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Abstract

Structural optimization is a popular method for designing objects such as bridge
trusses, airplane wings, and optical devices. Unfortunately, the quality of solutions
depends heavily on how the problem is parameterized. In this paper, we propose
using the implicit bias over functions induced by neural networks to improve the
parameterization of structural optimization. Rather than directly optimizing den-
sities on a grid, we instead optimize the parameters of a neural network which
outputs those densities. This reparameterization leads to different and often bet-
ter solutions. On a selection of 116 structural optimization tasks, our approach
produced significantly better designs than baseline methods.

1 IntrOduction 6.9% worse ~ 53% worse

One of the driving forces behind the success of
deep computer vision models is the so-called
“deep image prior" of convolutional neural net-
works (CNNs). This phrase loosely describes
a set of inductive biases, present even in un-
trained models, that make them effective for
image processing. Researchers have taken ad-
vantage of this effect to perform inpainting,
noise removal, and super-resolution on images
with an untrained model [29]].
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(a) L-BFGS (neural net) (b) MMA (pixels) (c) L-BFGS (pixels)
There is growing evidence that this implicit
prior extends to domains beyond natural im-
ages. Some examples include style transfer in
fonts [3l], uncertainty estimation in fluid dynam-
ics [32]], and data upsampling in medical imaging [8]. Indeed, whenever data contains translation
invariance, spatial correlation, or multi-scale features, the deep image prior may be a useful tool.

Figure 1: A multi-story building task. Figure (a) is
a structure optimized in CNN weight space. Figures
(b) and (c) are structures optimized in pixel space.

One field where these characteristics are important — and where the deep image prior is under-
explored — is computational science and engineering. Here, parameterization is extremely important —
substituting one parameterization for another has a dramatic effect. Consider, for example, the task
of designing a multi-story building via structural optimization. The goal is to distribute a certain
quantity of building material over a two-dimensional grid in order to maximize the resilience of the
structure. As Figure [I] shows, different optimization methods (LBFGS [19] vs. MMA [28])) and
parameterizations (pixels vs. neural net) have big consequences for the final design.

How can we harness the deep image prior to better solve problems in computational science? In this
paper, we propose reparameterizing optimization problems from the basis of a grid to the basis of a
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Figure 2: Schema of our approach to reparameterizing a structural optimization problem with a
neural network. Each of these steps — the CNN parameterization, the constraint step, and the physics
simulation — is differentiable. We implement the forward pass as a TensorFlow graph and compute
gradients via automatic differentiation.

neural network. We use this approach to solve 116 structural optimization tasks and obtain solutions
that are quantitatively and qualitatively better than the baselines.

2 Methods

While we apply our approach to structural optimization in this paper, we emphasize that it is generally
applicable to a wide range of optimization problems in computational science. The core strategy is to
write the physics model in an automatic differentiation package with support for neural networks,
such as JAX, TensorFlow, or PyTorch. We emphasize that the differentiable physics model need not
be written from scratch: adjoint models, as these are known in the physical sciences, are widely used
[23L 9 [13]], and software packages exist for computing them automatically [10].

The full computational graph begins with a neural network forward pass, proceeds to enforcing
constraints and running the physics model, and ends with a scalar loss function (“compliance" in the
context of structural optimization). Figure [2] gives an overview of this process. Once we have created
this graph, we can recover the original optimization problem by performing gradient descent on the
inputs to the constraint step (Z in Figure[2). Then we can reparameterize the problem by optimizing
the weights and inputs (6 and /3) of a neural network which outputs Z.

Structural optimization. We demonstrate our reparameterization approach on the domain of struc-
tural optimization. The goal of structural optimization is to use a physics simulation to design
load-bearing structures, given constraints such as conservation of volume. We focus on the general
case of free-form design without configuration constraints, known as topology optimization [6].

Following the “modified SIMP" approach described by [2], we begin with a discretized domain of
linear finite elements on a regular square grid. The physical density Z;; at grid element (or pixel)
(4,7) is computed by applying a cone-filter with radius 2 on the input densities x;;. Then, letting
K (%) be the global stiffness matrix, U (K, F') the displacement vector, F' the vector of applied forces,
and V' (Z) the total volume, we can write the optimization objective as:

min : ¢(z) = U'KU, suchthat KU =F, V(z)=V,, and0<a; <1 V(i,j). (1)

We implemented this algorithm in NumPy, SciPy and Autograd [20]]; see our source code{ﬂ for full
details. The computationally limiting step is the linear solve U = K~ F, for which we use a sparse
Cholesky factorization [7]].

