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Abstract

Despite the impressive results of deep learning models in computer vision, these techniques
have difficulty achieving such high performance in medical imaging. Indeed, two challenges
are inherent in this domain: the rarity of labelled images, while deep learning methods are
known to be extremely data intensive, and the large size of images, generally in 3D, which
considerably increases the need for computing power. To overcome these two challenges,
we choose to use a simple CNN that tries to classify the central voxel of a 3D patch given to
it as an input, while exploiting a large unlabelled database for pretraining. Thus, the use
of patches limits the size of the neural network and the introduction of unlabelled images
increases the amount of data used to feed the network. This semi-supervised approach
is applied to the recognition of the cortical sulci: this problem is particularly challenging
because it contains as many structures to be recognized as labelled subjects, i.e. only
about sixty, and these structures are extremely variable. The results show a significant
improvement compared to the BrainVISA model, the most used sulcus recognition toolbox.
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1. Introduction
1.1. Why automatic cortical sulci recognition?

The cortical surface is made up of many convolutions, called gyri, delimited by folds, called
sulci. The main sulci provide a kind of road map delimiting functionally different regions.
The shape of the sulci (length, depth, etc.) is used as biomarkers of developmental and
neurodegenerative diseases. Despite the many tools available to visualize sulci in 3D, their
labelling according to the anatomical nomenclature is long and fastidious. For each brain,
it takes at least one hour for an expert to label all the sulci. However, because of the large
variability of the folding pattern in the general population, inferring reproducible biomarkers
requires the mining of thousands of brains. Hence the automation of sulcus recognition is
essential.

Nevertheless, learning to label the cortical sulci is a complex challenge for several rea-
sons. First of all, the sulci are highly variable structures, some of them are even present
in only 30% of subjects. In addition, each brain contains more than 120 different sulci,
but few segmentation algorithms are designed to deal with such a large amount of struc-
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tures. Moreover, from one sulcus to another, the average size can vary from a simple to a
hundredfold. Hence, the voxelwise problem is particularly unbalanced. Finally, the
number of manually labelled subjects currently available is very limited.

Many methods have been proposed to take up this challenge. A large part of the algo-
rithms rely on graph-based representations, allowing the representation of relative positions
of the sulci as well as their location in a standardized space (Blida, 2014; Riviere et al., 2002;
Royackkers et al., 1998; Shi et al., 2007; Vivodtzev et al., 2006; Yang and Kruggel, 2009).
In order to improve the recognition robustness, other methods have sought to model inter-
subject variability using several frameworks ranging from PCA to Bayesian approaches,
including multi-atlas segmentation (Behnke et al., 2003; Borne et al., 2018; Fischl et al.,
2004; Lohmann and von Cramon, 2000; Perrot et al., 2011). To the best of our knowledge,
despite their current popularity, no CNN has yet been proposed for cortical sulci recognition.

1.2. How to manage large image sizes?

CNNs have proven their worth in 2D image analysis, but when it comes to adapting these
networks to 3D, the increase in the number of parameters is such that the computational cost
becomes a limiting or even blocking factor. For this first CNN-based approach dedicated
to the cortical sulci recognition, we have chosen to adapt the method proposed in (Ciresan
et al., 2012) to 3D segmentation. In this article, a CNN is trained to classify the central
voxel of an input patch. Thus, thanks to this patch-based approach, the impact of the
transition to 3D is limited, allowing, among other things, the use of a 3D patch and 3D
convolutions, which would have been extremely expensive otherwise. Moreover, since the
sulci recognition is generally based on the patterns of neighbouring sulci, this problem is
particularly suitable for a local patch approach. Finally, thanks to the BrainVISA
tools (www.brainvisa.info), it is already possible to precompute a voxel-based representation
of the unlabeled folds based on the skeleton of a negative mold of the brain. Thus, using this
preprocessing, the sulcus recognition amounts to labeling only the voxels belonging to
a fold and not the background, which represents a considerable time saving.

