
Published as a conference paper at ICLR 2019

LABEL-EFFICIENT AUDIO CLASSIFICATION THROUGH
MULTITASK LEARNING AND SELF-SUPERVISION

Tyler Lee,? Ting Gong,? Suchismita Padhy,? & Anthony Ndirango?
Intel AI Lab
Santa Clara, CA
{tyler.p.lee,ting.gong,suchismita.padhy,anthony.ndirango}@intel.com

Andrew Rouditchenko
MIT
Cambridge, MA
roudi@mit.edu

ABSTRACT

While deep learning has been incredibly successful in modeling tasks with large,
carefully curated labeled datasets, its application to problems with limited labeled
data remains a challenge. The aim of the present work is to improve the label effi-
ciency of large neural networks operating on audio data through a combination of
multitask learning and self-supervised learning on unlabeled data. We trained an
end-to-end audio feature extractor based on WaveNet that feeds into simple, yet
versatile task-specific neural networks. We describe several easily implemented
self-supervised learning tasks that can operate on any large, unlabeled audio cor-
pus. We demonstrate that, in scenarios with limited labeled training data, one can
significantly improve the performance of three different supervised classification
tasks individually by up to 6% through simultaneous training with these additional
self-supervised tasks. We also show that incorporating data augmentation into our
multitask setting leads to even further gains in performance.

1 INTRODUCTION

Deep neural networks (DNNs) are the bedrock of state-of-the-art approaches to modeling and clas-
sifying auditory data (Amodei et al. (2015); van den Oord et al. (2016); Li et al. (2017)). How-
ever, these data-hungry neural architectures are not always matched to the available training re-
sources, and the creation of large-scale corpora of audio training data is costly and time-consuming.
This problem is exacerbated when training directly on the acoustic waveform, where input is high-
dimensional and noisy. While labeled datasets are quite scarce, we have access to virtually infinite
sources of unlabeled data, which makes effective unsupervised learning an enticing research direc-
tion. Here we aim to develop a technique that enables models to generalize better by incorporating
auxiliary self-supervised auditory tasks during model training (Doersch & Zisserman (2017)).

Our main contributions in this paper are twofold: the successful identification of appropriate self-
supervised audio-related tasks and the demonstration that they can be trained jointly with supervised
tasks in order to significantly improve performance. We also show how to use WaveNet as a general
feature extractor capable of providing rich audio representations using raw waveform data as input.
We hypothesize that by learning multi-scale hierarchical representations from raw audio, WaveNet-
based models are capable of adapting to subtle variations within tasks in an efficient and robust
manner. We explore this framework on three supervised classification tasks - audio tagging, speaker
identification and speech command recognition - and demonstrate that one can leverage unlabeled
data to improve performance on each task. We further show that these results pair well with more
common data augmentation techniques, and that our proposed self-supervised tasks can also be used
as a pre-training stage to provide performance improvements through transfer learning.

?These authors contributed equally to this work.

1

Published as a conference paper at ICLR 2019

2 RELATED WORK

Prevailing wisdom suggests that a single model can only learn multiple tasks if they are related
in some way with some underlying structure common to them (Caruana (1997)). Such structure
has been described for decades in the literature on sensory environments, with Gabor filters and
gammatone filters underlying much of visual and auditory processing, respectively (Olshausen &
Field (1996)). Perhaps models trained to accomplish many tasks might be able to synergize to
uncover this underlying structure, enabling better single-task performance with smaller amounts of
data per-task. We follow a relatively common approach to multitask learning aimed at learning
a single non-trivial general-purpose representation (Bilen & Vedaldi (2017)). Examples of other
intriguing approaches can be found in (Meyerson & Miikkulainen (2017); Ruder (2017)).