One key challenge was enforcing the volume and density constraints of Equation (I). Standard
topology optimization methods satisfy these constraints directly, but only when directly optimizing
the design variables . Our solution was to enforce the constraints in the forward pass, by mapping
unconstrained logits & into valid densities = with a constrained sigmoid transformation:

-:Cij = 1/(1 =+ exp[—iij — b(:i, Vo)]), such that: V(I) = Vo. (2)

"https://github.com/google-research/neural -structural-optimization
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where b(Z, Vp) is solved for via binary search on the volume constraint. In the backwards pass, we
differentiate through the transformation at the optimal point using implicit differentiation [[14].

A note on baselines. Structural optimization problems are sensitive not only to choice of parameteri-
zation but also to choice of optimization algorithm. Unfortunately, standard topology optimization
algorithms like the Method of Moving Asymptotes (MMA) [28] and the Optimality Criteria (OC) [3]]
are ill-suited for training neural networks. How, then, can we separate the effect of parameterization
from choice of optimizer? Our solution was to use a standard gradient-based optimizer, L-BFGS [22],
to train both the neural network parameterization (CNN-LBFGS) and the pixel parameterization
(Pixel-LBFGS). We found L-BFGS to be significantly more effective than stochastic gradient descent
when optimizing a single design, similar to findings for style transfer [12].

Since constrained optimization is often much 260 — CNN-LBFGS |
more effective at topology optimization (in pixel ~ F 55, T eteres ?
space, at least), we also report the MMA and — oC
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OC results. In practice, we found that these
provided stronger baselines than Pixel-LBFGS.
Figure[3is a good example: it shows structural
optimization of an MBB beam using the three . ; . .
baselines. All methods except Pixel-LBFGS e

.. . . ptimization step
converge to similar, near-optimal solutions.

Choosing the 116 tasks. In designing the 116
structural optimization tasks, our goal was to cre-
ate a distribution of diverse, well-studied prob-
lems with real-world significance. We started
with a selection of problems from [30] and [26]].
Most of these classic problems are simple beams
with only a few forces, so we hand-designed
additional tasks reflecting real-world designs in-
cluding bridges with various support restrictions, trees, ramps, walls and buildings. The final tasks
fall into 28 categories, with Vg € [0.05,0.5] and between 21! to 216 elements.
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oC CNN-LBFGS

- SASA

Figure 3: Comparing baselines on the MBB beam
example, on a 60 x 20 grid. Whereas Pixel-LBFGS
and CNN-LBFGS use the same optimizer, we
found that MMA and OC are much stronger base-
lines, so we decided to report all three. We use the
implementation of MMA from NLopt [17]. We
re-implemented OC, but verified the results agree
exactly on the tasks reported in [2].
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Neural network methods. Our convolutional neural network architecture was inspired by the U-net
architecture used in the Deep Image Prior paper [29]. We were only interested in the parameterization
capabilities of the this model, so we used only the second, upsampling half of the model. We also
made the first activation vector (/3 in Figure[2) into a trainable parameter. Our model consisted of
a dense layer into 32 image channels, followed by five repetitions of tanh nonlinearity, 2x bilinear
resize (for the middle three layers), global normalization by subtracting the mean and dividing by
the standard deviation, a 2D convolution layer,

. Small problems (N=62)
and a learned bias over all elements/channels. .

Large problems (N=54)

> 100
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it produced much better designs than OC and
Pixel-LBFGS.

For each task, we report typical performance
(median over 101 random seeds for the CNN,
and constant initialization for the other models,
which was always better than the median) and
“best-of-ensemble” performance (same initializa-
tion for all models, taken from the untrained

Figure 4: Empirical distribution of the relative er-
ror across design tasks. The z-axes measure design
error relative to the best overall design. The y-axes
measure the probability that the method’s solution
has an error below the z-axis threshold. Corre-
sponding ticks on the x-axis indicate the average
error for each model.
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CNN). Figure 4/ summarizes our results. On large problems (defined by > 2! grid points) both
typical and best-of-ensemble CNN-LBFGS solutions were much more likely to have low error.