1.3. How to compensate for the limited number of labelled images?

In medical imaging, manual labelling of an image is generally too long to obtain large
training databases for segmentation, whereas it is essential to train a CNN. Considering
segmentation as a classification of voxels, as explained above, the number of training
samples is already considerably increased, but these samples are extremely redundant
because of the overlap between adjacent patches.

However, it regularly happens that huge unlabelled databases are easily accessible and
remain unused. In order to exploit this data, we propose to first train a CNN on the
labelled database, then apply the obtained model to the massive unlabelled datebase that
will be used for the pre-training of a new neural network that will then be finetuned on the
labelled database. This semi-supervised approach makes it possible to better represent
the variability of possible patterns and considerably increase the number of labelled images.
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2. Method

The description of the model is organized in three steps: first, the extraction of the fold
skeleton from the MRI, second, the classification of skeleton voxels using a simple CNN,
third, the spatial regularization of the results, via the use of elementary folds or adjacent
points.

2.1. Fold extraction

Thanks to the BrainVISA pipeline, already widely used for studying cortical anatomy, the
folds are represented by a set of voxels corresponding to a skeleton of the cerebrospinal fluid
filling the fold. This representation of the folds can be understood as a negative mold of
the brain. BrainVISA is also providing a clustering of the skeleton voxels into elementary
cortical folds, the building blocks of cortical morphology.

2.2. Voxel classification thanks to CNN

The approach proposed in (Ciresan et al., 2012) addresses a segmentation problem as a
classification of each voxel based on its environment contained in a patch. In our case, as
only voxels belonging to the fold skeleton need to be classified, it reduces the number of
voxels to be identified by a factor of 103.

2.2.1. PATCH DESIGN

As the data are particularly affected by the type of MRI sequence, the age of the subject
or even the pathologies, it was chosen to represent only the skeleton of the folds into the
patches, in order to normalize the data as much as possible. Thus, when a patch voxel
belongs to the fold skeleton, it is assigned the value one, the other voxels have the value
Zero.

An additional normalization lies in the affine alignment of all the brains to the standard
Talairach space using a common resolution of 2*2*2mm which is sufficient for our problem.
We fixed the size of the patches a priori at 60*60*60mm because it seemed large enough to
learn the variability of the sulci patterns and small enough to limit the calculation costs.

2.2.2. NETWORK DESIGN

The neural network used is a 3D adaptation of the famous LeNet initially proposed in
(LeCun et al., 1998), with additional ReLU regularization layers (after each convolutional
layer and each linear layer). We have chosen to use 3D convolutional layers, despite the
exponential increase in the number of parameters that this involved, because the nature of
the problem leads us to believe that a 2D multi-view network as in (Su et al., 2015) would
not be sufficient. Indeed, for a given sulcus, its depth, length, position, neighbourhood, etc.
are all essential parameters for its recognition, whereas they are difficult to access in 2D.
At the output of the neural network, a score per sulcus label is obtained. An additional
score is calculated for the label ”unknown”, also present in the training database, and for
the ventricles that are not considered as sulci but are included in the BrainVISA skeleton.
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2.2.3. TRAINING DESIGN

First, the CNN described above is trained on the manually labelled database. Then,
this model is used to label 500 unlabelled subjects, using regularization by elementary
folds, as explained in the following section. A new CNN is then pre-trained on the
500 automatically labelled subjects and then finetuned on the manually labelled
database.

During pretraining, at each epoch, 100 points are randomly selected by subject to par-
ticipate in the training. The model obtained after 15 epochs is selected to proceed further
with the training process.

During the first training step and the finetuning step, the same scheme is used: 10%
of the subjects are selected for the validation set and the rest belongs to the training set.
At each epoch, 1000 points are randomly selected by subject of the training set and the
obtained model is tested on all voxels of the subjects of the validation set. After 15 epochs,
the model of the epoch with the highest score on the validation set is selected.

Optimization is performed by a stochastic gradient descent with a momentum of 0.9
(Sutskever et al., 2013). The learning rate is initially set at 0.001 and then divided by 10
every 7 epochs. The loss function corresponds to the cross entropy loss which is particularly
useful for unbalanced training sets.

One CNN is trained for each hemisphere.