Much as shared representations allow models to pool data from different datasets, the problem per-
sists that the cleanly labeled datasets that have permitted numerous breakthroughs in deep learning
are painstaking to come by. One promising solution to label scarcity uses self-supervised learning to
take advantage of unlabeled data. Self-supervised learning has shown promising results in the visual
domain , leveraging unlabeled data using tasks like inpainting for image completion (Noroozi et al.
(2017); Pathak et al. (2016b)), image colorization (Larsson et al. (2017); Zhang et al. (2016)), and
motion segmentation (Pathak et al. (2016a)). Despite these efforts, little previous work has taken
advantage of self-supervision in the audio domain.

3 EXPERIMENTAL SETUP

We implemented an end-to-end audio processing network that finds a common embedding of the
acoustic waveform within a “trunk” network modeled after the WaveNet architecture (van den Oord
et al. (2016)). The embedding is then processed by simple, independent, task-specific “head” net-
works. The trunk and head networks are trained jointly for each experiment described below. Our
experiments consist primarily of models in which a single supervised “main” task is trained jointly
with 0 to 3 self-supervised “auxiliary” tasks.

3.1 WAVENET TRUNK

Briefly (see appendix for details), our WaveNet trunk consists of 3 blocks of 6 dilation stacks each.
Each dilation stack is comprised of a gate and filter module, with 64 convolutional units per module.
The outputs from the filter and gate modules are (elementwise) multiplied and then summed with
the input to the stack. These choices yield a WaveNet trunk with an effective receptive field length
of 1 + 3(26 − 1) = 190 samples or approximately 12 ms.

3.2 SUPERVISED TASKS

We tested our setup on three distinct supervised tasks: audio tagging, speaker identification and
speech command recognition. Each is trained using a separate labeled dataset along with up to three
self-supervised tasks trained with unlabeled data. Our description of the tasks is necessarily brief,
with details relegated to the appendix.

The audio tagging task is trained on the FSDKaggle2018 (Gemmeke et al. (2017)) dataset collected
through Freesound. This dataset contains a total of 11,073 files provided as uncompressed PCM 16
bit, 44.1 kHz, monaural audio which is further subdivided into a training set and a test set. Before
being fed to the network, each audio segment is first cropped to 2 seconds and padded with zeros
if the source clip is too short. Since the WaveNet trunk produces embeddings with a temporal
structure, this task averages the output across time to produce a single output vector for the entire
audio sequence, which in turn feeds into a single fully-connected layer with 512 units and ReLU
nonlinearity, followed by a softmax output layer. Training is done by minimizing the cross entropy
between the softmax outputs and one-hot encoded classification labels.

The speaker identification task is trained on the VoxCeleb-1 dataset (Nagrani et al. (2017)) which has
336 hours of data from 1251 speakers. Individual clips are sourced from interviews with celebrities
in a variety of different settings. Data from each individual is sourced from multiple interviews and
one interview is held-out to produce a test set with 15 hours of data. Before being fed to the network,

2

Published as a conference paper at ICLR 2019

each audio segment is first cropped to 2 seconds in duration. Given the large variations in the audio
quality of the samples in this dataset, we found it necessary to also normalize the clips and apply a
pre-emphasis filter. This task’s head architecture features a global average pooling layer, followed
by 2-layer perceptron with 1024 units per layer, batch normalization and a ReLU nonlinearity. The
output is then passed to a softmax layer and evaluated using a cross-entropy loss.

The speech command recognition task is trained on the Speech Commands dataset (Warden (2018)).
The entire dataset consists of 65,000 utterances of 30 short words, formatted in one-second WAVE
format files. There is a total of 12 categories; 10 words (yes, no, up, down, left, right, on, off, stop,
go), with the rest classified as either unknown or silence. The speech command recognition head
is a stack of three 1D convolutions. Between each convolutional layer we used batch normalization
and dropout, followed by a ReLU nonlinearity. The three convolution layers have widths of 100, 50,
and 25 and strides of 16, 8, and 4, respectively. The output is passed to a final softmax layer and
evaluated using a cross-entropy loss.