Why do large problems benefit more? Returning to the literature, we found that finite grids can
suffer from a “mesh-dependency problem", with varying solutions as grid resolution changes [25]].
When grid resolution is high, small-scale “spiderweb" structures tend to form first and then interfere
with the development of large-scale structures. We suspected that optimizing the weights of a CNN
allowed us to instead optimize structures at several spatial scales at once, thus improving optimization
dynamics. To investigate this idea, we plotted structures from all 116 design tasks (see Appendix).
Then we chose five examples to highlight and showcase important qualitative trends (Figure [5).

Reparameterized designs are often ilmpler. CNN.IBFGS  MMA 50 Lol LBFGS
The CNN-LBFGS deSIgnS have fewer Splder' cantilever_beam_two_point_256x192_0.15

web" artifacts as shown in the cantilever beam,
MBB beam, and suspended bridge examples. @
On the cantilever beam, CNN-LBFGS used a
total of eight supports whereas MMA usqd eigh- —
teen. We see simpler structures as evidence
center_support-256x256-0.1

that the CNN biased optimization towards large-
scale structure. This effect was particularly pro- W W W W/
nounced for large problems, which may explain

why they benefited more. R 000 027
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Figure 5: Qualitative examples of structural opti-
mization via reparameterization. The scores below
each structure measure relative difference between
the design and the best overall design in that row.
The CNN solutions are qualitatively different from
Parameterizing topology optimization. The the baselines and often involve simpler and more
most common parameterization for topology op- effective structures.

timization is a grid mesh [2}, 24, 131]]. Sometimes,

polyhedral meshes are used [[11]. Some domain-specific structural optimizations feature locally-
refined meshes and multiple load case adjustments [[L8]. Like locally refined meshes, our method
permits structure optimization at multiple scales. Unlike them, our method permits optimization on
both scales at once.

free_suspended_bridge_256x256_0.075

Differentiable image parameterizations have
been shown to be a powerful tool for controlling
image-based optimization tasks [21]].

Neural networks and topology optimization. Several papers have proposed replacing topology
optimization methods with CNNs [4} 27, [1,[16]. Most of them begin by creating a dataset of structures
via regular topology optimization and then training a model on the dataset. While doing so can reduce
computation, it comes at the expense of relaxing physics and design constraints. More problematically,
these models can only reproduce their training data. In contrast, our approach produces better designs
that also obey exact physics constraints. One recent work resembles ours in that they use adjoint
gradients to train a CNN model [[15]. Their goal was to learn a joint, conditional model over a range
of related tasks, which is different from our goal of reparameterizing a single structure.

5 Conclusions

Choice of parameterization has a powerful effect on solution quality for tasks such as structural
optimization, where solutions must be computed by numerical optimization. Motivated by the
observation that untrained deep image models have good inductive biases for many tasks, we



reparameterized structural optimization tasks in terms of the output of a convolutional neural network
(CNN). Optimization then involved training the parameters of this CNN for each task. The resulting
framework produced qualitatively and quantitatively better designs on a set of 116 tasks.
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Table Al: Relative and absolute compliance for each of our 116
designs, for both the “typical sample” and the “best of ensemble.”
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1_shape_0.2_128x128_0.3

|/ | S T

0.018 / 3079.6 0.0 / 3025.4 0.007 / 3045.3 UNEZWACKIERA 0.0 / 2993.9 0.001 / 2995.5 0.005 / 3008.1 [0:035 / 3097.8

1_shape_0.2_256x256_0.2

0.022 / 4418:9 0.0 / 4322.7 0.009 / 4360.2 [EPNIEECERA 00 / 4277.1 0.006 / 4304.1 0.019 / 4360.2 [ NUEEENY

l_shape_0.4_64x64_0.4

N NN

0.037 /230.2 0.007 /2235 0.0 /222.0 MONLWAPREEE 0.0 / 220.6  0.001 / 2209 0.004 / 221.6 0.019 / 224.8

l_shape_0.4_128x128_0.3

e L S

0.004 /2914 0.0 /290.1 0.02 /295.9 NOBLLWARKLAM 0.0 / 286.8  0.001 / 287.1 | 0.031 / 295.6 MOKOrARWARIlI:

I_shape_0.4_256x256_0.2

e

0.0 / 410.4  0.001 / 410.6 = 0.021 / 418.9 WOURZLWAIIN'M 0.0 /399.4  0.001 / 399.9 0.203 / 480.4




Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

crane_64x64_0.3

TP PP

JON044pI0218) 0.001 /98.5 0.0 /984 |[EOEEEWECCER 0001 /975 00/974  0.0/97.4 [0:028/100:2

crane_128x128_0.2

ARASASARRNANAS

0.0/141.1 0.032 / 145.6 0.031 / 145.4 NZPNENEN 0.0 / 136.1 0.001 / 136.1 [10.033 / 140.6 UNEENATYA
crane_256x256_0.15

ASASRERRASANAS

0.0/ 174.4 ORIV GRE 0.053 / 183.7 0.563 / 272.6 0.0 / 170.1 RV 0.053 / 179.2 0.224 / 208.1
crane_256x256_0.1

RERNRERN

0.0 /292.3 [0.022 /298.7 | 0.035 /3025 BOEIWEYIN 0.0 /277.6 [ 0.021 / 283.4 PONECENAIZINCIC WYY

center_support_64x64_0.15

NN NN NS N N

0.0 /393 CESYREN@ 0002/372  00/371 | 0.018 /37.8 [N00427/38:71

center_support_128x128_0.1

NN N NSNS S N N

00 /546 PGSBS NEEBEEEY Y 0003 /515 00/51.4  001/51.9 EEENEE

center_support_256x256_0.1

W NN g

0.0 / 43.8 0.061 / 46.5 0.057 / 46.3 0.29 / 56.5 0.0 /41.9 0.026 / 43.0 ONOIAIAV ] 0.27 / 53.3

center_support_256x256_0.05

NN A

0.0 /120.3 [NERNEETENRIWERYTCESICWEATZE 0.0 / 109.7 | 0.024 / 112.3 NV TCWETPN




Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

column_32x128_.0.3

LTI

0.015 / 19.7 0.0 /195 0.009 / 19.6 [PV REN 0.012 / 19.0 0.0 / 18.8 0.005 / 18.9 = 0.024 / 19.2

column_64x256_0.3
'\‘.'f ' \'.’f
v/ I\
\' )

1111

0.018 / 17.2 0.0 / 16.9 0.024 / 17.3 EOPLXWAVAREN 0.008 / 16.5 0.0 /16.4 0.13 / 18.5

column_128x512_0.1

| |

01029620 N 00 /612 BEEEEEEE 00/53 EEEEEEENEVERESYEEE

column_128x512_0.3

[T

e R 0.055 164 055, 20.1 ECNECERELARLEN 0.065/ 165 0151/ 17.6




Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

column_128x512_0.5

TN

0.0/87 0.026 /9.0 BCEEEENECEN 00/87 001 /87 [10037 790 BEZEEN

roof_64x64_0.2

0.0 /100 [10:03/103 0.004 / 9.2 0.0 /9.1 [H0I0397/95

~ r00f_128x1280.15 ) } }
Poosy/AONIEEYEsEE 00 /113 |JEEEEENE 00/110 | 0023/113 0025 /113 JEEGHEYE

roof_256x256_0.4

Po0EE0N 00/28 |00 /200 IEENEEE 0005 /29 00/28 [N0035/290 128 / 3.2

roof_256x256_0.2

HHEAAARA e ainmHInAN NN

0.035 / 6.9 0.086 / 7.3 0.0 /6.7 1071/139 0.0 /6.5 0.008 / 6.5 0.031 / 6.7 0.219 / 7.9

fiiaaaiynniesalimiHiganmanibiy

0.062 / 17.2 | 0.143 / 18.5 0.0 / 16.2 1. 975 / 48.2 0.0 / 16.0 0.051 / 16.8 ROROYATWAN 0.355 / 21.7

causeway _bridge_top_64x64_0.3

4048 40.'0040440"44 4

0.009 /127 0004 /126  00/126 | 0.021 /128 0005/126 00 /125  0.002 /125 0.007 /12.6

