdev Jp-Newstest
IR re-ranker S@1 M@5 S@1 M@5 S@1 M@5

Our IR (MTL) 0.811 0.863 0.753 0.842 0.737 0.830

w/o exact-match 0.800 0.858 0.742 0.832 0.726 0.820

Although TF-IDF was reasonable as an initial ranker on these

datasets, we need to improve the accuracy to overcome the prob-

lem of lexical variation between the question and the passages. We

will discuss this issue in Section 5.

Detailed analysis

Figure 4 provides a qualitative analysis of our IR components’ at-

tention to a passage. The component trained with MTL captured

the answer phrase as well as question words, but the component

trained with STL did not recognize the answer phrase.

Figure 5 shows IR results broken down by the first words in

the question on SQuADdev. Our IR component trained with MTL

performed better than TF-IDF in every category.

Table 6 shows the accuracy of our IR component with and with-

out the exact-match channel on SQuADdev and Jp-News. This chan-

nel improved the model performance (t-test; p < .01).

Table 7: Effect of varying the number of retrieved passages,

k , on the averaged MRS results of our single model.

SQuADfull SQuADdev Jp-Newsdev Jp-Newstest
k EM F1 EM F1 EM F1 EM F1

1 32.7 39.8 60.0 68.1 69.5 81.7 70.6 82.7

3 32.4 39.5 59.5 67.6 69.7 81.9 70.8 82.8

5 31.4 38.4 58.9 67.0 69.9 82.0 70.9 82.9

Table 7 shows the results of our model using the T2 telescoping

setting with different values of k , which is the number of passages

retrieved by our IR component. The results for k = 1 were the best

for corpora like SQuAD (Wikipedia articles), where most descrip-

tions are expected to be stated only once, while larger values of k

were suitable for corpora like Jp-News that include the same de-

scriptions in multiple passages.

The total number of parameters without word embeddings in

our MTL (STL = IR + RC) model was 3.11M (4.52M = 1.67M +

2.85M). TheMTLmodel shared hidden layers for the two tasks and

could save 1.41M parameters compared with the pipeline system

of the two individual components. Also, the training time of MTL

with SQuADwas 14.0 hours. It could save 4.6 hours compared with

the pipeline system (8.6 hours for IR and 10.0 hours for RC compo-

nents).

5 RELATED WORK AND DISCUSSION

Machine reading at scale. MRS, which is a combination of an

IR and RC task that uses a large number of unstructured texts as

a knowledge source, is an emerging research field. As described

earlier, the work of Wang et al. [47] is the most similar to ours. In

their model, R3, the ranker and reader share the hidden layers and

they are jointly learned with reinforcement learning. The largest

difference between DrQA [5] and our model is that R3 was trained

entirely using distant supervision. Although distant supervision

without using answer spans can learn from a large amount of data,

it may prevent models from carefully considering the context of

passages. We believe that supervised learning using answer spans

is also promising because of its high accuracy. Our model can be

trained with standard RC datasets with answer spans, and such

datasets can be collected by crowdsourcing.

Recently, Wang et al. proposed answer re-ranking methods that

reorder the answer candidates generated by the RC module of an

MRS system [48]. Their methods can be used as post-processes for

existing MRS systems including ours; unfortunately, they did not

report their performance on SQuADfull . Their methods (and our

weighted voting scheme described in Section 3.8.3) are effective

when the correct answer is repeatedly suggested in passages. How-

ever, there are still problems with question answering that com-

bines disjoint pieces of textual evidence. Effective methods of text

understanding across multiple passages need to be developed that

would alleviate the limitations of our Definition 5, which assumes

that all textual facts required to answer the question are contained

in one relevant passage.

Currently, SQuADfull is the only large-scale MRS dataset that

can be used to both train and evaluate extractive RC models in the

same domains and question styles. NewsQA [45] can be used as the



training data for extractive RC models, while its questions are too

dependent on the corresponding passage (e.g., Who is hiring?) to

use the MRS task. Clark et al. recently released the ARC dataset as

a more challenging dataset [7]. It consists of 7,787 QA pairs and

14M science sentences, although its multiple-choice type of ques-

tion is different from that of SQuAD and JP-News.

RC with a small number of passages. Several small-scale MRS

datasets consisting of sets of (question, answer string, evidence pas-

sages) triples have been proposed: TriviaQA [24], Quasar-T [12],

SearchQA [13] (answer extraction), WikiHop [50] (multiple choice),

Quasar-S [12] (cloze-styles), and MS MARCO [33] (answer gener-

ation). Each QA pair in these datasets has a small number of evi-

dence passages that were gathered automatically from the Web by

using a search engine as their initial ranker in a large-scale MRS

setting.

Approaches that read all given passages at once are often adapted

to work with these datasets. That is, IR methods are not used. For

example, R-NET forMSMARCO [49] concatenates all ten passages

corresponding to a question and extracted an answer span from

the concatenated one. However, such approaches consume a lot of

memory and do not work well when there are many long passages.