3.3 SELF-SUPERVISED TASKS

We selected next-step prediction, noise reduction, and upsampling for our self-supervised, auxiliary
tasks. They are easily implemented and can be synergistically paired with our main (supervised)
tasks. The self-supervised tasks were trained on both the main task’s data and unlabeled data sam-
pled from the 100-hour and 500-hour versions of the Librispeech dataset (Panayotov et al. (2015)).
This dataset was only used to train the auxiliary tasks.

All three auxiliary tasks share the same basic head architecture. They begin with two convolutional
layers with 128 filters and ReLU nonlinearities and a final linear convolutional layer with 1 output
unit feeding into a regression-type loss function (see appendix for details).

4 RESULTS

Our primary goal was to develop a multitask framework which is completely generic for audio, mak-
ing it prudent to work with waveform inputs as opposed to, say, “high level” feature representations
like spectrograms. While convolutional architectures trained on spectral/cepstral representations of
audio can indeed give better classification performance than models trained directly on raw wave-
forms, they significantly restrict the range of audio processing tasks which they can perform. Thus,
state-of-the-art baseline models for different tasks may vary wildly in their network architectures,
subsequently limiting the amount of information that can be gained from a smaller pool of potential
self-supervised tasks. If the goal is to understand the interaction between the learning dynamics of
disparate tasks, then the focus should be on models which make the fewest assumptions about the
representation of inputs. As such, we emphasize improvements in performance afforded by multi-
task learning relative to a single task baseline trained on raw audio. Closing the performance gap
between models trained using spectral representations (e.g. Lederle & Wilhelm (2018); Nagrani
et al. (2017)) and those trained on waveforms is left to future work.

4.1 MULTITASK LEARNING IMPROVES LABEL EFFICIENCY

Joint training with three self-supervised tasks proved beneficial for each of our three supervised tasks
(Table 1). For the audio tagging task, multitask training improved MAP@3 score by .019 and top-1
classification rate by 1.62%, simply by including additional unsupervised tasks without increasing
training data. Since the auxiliary tasks can be trained with unlabeled data, we gradually incorporated
larger versions of Librispeech into our training regimen to investigate the effects of self-supervision.

Table 1: Multitask performance gains on supervised tasks w/ increasing amounts of unlabeled data.
Audio Tagging Speaker ID Speech Command

MAP@3 Score Top-1 (%) Top-5 (%) Top-1 (%) Top-1 (%)
none (0) 0.656 56.93 74.85 56.77 93.09
train-clean-100 (100) 0.671 58.39 74.82 57.34 93.39
train-other-500 (500) 0.693 61.39 75.22 57.61 93.78
Baseline 0.637 55.31 73.81 56.27 93.05

3

Published as a conference paper at ICLR 2019

With each increase in unlabeled dataset size, we saw a further improvement on both performance
metrics, with a MAP@3 increase of up to .056 with an additional 500 hours of unlabeled data. Using
the same setup, but swapping the audio tagging task with either the speech command classification
or the speaker identification task showed a similar, though more measured, trend with increasing
amounts of unlabeled data. Speech command classification went from 93.05% in the baseline model
to 93.78% when trained with an additional 500 hours of unlabeled data. Speaker identification on
the VoxCeleb dataset was a much more challenging task for the network overall. There, top-5
classification performance peaked at 75.22%, up from the baseline performance of 73.81%.

4.2 MULTITASK LEARNING IS ADDITIVE WITH DATA AUGMENTATION

The results above show that multitask learning can improve the performance of any of our supervised
tasks without any additional labeled data. To get an idea of the significance of the observed effects,
we decided to compare the results above with another common technique for improving label effi-
ciency: data augmentation. We trained a single task model on audio tagging with two different kinds
of data augmentation: pitch shifting and additive noise (with SNRs of 10 to 15 dB).

Table 2: Audio tagging task due with data augmentation. NI=noise injection; PS=pitch shifting.
MTL100=multitask learning with all auxiliary tasks trained on 100hrs of unlabeled data.