causeway_bridge_top-128x128_0.2

VN YNy Ny NN NN N

0.023 / 17.8 0.0 /17.4 0.033 / 17.9 WKWARKRIN 0.004 / 17.4 0.0 /17.3 0.006 / 17.4 PO

causeway - brldge top 256x256 0 1

N\l \\/A\Y) W
0.0/339 [PEEEENERIN 00327351 JRREWESE 00/327 0009 /330 0.12 / 36.7

causeway _bridge_top_128x64_0.3

0.01/21.1  0.0/20.9  0.001/209 [NOO4218N 0.005/209 00/208  0.006/20.9 0017 /211




Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

causeway - brldge _top_ 256X128 0.2

0.0 / 30.0 0.017 / 30.5 0.006 / 30.2 [UHLZEACKEGEN 0.003 / 29.4 0.0 /29.3 0.015 / 29.7 [OKOEIRVACHNG)

causeway_bridge_middle_64x64_0.12
0.01 /273 0.029 / 27.8 0.0 / 27.0 Wy AVAPINOl  0.001 / 26.6 0.0 / 26.6 0.005 / 26.8 | 0.033 / 27.5
causeway _bridge_middle_128x128_0.1

0.026 / 29.8  0.029 / 29.8 0.0 / 29.0 0.125 / 32.6 0.0 / 28.5 0.0 / 28.4 0.005 / 28.6 [ENUKIVARIVNY

causeway_bridge_middle_256x256_0.08

0.009 /341 PEEPENIEERE 00 /338 PEEENECNE 00/327 0003 /328 1000357338 BENEEE

causeway _bridge_low_64x64_0.12

0.032/295  0015/290 00 /286 001/288 0001/285 0.0/285 [ON4NIEN

causeway_bridge_low_128x128_0.1

NG TG TG TN S TING T o TNG T TG MW
0:037//317 00287357 00/308 [NCWIEGEE 0003 /304 00/303  0.015/308

causeway _bridge_low_256x256_0.08

DENACTVR  0.205 / 43.0 [OVIVECEN 0.006 /352 0.0 /350 0.02 /357 [JREEENEER

two_level _bridge_64x64_0.2

0.01 / 19.0 0.008 / 18.9 0.0 /18.8 [JOIO48NONN 0.0 /185 0.0 / 185 0.002 / 18.5 | 0.032 / 19.1
two_level_bridge_128x128_0.16

0.017 /227 00/224  00/223 0.0/21.9  0.003/21.9 = 0.016 /222 [Jo04s2oN

two_level_bridge_256x256_0.12

0.006 /28.9 0.004 /288  00/287 [PSNIERM 00/277 0007 /27.9 0.214 / 33.6

free_suspended_bridge_64x64_0.15

R 00/ 179 ENEVEEENEFEEEZER 0016/181 00/178 0007 /180 [O04/MISEN

free_suspended_bridge_128x128_0.1

A D LI D e A0 D0 S £

0019 /250 00/245 [BOEEEFEEEIREENEZZE 00/239  0005/240 0.145 / 27.3




Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

free_suspended_bridge_256x256_0.075

0.0 / 30.4 0.021 / 31.1 0.2 / 36.5 1.594 / 78.9 0.0 / 28.9 0.005 / 29.0 0.132 / 32.7 0.338 / 38.6

free_suspended_bridge_256x256_0.05

00/536 BENEYEEEYEEEEECEEEE 00/52 0007 /506 GV

anchored_suspended_bridge_64x64_0.15

AT A I AT T AT 4TI AT

0.0/21.6 | 0013 /219 JEEEENEES 0.003 /211  00/21.1  0002/21.1 [NON42)210N

anchored _suspended_bridge_128x128_0.1

0017 /288  00/283 [EENEEHESENESEN 0004 /275 00/27.4 [10037/282

anchored_suspended_bridge_256x256_0.075

0.026 / 34.2 0.0 / 33 3 0. 131 / 37 0.457 / 48.6 0.0 / 324 0.016 / 32.9 0.104 / 35.8 0.364 / 44.2

anchored_suspended_bridge_256x256_0.05

0.0/60.0  [0030632 IEESWATRNNCFEREEIN 00/ 57.7

canyon_bridge_64x64_0.16

/N XZ7 X7 X7 X7 X7 X

0.018 / 14.3 0.0 / 14.0 0.025 / 144 0.018 /143 0.002 / 13.6 0.0 / 136 0.005 / 13.7 _
canyon_bridge_128x128_0.12