Moreover, the datasets listed above do not provide answer spans

in evidence passages and cannot be used for supervised training

of our model because of the lack of a relevance score and answer

span of passages to each question. Thus, we did not conduct any

experiments with these datasets in this study.

Distant supervision in IR for RC. Although SQuAD is a large-

scale RC dataset, the domains and styles of its questions are limited.

Incorporating distant supervision with supervised learning will be

important for building open-domain QA systems. As distant super-

vision datasets, we can use the RC datasets without answer spans

or other QA datasets without evidence passages, such as Curat-

edTREC [1], WebQuestions [2], or WikiMoviews [29].

Distant supervision in IR for RC has not yet been fully estab-

lished. Wang et al. reported that their ranker trained with distant

supervision performed far worse than the oracle performance [47].

In the future, we need to investigate the effects of using distant su-

pervision in IR for RC, including the effect of adding adversarial

distracting sentences [23].

Neural IR. Neural ranking models are currently a popular topic

in IR [30]. There are roughly two groups: embedding space mod-

els [19, 32, 41] and interaction-based models [10, 16, 20, 21, 51].

In the embedding space models, the query and documents are

first embedded into continuous vectors, and the ranking is calcu-

lated from their embeddings’ similarity. These models are faster

than interaction-based ones, and we can use them as initial rankers

in order to alleviate the problem of lexical variation.

Most of the recent models use an interaction mechanism be-

tween the query and document words for accuracy. These neural

approaches give a relevance score to the whole document for train-

ing and tend to be data-hungry [30]. By contrast, our experimen-

tal results showed that our MTL approach accurately learns from

a small amount of data.

Multi-task and transfer learning. MTL and transfer learning [34]

play a key role in building intelligent QA systemswhen the amount

of available data is limited.McCann et al. used contextualizedword

embeddings, called CoVe, trained inmachine translation to improve

the accuracy of RC [28]. Peters et al. proposed contextualizedword

embeddings, called ELMo, trained in language modeling. Adding

ELMo representations to existing models showed significant im-

provements on six challenging NLP problems including RC [36].

Yu et al. used a complementary data augmentation technique to

enhance the training data of RC by using a translation model. The

technique paraphrases examples by translating the original sen-

tences from English to French and then back to English [52]. These

techniques can be used with our models.

Traditional IR-based QA systems. Most traditional systems focus

on factoid questions, which can be answered with named entities,

and have a pipeline architecture consisting of at least three compo-

nents: question analysis, IR, and answer extraction [17]. The sys-

tems reformulate queries to enable their IR method to cover many

textual variants. However, their reformulation is dependent on the

redundancy of the knowledge source [4], and thus, they do not

work well on smaller corpora. A deeper understanding of natural

language is needed to overcome their limitations.

Moreover, there are two approaches to IR for QA: one is to index

each passage as a separate document and retrieve them; the other

one is to retrieve long documents from a corpus first and then find

relevant short passages from the retrieved documents [44]. Explor-

ing the potential of such a two-stage IR in an end-to-end neural

network model would be worthwhile. In particular, the work of

Choi et al. [6] is related to the second stage of passage retrieval: it

selects a few sentences from a long document (guaranteed to be

relevant to a given question) and then generates the final answer

from the selected sentences.

6 CONCLUSION

This study considered the task of machine reading at scale (MRS)

enabling QA based on a set of passages as a knowledge source. We

improved IR for reading comprehension (RC).

Regarding the originality of ourwork, we believe our studymakes

two main contributions. First, we proposed the Retrieve-and-Read

model, which is based on a simple and effective approach that in-

corporates IR and RC tasks by using supervisedmulti-task learning

(MTL). In the conventional reinforcement approach of joint learn-

ing of IR and RC tasks [47], the IR component is indirectly trained

with a distant supervision reward based on RC predictions. Our

model directly minimizes the joint loss of IR and RC in order that

the IR component, which shares the hidden layers with the RC

component, can be also trained with correct answer spans. Next,

we created a new dataset, Jp-News, by using crowdsourcing in the

sameway as SQuAD. Jp-News is suitable formaking evaluations of

IR for RC tasks, because it consists of a set of news articles that con-

tain similar passages on the same topics and a set of clear-intent

long questions.

The key strength of this study is the high accuracy of our MRS

system, particularly our IR component. While this study was lim-

ited to supervised learning, our MTL approach achieved state-of-

the-art performance on a standard benchmark, in answering SQuAD

questions using the full Wikipedia as the knowledge source. We

also thoroughly evaluated the effectiveness of supervised MTL by



investigating the individual contributions of ourmodel components.

The experimental results demonstrated the effectiveness of learn-

ing from answer spans in IR for RC. We believe that this finding

will contribute to the development of MRS systems. Moreover, our

approach can be easily applied to other state-of-the-art RC neu-

ral networks such as QANet [52]. The existing RC methods could

be extended into ones enabling QA from a corpus and handling

questions that have no answer in the reading passage. Finally, the

experimental results on our new dataset showed the capability of

retrieving and reading passages in a non-English language without

linguistic knowledge.