MAP@3 Score Top-1(%)
NI 0.661 57.31
PS 0.703 62.60
PS + MTL100 0.726 64.87

We found that pitch-shift augmentation produced an increase in MAP@3 of .066, comparable to
our largest multitask benefits (Table 2). Noise augmentation showed a somewhat smaller MAP@3
increase of .024. Interestingly, the performance gains from augmenting with noisy data are similar to
those obtained by training the main task jointly with a self-supervised noise-reduction task. Finally,
training with both pitch-shift augmentation and additional self-supervised tasks yielded a MAP@3
increase of .089 – our highest performance from any experiment – suggesting that both methods for
improving label efficiency are complementary.

4.3 TRANSFER LEARNING

In computer vision, the scope of transfer learning has been enlarged to include knowledge transfer
from self-supervised tasks trained on unlabeled data to supervised tasks (Doersch & Zisserman
(2017)). This inspired us to reconsider our multitask learning approach from a transfer learning
perspective. In this variant of transfer learning, we jointly “pre-train” our three self-supervised
tasks on purely unlabeled data to convergence. We follow this up with a fine-tuning stage, using a
much smaller quantity of labeled data, to train a supervised task. We carried out transfer learning
experiments on the same trio of tasks tackled above in our multitask learning experiments. The
results (see Table 3) favor transfer learning over simultaneously training all tasks together.

Table 3: Top-1 classification accuracy (%) with transfer learning (pre-training on self-supervised
tasks followed by supervised fine-tuning) showed large improvements on all three tasks.

TAG ID SC
Transfer 61.96 60.64 94.61

5 FUTURE DIRECTIONS

The present work developed the following theme: faced with training an audio task on limited
quantities of labeled data, one can expect performance gains by jointly training the supervised task
together with multiple self-supervised tasks using a WaveNet-based model operating directly on raw
audio waveforms. We have shown that the improved performance on the supervised tasks scales with
the quantity of unlabeled data and can be used to supplement existing data augmentation schemes.

4

Published as a conference paper at ICLR 2019

Predicated on the performance gains observed on three fairly distinct audio classification tasks, we
expect our approach to generalize to a broad range of supervised audio tasks.

Our methodology and results suggest many interesting directions for further development. Is there
a limit on the number of auxiliary tasks that a single model at fixed capacity can benefit from, and
can one place bounds on the expected improvement in performance? Intuitively, we expect that
when our multitasking model learns to simultaneously forecast frames of audio, remove noise from
the audio and perform upsampling, it must have formed a representation of the audio. What is this
representation? Can it be extracted or distilled? A proper exploration of these questions should
enable us to handle a broader range of auditory tasks.

REFERENCES

Amodei, Ananthanarayanan, Sundaram, Anubhai, Rishita, Bai, Jingliang, Battenberg, Eric, Case,
Carl, Casper, Jared, and Catanzaro. Deep speech 2: End-to-end speech recognition in english and
mandarin. CoRR, abs/1512.02595, 2015. URL http://arxiv.org/abs/1512.02595.

J. Barker, R. Marxer, E. Vincent, and S. Watanabe. The third ’chime’ speech separation and recog-
nition challenge: Dataset, task and baselines. In IEEE ASRU Workshop, pp. 504–511, Dec 2015.
doi: 10.1109/ASRU.2015.7404837.

Hakan Bilen and Andrea Vedaldi. Universal representations: The missing link between faces, text,
planktons, and cat breeds. CoRR, abs/1701.07275, 2017. URL http://arxiv.org/abs/
1701.07275.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997. ISSN 1573-0565. doi:
10.1023/A:1007379606734. URL https://doi.org/10.1023/A:1007379606734.

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. CoRR,
abs/1708.07860, 2017. URL http://arxiv.org/abs/1708.07860.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset
for audio events. 2017 IEEE ICASSP, Mar 2017. doi: 10.1109/icassp.2017.7952261. URL
http://dx.doi.org/10.1109/ICASSP.2017.7952261.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Colorization as a proxy task for
visual understanding. CoRR, abs/1703.04044, 2017. URL http://arxiv.org/abs/1703.
04044.