7N N KK R R XK

0.001 / 17.7 EEUKLAANIR: 0.0 /17.7 0075/190 0.0 /16.9 0.008 / 17.1 0.02 / 17.3 0.083 / 18.4

canyon_bridge_256x256_0.1

VARV VS N VNN

0025 /191 00/187 CPSWIPPX 00 /183  0.007 /185 0.179 / 21.6

canyon_bridge_256x256_0.05

0.0 / 51.7 0.009 / 52.2 0.562 / 80.8 0.0 / 47.1 0.072 / 50.5 0.086 / 51.1  0.347 / 63.4




Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

thin_support_bridge_64x64_0.3

T r v rveY oY r Yo

0.0 / 54.9 0.058 /58.0 0.143 / 62.7 0.122 / 61.5 0.0 / 53.6 0.0 / 53.6 0.005 / 53.9 0.01 / 54.2
thin_support brldge 128X128 0.2

Y NN Y Y T I

0.0/78.7 [10:0267808 BNCNEECIESWEE 00/757 0006 /761 0.018 /77.0 PEZWECE

thln support -bridge_256x256_0. 15

0007 /971  00/965 0018 /982 JUEENEEE 0.0 /919 0.069 /98.2 0.224 / 1125

thin_support_bridge_256x256_0.1

ASASa A e e e

OROPEA TR R 0.115 / 185.3 0.594 / 264.9 EEOVKUWALIREN 0.063 / 166.2 0.117 / 174.7 0.349 / 210.9
drawbridge_64x64_0.2

NS AN

0069/148 0.0 / 13.9 0.008 / 14.0 EOREIWALAE 0018 / 13.8 0.0 / 13.6 0.011 / 13.7 0.03 / 14.0
drawbridge_128x128_0.15

2D 2D D

0.013 /18.2  0.004 / 18.0 0.0 /17.9 WRyamINa 0.019 / 17.0 0.0 / 16.7 0063/178
drawbridge_256x256_0.1

PRI NN

0.0 /265  0.001/26.5 0.009 /245  00/243 JENETEENCNEE

MMM

OWAVEIN 0.051 /0.8 | 0150 /09 0402/ 11 KR 0.0 /0.8 0.008 /0.8  0.014 /0.8

| S
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Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS
hoop_64x128_0.2

A DSl

0.0 /0.9 0.063 / 0.9 0.183 / 1.1 0.648 / 1.5 0.012 / 0.9 0.0/0.9 0.068 / 0.9

hoop_128x256_0.15

O S

00/11 0079 /1.2 0252 /1.4 1198 /25 [EKyAAN 00/11 ~0.144 / 2

VYN YTNNN

0.0 / 6.1 OSSR 0007 /58  00/58  0.002/58 [MON039N60M

dam_128x128_0.15

AN RARURRLR

0.0 /76 CEWEN S EEN 0.008 /7.3 0.0 /7.2 003 /74 BEENEE

dam_256x256_0.05
k E \ E \ % % % % |
0.0 /329 CNEENIETEN 0.024 / 33.7 EENEEE 0.0 /29.7 0.009 / 30.0 BONTWETENIFESWERE

dam_256x256_0.1

NARR RURNRR

OOWESEIN 0054 /121 0069 /123  0.653 / 10.0 [OVZAESTARKATRAN 100 SEa 0.203 / 128 |
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Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

dam_256x256_0.2

AR R A RR R A

0.021 /45 0.0/ 4.4 0113 /5.0  0.287 /5.7 XL 0.0 /44 |oosEsnIEZYECE

ramp_64x64_0.3

004T/290 00/28 0014 /28 [N004/2900 0.008 /2.8 0.0/28  0004/28  0013/28

ramp_128x128_0.2

DY ANANIININ NI

0.029 / 4.5 0.0 /4.4 0.033 / 4.5 0.012 / 4.3 0.0 / 4.2 0.004 / 43 [N

ramp-256x256_0.2

VAN ANAN NN

0.013 / 3.9 0.0 /3.9 0.053 / 4.1 0.2/47 0.001 / 3.8 0.0/38 0.032 / 3.9 0.105 / 4.2

ramp-256x256-0.1

INANANANININININ

0.02 / 10.0 0.0/98 [JEENEICEEYEE o0/ 94 0.012 /95 PEENENIEENERY

staircase_64x64_0.3
H { '1 Im k| }1" i m ¥ia

0.058 / 1.8 00/17 0.118 / 1.9 00/17 00/17 0007 /1.7 0014 /17
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Typical ampl Best of ens mbl
CNN-LBFGS MMA Pixel-LBFGS|CNN-LBFGS MMA Pixel-LBFGS