2.3. Regularization

As the CNN performs voxelwise classification, it is essential to spatially regularize the
results. For this purpose, the elementary folds provided by BrainVISAs pipeline can be
used as sets of voxels that must have the same label, as done by the BrainVISA sulcus
recognition model. This regularization is used to label the 500 unlabelled subjects. However,
this division into elementary folds is sometimes incorrect, which can lead to large errors.
This is why, for the second stage of training, which relies on a better sampling of the
population, we propose to trust the voxelwise classification and limit the regularization to
a local filtering based on a vote in each voxels neighborhood.

2.3.1. REGULARIZATION PER ELEMENTARY FOLDS

Once the fold skeleton has been extracted, the BrainVISA pipeline proposes to cut it into
elementary folds based on geometrical and topological constraints specific to the definition
of sulci. Thus, for each elementary fold, the scores output by the CNN are averaged by
label and the label with the highest score is retained. However, as mentioned above, the
fragmentation into elementary folds sometimes presents inconsistencies and is particularly
unstable to segmentation hazards.

2.3.2. LOCAL REGULARIZATION

In order to regularize without using elementary folds, we use the labels assigned to the
neighboring voxels: the final label assigned to a given voxel corresponds to the one most
present in its neighborhood. If two or more labels are equally present, the final label is
chosen randomly among the most present.
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3. Experiment

Error rates are assessed by leave-one-out cross validation: each time, one subject belongs to
the test set and the rest to the training set. The training set is first used to train the first
CNN which is then applied to 500 unlabelled subjects, then these 500 subjects are used to
pre-train the CNN, which is fine-tuned using the training set.

3.1. Database

The training base is composed of 62 healthy brains selected from different heterogeneous
databases and labelled with a model containing 63 sulci for the right hemisphere and 64
for the left. Most of the subjects are right-handed male persons, between 25 and 35 years
old. The elementary folds of each brain were manually labelled according to the sulcus
nomenclature following a long iterative process leading to achieve a consensus across a set
of several experts of the cortex morphology. Each elementary fold is initially extracted
thanks to the BrainVISA pipeline, however the fragmentation technique has shown several
limits, therefore the elementary folds have been manually cut out when needed for this
training database. Compared to (Perrot et al., 2011), the database is the same but four
additional sulci were used, and a new iteration of the experts has been performed. The 500
unlabelled MRIs are taken from the publicly available database of the Human Connectome
Project.

3.2. Error rates

As in (Perrot et al., 2011), two measures are used to compare the different models proposed
above: Flocal at the sulcus scale and EST at the subject scale.

For each subject, we use one manually labelled segmentation for training and ten unla-
belled segmentations for error quantification (Figure 1). Using ten different segmentations
for each sulcus highlights the weaknesses of the BrainVISA preprocessing since we can com-
pute errors from the worst result, usually associated to an undersegmentation issue. To
quantify errors, for each new segmentation, the manual labelling on the initial segmenta-
tion must be transferred to the new one. Because of the variability of the segmentations
obtained and the sparcity of the fold skeleton, the simple superposition of images is insuffi-
cient. To remedy this, a Voronoi diagram of the training segmentation is used to label the
voxels of any other segmentation. Note that the elementary folds are not used to transfer
the labelling and that the true labelling is indeed on the voxel scale.

For each subject, from the ten segmentations, the average (ESIcqn and Elocalyean)
and/or maximum (ESI,. and FElocal,,;) errors are calculated. Note that the
training segmentation used for manual labelling is not used in the error calculation because
it would bias our evaluation.

3.2.1. ELOoCAL

Given a sulcus [,
FP 4+ FN,
Elocal; = 1
T FR Y FN,+TH @
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Figure 1: Strategy for measuring error rates.

with TP, FP, and FNj, respectively the number of true positive, false positive and false
negative voxels for the sulcus [.

This error allows us to see local improvements that can be confused with brain-wide
noise if only the proportion of false negatives had been taken into account.

3.2.2. ESI

Given a set of sulci L,
FP + FN,

EST = P
IEZLwl*FPhLFNH—Q*TPl (2)

with w; = isl and s; = FN; + TP}, the sulcus [ true size.