Marcel Lederle and Benjamin Wilhelm. Combining high-level features of raw audio waves and
mel-spectrograms for audio tagging. DCASE2018, 1811.10708, 2018. URL http://arxiv.
org/abs/1811.10708.

Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan,
and Zhenyao Zhu. Deep speaker: an end-to-end neural speaker embedding system. arXiv, 2017.
URL http://arxiv.org/abs/1705.02304.

Brian McFee, Matt McVicar, Oriol Nieto, Stefan Balke, Carl Thome, Dawen Liang, Eric Batten-
berg, Josh Moore, Rachel Bittner, Ryuichi Yamamoto, Dan Ellis, Fabian-Robert Stoter, Douglas
Repetto, Simon Waloschek, CJ Carr, Seth Kranzler, Keunwoo Choi, Petr Viktorin, Joao Fe-
lipe Santos, Adrian Holovaty, Waldir Pimenta, and Hojin Lee. librosa 0.5.0, 2017. URL
https://doi.org/10.5281/zenodo.293021.

Elliot Meyerson and Risto Miikkulainen. Beyond shared hierarchies: Deep multitask learning
through soft layer ordering. CoRR, abs/1711.00108, 2017. URL http://arxiv.org/abs/
1711.00108.

A. Nagrani, J. S. Chung, and A. Zisserman. Voxceleb: a large-scale speaker identification dataset.
In INTERSPEECH, 2017.

5

http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1701.07275
http://arxiv.org/abs/1701.07275
https://doi.org/10.1023/A:1007379606734
http://arxiv.org/abs/1708.07860
http://dx.doi.org/10.1109/ICASSP.2017.7952261
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.04044
http://arxiv.org/abs/1703.04044
http://arxiv.org/abs/1811.10708
http://arxiv.org/abs/1811.10708
http://arxiv.org/abs/1705.02304
https://doi.org/10.5281/zenodo.293021
http://arxiv.org/abs/1711.00108
http://arxiv.org/abs/1711.00108

Published as a conference paper at ICLR 2019

Mehdi Noroozi, Hamed Pirsiavash, and Paolo Favaro. Representation learning by learning to count.
CoRR, abs/1708.06734, 2017. URL http://arxiv.org/abs/1708.06734.

Bruno Olshausen and David Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381:607–9, 07 1996.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR
corpus based on public domain audio books. ICASSP, pp. 5206–5210, August 2015. ISSN
15206149. doi: 10.1109/ICASSP.2015.7178964.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Deepak Pathak, Ross B. Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan. Learning
features by watching objects move. CoRR, abs/1612.06370, 2016a. URL http://arxiv.
org/abs/1612.06370.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros. Context en-
coders: Feature learning by inpainting. In CVPR, 2016b.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. CoRR,
abs/1706.05098, 2017. URL http://arxiv.org/abs/1706.05098.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. CoRR, abs/1609.03499, 2016. URL http://arxiv.org/abs/1609.03499.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. CoRR,
abs/1804.03209, 2018. URL http://arxiv.org/abs/1804.03209.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. CoRR,
abs/1603.08511, 2016. URL http://arxiv.org/abs/1603.08511.

6

http://arxiv.org/abs/1708.06734
http://arxiv.org/abs/1612.06370
http://arxiv.org/abs/1612.06370
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1603.08511

Published as a conference paper at ICLR 2019

6 APPENDIX

6.1 WAVENET TRUNK

Although audio tag classification does not require the fine temporal resolution found in raw audio
waveforms, our chosen auxiliary tasks (or any arbitrary auditory task for which we may desire our
model to be sufficient) require higher temporal resolutions. To satisfy this, we chose to build our
model following the WaveNet architecture (van den Oord et al. (2016)).

WaveNet models are autoregressive networks capable of processing high temporal resolution raw
audio signals. Models from this class are ideal in cases where the complete sequence of input sam-
ples is readily available. WaveNet models employ causal dilated convolutions to process sequential
inputs in parallel, making these architectures faster to train compared to RNNs which can only be
updated sequentially.