e_128x128.0.2

%WWW%WW%

0.066 / 2.8 0.0 /26 0.095 / 2.9 0.206 / 3.1 0.004 / 2.6 0.0 /26 0.118 / 2.9

€-256x256_0.15

0.009 /3.3 00/33 0066/35 0377/45 00/32 0033/33 0084/34 0.242 / 3.9

128x512 _0.15

LA X r/{ /

00/166  0.009 /167 0013/168 PEEYEIE 00/ 157 0.072 / 16.8 0328/208

red_points_64x64_0.3

Aty AL FR T
0.0/10.6  0.005/10.7 [NOOB9WALNON 0006 /105 0.0 /104 0019 /10.6

staggered_points_128x128_0.3

U i o S A M
00 /82 0005/82 00 /7.6 0029/79

staggered_points_256x256_0.3

MO VoVt e Vsl Y LSRR IR ADAAY SR At

00/65 0017 /6.7 BN EEEN 0002 /6.4 0.0/ 6 4 0025 /6.6 [EZNEL
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Typical sample Best of ensemble
CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

staggered_points_256x256_0.5

L s b A MG M S
0.0/29 0.028 / 3.0 0.0/29 0.002 / 2.9 0.017 / 2.9

staggered pomts 64x128.0.3

A

0.0 / 17.6 0.073 / 18.9 0 LAVl  0.007 / 17.2 0.0/17.1 0. 029 /g 0.068 / 18.3

staggered pomts 128X256 0.3

0.008 / 14.0 0.0 / 13.8 0086/150 0286/178 0012/135 00/133 002/136 0086/145

staggered_points_32x128_0.3

I I I | | | I I I
0.0/41.3 0016 /420 0.021 /413 00/404 0022 /413 [1010397/420"

Staggered pomts 64X256 0. 3

(1 1R HR 3 £ .J} #. .J} I '
0,026 /313 0.001/305 00/305 [JEECTWIEGGE 00 /298  0.008/30.0 | 0023/305 BEEENEX

staggered pomts 128X512 O 3

| IR AUR &l I ‘ '
0.0 / 24.7 0.012 / 24.9 0.293 / 31.9 0.0 / 23.9 O 021 / 244 0 117 / 26 7
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Typical sample Best of ensemble

CNN-LBFGS MMA ocC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS

staggered_points_128x512_0.15
1 | S0 SR SR

i | \ | \‘\ \‘\ \‘\
0.025 /748 0.0/73.0 [EENEEEEINECE

\ B J\ J\
\ /
4 A A
/

< < <
‘\ \‘\ \‘\

r,

0.0 / 70.0

0.095 / 76.6  0.239 / 86.7
multistory_building_32x64_0.5

SR ER T

0.023 / 41.5 0.0 / 40.6 0.034 / 42.0 0.12 / 455 0.011 / 39.6 0.0 / 39.1 0.008 / 39.4 0.019 / 39.9

multistory_building_64x128_0.4

0:028'/495°| 0.0/481 [EEVENECECIEEEN 0009 /468  00/464  0.005/46.6 |JON046H4SEN

- multistory_building_128x256_0.3
\
Y) ] 7

’ - ‘ .“,l,", ¥ YYV/IVVY X “‘,. 7

00/630  0.002/631 FCEEEEEIWEDG 0008 /602 00 /59.8 0.096 / 65.5

[ \/

I 'y’ A v
1Ny [

NI AN 0,053 / 494.8 | 0.173 / 551.2

0.0 / 493.6 [ONENEPIABRITEEPIEENCKYNECIRE 0.0 / 470.0
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Typical sample

Best of ensemble

CNN-LBFGS MMA oC Pixel-LBFGS|CNN-LBFGS MMA ocC Pixel-LBFGS
multistory_building_128x512_0.2
R ,‘,' ,"', ‘\‘”’,’ N\RATATR T/ ANEAANR
i",)mv&'\-" - 7 7 ‘Yv‘v' VY
[ A |8 A
7N 7 ' AVA7AY
Va8 |
0.002 / 188.6 0.0 / 183.1 [NUK[YAAPLYMAIRAIWARIR'E 0.0 / 181.8  0.007 / 183.1 [MONLIcRyANNeINo RN oRol [ RVAPAKeRC)
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