This error allows local errors to be synthesized in a single measurement. As explained in
(Perrot et al., 2011), each component of the sum over labels differs on two points compared
to FElocal;. First, true positive measures count twice as false positive and negative ones,
in order to remove errors shared by several labels, since each extra sulcal piece for a given
label is a missing part for another label. Second, each component is weighted according to
the sulcus true size so that each local component count as much as its size.

Compared to (Perrot et al., 2011), two labels are not included in the set of sulci ("un-
known” and ”ventricle”). Indeed, these two labels are not really considered as a sulcus
label but correspond to others structures, not interesting for our purpose. Thus, the scores
presented here for the BrainVISA method are worse than in (Perrot et al., 2011) for two
reasons: on the one hand because the two labels removed considerably improved the re-
sults and on the other hand because of the consideration of undersegmentation errors during
pre-processing thanks to the possibility to cut the elementary folds during manual labelling.
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4. Results

4.1. Error at the subject level

In order to compare model performance at the subject level, we are interested in the av-
erage ES1eqn and ESI,,., that better reflect the robustness of the model to BrainVISA
preprocessing errors (Table 1). By comparing the results with a matched T-test, the aver-
age ESLyean and EST,,, are slightly (about 1%) but significantly improved thanks to the
semi supervised strategy adopted (pygiue = 2.15¢ — 26 and 3.95¢ — 27). The same applies
to the impact of the regularization technique used, which significantly reduces both error
rates (Pyaiue = 8.11e — 75 and 1.26e — 61). Finally, the use of unlabelled data and regular-
ization at the voxel scale results in a significantly better model than the BrainVISA model
(Pvalue = 9.47e — 14 and 3.09 — 26), with more than 3% less E'SI,q, for the new model.

Table 1: ESIcan/maz (2*standard deviation) in % per model

ESI Left (mean) Right (mean) Left (max) Right (max)
BrainVISA model 19.77 (5.63)  19.25 (6.26) 22.07 (5.91)  21.49 (6.89)
CNN 19.58 (4.32)  19.56 (4.55) 20.24 (4.58)  20.25 (4.65)
ONN + pretrain 18.24 (4.64)  18.20 (4.41) 18.91 (4.97)  18.85 (4.51)

CNN + pretrain + reg 17.42 (4.78) 17.38 (4.48)  18.16 (5.06) 18.09 (4.53)

4.2. Error at the sulcus level

In order to better understand the results, we have chosen to compare the average Elocal,,q.
for each sulcus of the final model (CNN + pretrain + reg) with those of the BrainVISA
model (Figure 2). We observe that 64 sulci are significantly better recognized in the new
model, compared to 5 sulci significantly worse. It is interesting to note that the vast majority
of the better recognized sulci are the large sulci, which is particularly interesting in practice
because they are the most studied in neuroanatomy.

5. Conclusion

In summary, this approach once again shows the power of CNNs compared to the methods
developed so far. Compared to the BrainVISA model, the proposed model is slightly but
significantly better, with 50% of the sulci significantly better recognized. But above all, the
new method makes it possible to get rid of regularization by elementary folds while their
cutting is not robust enough, which is one of the major defaults of the BrainVISA model.

In the future, many possibilities remain available to improve the model’s performance.
First of all, it would be necessary to test using more unlabelled images. Then, as in (Ciresan
et al., 2012), several CNNs can be trained on different patch sizesin order to combine the
results obtained by each network. In addition, the CNN used in this study is particularly
simple, so it would be possible to test deeper architectures, such as AlexNet (Krizhevsky
et al., 2012) adapted to 3D. Finally, U-Net (Ronneberger et al., 2015) have proven their
worth in 2D and the use of patches to limit computational costs, as in (Beers et al., 2017),
is a very promising approach to this problem.
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Figure 2: FElocal,,., per sulcus. The graph on the left and the graph on the right present
the Elocalyg, for the sulci on the left hemisphere and on the right hemisphere,
respectively. The BrainVISA model is represented in violet and the new model is
represented in pink. The significative differences (pyarue < 0.05) are marked with
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