Figure 1: Multiple tasks are processed us-
ing small, task-specific neural networks built
atop a task-agnostic trunk. The trunk archi-
tecture principally follows the structure of
WaveNet, with several blocks of stacked, di-
lated, and causal convolutions between ev-
ery convolution layer. Outputs from the
trunk are fed into task-specific heads (details
in Section 6.1).

As shown Figure 6.1, our WaveNet trunk is composed of N
blocks, where each block consists of S dilated causal con-
volution layers, with dilation factors increasing from 1 to
2S − 1, residual connections and saturating nonlinearities.
We label the blocks using b = 1, · · · , N . We use indices
` ∈ [1 + (b− 1)S, bS] to label layers in block b. Each layer,
`, of the WaveNet trunk consists of a “residual atom” which
involves two computations, labeled as “Filter” and “Gate”
in the figure. Each residual atom computation produces a
hidden state vector h(`) and a layer output x(`) defined via

h(`) = σ
(
W

(`)
gate ~` x

(`−1)
)
� tanh

(
W

(`)
filter ~` x

(`−1)
)

x(`) = x(`−1) + h(`)

where � denotes element-wise products, ~ represents the
regular convolution operation, ~` denotes dilated convolu-
tions with a dilation factor of 2`mod bS if ` is a layer in block
b+1, σ denotes the sigmoid function andW (`)

gate andW (`)
filter

are the weights for the gate and filter, respectively.

The first (` = 0) layer – represented as the initial stage
marked “1×1 Conv” in Figure 6.1 – applies causal convolu-
tions to the raw audio waveforms X = (X1, X2, · · · , XT),
sampled at 16 kHz, to produce an output x(0) =W (0) ~X .

Given the structure of the trunk laid out above, any given
block b has an effective receptive field of 1 + b(2S − 1).
Thus the total effective receptive field of our trunk is τ =
1+N(2S−1). Following an extensive hyperpameter search
over various configurations, we settled on N = 3 blocks
comprised of S = 6 layers each for our experiments. Thus
our trunk has a total receptive field of τ = 190, which corre-
sponds to about 12 milliseconds of audio sampled at 16kHz.

6.2 TASK-SPECIFIC HEADS

As indicated above, each task-specific head is a simple neural network whose input data is first
constrained to pass through a trunk that it shares with other tasks. Each head is free to process this
input to its advantage, independent of the other heads.

Each task also specifies its own objective function, as well as a task-specific optimizer, with cus-
tomized learning rates and annealing schedules, if necessary. We arbitrarily designate supervised

7

Published as a conference paper at ICLR 2019

tasks as the primary tasks and refer to any self-supervised tasks as auxiliary tasks. In the exper-
iments reported below, we used “audio tagging” as the primary supervised classification task and
“next-step prediction”, “noise reduction” and “upsampling” as auxiliary tasks training on various
amounts of unlabeled data. The parameters used for each of the task specific heads can be found in
Table 4 of the accompanying supplement to this paper.

Figure 2: The head architectures were designed to be simple, using only as few layers as necessary
to solve the task. Simpler head architectures force the shared trunk to learn a representation suitable
for multiple audio tasks.

6.2.1 NEXT-STEP PREDICTION

The next-step prediction task can be succinctly formalized as follows: given a sequence
{xt−τ+1, · · · , xt} of frames of an audio waveform, predict the next value xt+1 in the sequence.
This prescription allows one to cheaply obtain arbitrarily large training datasets from an essentially
unlimited pool of unlabeled audio data.

Our next-step prediction head is a 2-layer stack of 1 × 1 convolutional layers with ReLU nonlin-
earities in all but the last layer. The first layer contains 128 units, while the second contains a
single output unit. The head takes in τ frames of data from the trunk, where τ is the trunk’s ef-
fective receptive field, and produces an output which represents the model’s prediction for the next
frame of audio in the sequence. The next-step head treats this as a regression problem, using the
mean squared error of the difference between predicted values and actual values as a loss function,
i.e. given inputs {xt−τ+1, · · · , xt}, the head produces an output yt from which we compute a loss
LMSE(t) = (yt − xt+1)

2 and then aggregate over the frames to get the total loss.