Future workwill involve exploring the potential of using distant

supervision and enabling our model to combine disjoint pieces of

textual evidence.
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A THE JP-NEWS DATASET

This section describes the Jp-News dataset consisting of QA data

created by crowdworkers on a set of Japanese news articles.

A.1 Dataset Collection

The data collection consisted of three stages, as in the case of SQuAD [38].

A.1.1 Passage curation. We crawled 14,804 articles and randomly

sampled 5,000 articles, published from 17 June to 20 September

2017. We extracted individual paragraphs (passages) and stripped

images and captions from each paragraph. The result was 12, 485

paragraphs. We partitioned the articles randomly into a training

set (80%), a development set (10%), and a test set (10%).

A.1.2 �estion-answer collection. Weemployed crowdworkers lo-

cated in Japan to create questions. On each paragraph, three crowd-

workers were tasked with asking and answering five questions on

the content of that paragraph. The questions had to be entered in a

text field, and the answer spans had to be selected in the paragraph.

The workers were encouraged to ask questions in their ownwords

in a way that other people could understand their questions with-

out seeing the article. For example, "How old was he?" is a bad

question despite the fact that "he" is uniquely determined in the

article. "How old was the MVP in the MLB world series 2016?" is

an example of a good question.

A.1.3 Additional answers collection. We obtained two additional

answers for each question. Each crowdworker was shown only the

questions along with the paragraphs of an article and was asked to

select the shortest span in the paragraph that answered the ques-

tion. In total, we obtained 82,592 questions and 224,908 answers.

A.2 Dataset Analysis

We analyzed the dataset, from the viewpoint of articles, passages,

questions, and answers, in order to demonstrate its characteristics

in comparison with SQuAD. Table 8 shows the statistics of each

item in the Jp-News dataset. We used the JTAG tokenizer [14].

A.2.1 Articles. The number of articles (5,000) is quite a bit larger

than that of SQuAD (536). The articles cover a wide range of news

categories: Local (26.1%),World (20.0%), Sports (13.7%), Politics (13.0%),

Weather (12.0%), Business (8.5%), and Others (6.9%).

Moreover, Jp-News contains a series of news articles that de-

scribe the same topic. This is in contrast to SQuAD, which was

created from Wikipedia where most descriptions are expected to

be stated only once. The crawled articles have hyperlinks to their

related articles; 4.6% of the articles in the development set have

hyperlinks to other articles in the same set.

A.2.2 Passages. The mean number of passage tokens (180.5) is

slightly larger than that of SQuAD (140.3). The distribution of pas-

sage lengths consists of a mixture of two distributions: lead para-

graphs, which summarize themain topic of articles, and other para-

graphs, as shown in Figure 6. The existence of lead paragraphs and

paragraphs of related articlesmakes it difficult for IRmodels to find

the most relevant paragraph to each question.

Table 8: Number and mean length (in tokens) of each item

in the Jp-News dataset.

train dev test

Number of articles 4,000 500 500

Number of questions 66,073 8,247 8,272

Number of passages 10,024 1,214 1,247

Number of answers 179,908 22,500 22,500

Mean length of questions 21.9 21.8 21.9

Mean length of passages 181.4 176.2 177.7

Mean length of answers 4.3 4.5 4.2
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Figure 6: Distribution of number of tokens. (a) Lead para-

graphs and other paragraphs. (b) Answers and questions.

Table 9: Answer type distributions on Jp-News and SQuAD.

We manually examined 300 randomly sampled question-

answer pairs of the Jp-News dataset.

Answer type SQuAD Jp-News

Date 8.9% 5.7%

Other Numeric 10.9% 21.7%

Person 12.9% 12.7%

Location 4.4% 19.7%

Other Entity 15.3% 9.0%

Common Noun Phrase 31.8% 18.7%

Adjective Phrase 3.9% 0.3%

Verb Phrase 5.5% 1.0%

Clause 3.7% 9.7%

Other 2.7% 1.7%

A.2.3 �estions. The mean number of tokens is 21.9, and it is

larger than that of SQuAD (11.4). Concrete questions are suitable

for finding passages relevant to the questions in a corpus.

A.2.4 Answers. Themean number of tokens covering each answer

string is 4.3, and that of SQuAD is 3.4. Table 9 shows the answer-

type distributions of the Jp-News dataset. We can see that Jp-News

contains a larger number of numeric, location, and clause answers

than SQuAD does.


	Abstract
	1 Introduction
	2 Problem statement
	3 Proposed model
	3.1 Word embedding layer
	3.2 Contextual embedding layer
	3.3 Attention flow layer
	3.4 Modeling layer
	3.5 Comprehension layer
	3.6 Retrieval layer
	3.7 Multi-task learning
	3.8 Test process
	3.9 Telescoping setting

	4 Experiments
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Baselines
	4.4 Model configuration
	4.5 Results

	5 Related work and discussion
	6 Conclusion
	References
	A The Jp-News dataset
	A.1 Dataset Collection
	A.2 Dataset Analysis