We would like to note that the original WaveNet implementation treated next-step prediction as a
classification problem, instead predicting the bin-index of the audio following a µ-law transform.
We found that treating the task as a regression problem worked better in multitask situations but
make no claims on the universality of this choice.

6.2.2 NOISE-REDUCTION

In defining the noise reduction task, we adopt the common approach of treating noise as an additive
random process on top of the true signal: if {xt} denotes the clean raw audio waveform, we obtain
the noisy version via x̂t := xt + ξt where ξt an arbitrary noise process. For the denoising task, the
model is trained to predict the clean sample, xt, given a window

{
x̂t− 1

2 (τ−1), · · · , x̂t+ 1
2 (τ−1)

}
of

noisy samples. Formally speaking, the formulation of the next-step prediction and denoising tasks
are nearly identical, so it should not be surprising to find that models with similar structures are
well-adapted to solving either task. Thus, our noise reduction head has a structure similar to the
next-step head. It is trained to minimize a smoothed L1 loss between the clean and noisy versions of
the waveform inputs, i.e. for each frame t, the head produces an output ŷt, and we compute the loss

8

Published as a conference paper at ICLR 2019

Lsmooth L1(t) =

1
2 |ŷt − xt|

2 if |ŷt − xt| < 1

|ŷt − xt| − 1
2 if |ŷt − xt| ≥ 1

(1)

and then aggregate over frames to obtain the total loss. We used the smooth L1 loss because it
provided a more stable convergence for the denoising task than mean squared error.

6.2.3 UPSAMPLING

In the same spirit as the denoising task, one can easily create an unsupervised upsampling task
by simply downsampling the audio source. The downsampled signal serves as input data while
the original source serves as the target. Upsampling is an analog of the “super-resolution” task in
computer vision.

For the upsampling task, the original audio was first downsampled to 4 kHz using the resample
method in the librosa python package (McFee et al. (2017)). To keep the network operating at the
same time scale for all auxiliary tasks, we repeated every time-point of the resampled signal 4 times
so as to mimic the original signal’s 16 kHz sample rate. The job of the network is then to infer the
high frequency information lost during the transform.

Again, given the formal similarity of the upsampling task to the next-step prediction and noise-
reduction tasks, we used an upsampling head with a structure virtually identical to those described
above. As with the denoising task, we used a smooth L1 loss function (see eqn. (1) above) to
compare the estimated upsampled audio with the original.

6.3 TRAINING

We trained the model using raw audio waveform inputs taken from the FSDKaggle2018 and Lib-
rispeech datasets. All code for the experiments described here was written in the PyTorch framework
Paszke et al. (2017). All audio samples were first cropped to two seconds in duration and downsam-
pled to 16 kHz. To normalize for the variation in onset times for different utterances, the 2 seconds
were randomly selected from the original clip. Samples shorter than 2 seconds were zero padded.
We then scaled the inputs to lie in the interval [−1, 1]. The noise-reduction task required noisy
inputs which we obtained by adding noise sampled from ChiME3 datasets Barker et al. (2015) at
a randomly chosen SNR from 10dB to 15dB. The noise types include booth (BTH), on the bus
(BUS), cafe (CAF), pedestrian area (PED), and street junction (STR)) . Starting with the main task,
we first performed a hyperparameter search over the number of blocks in the trunk, the number of
layers per block, the number of layers and units of the main task head, and the learning rate. We
tried several values for the number of blocks in the trunk, ranging from 2 to 5. We also varied the
number of dilated convolution layers in each block from 3 to 8. We found that the performance
and training characteristics of the network were largely unaffected by the exact architecture speci-
fications, though learning rate was often important. We then searched over the depth and width of
each auxiliary task head, as well as the learning rate for the head. These searches were done by
pairing each task individually with the main task. The final choice of hyper-parameters was made
by picking values which gave the best possible performance on both the main task and the auxiliary
tasks, heuristically favoring performance on the main task.

We jointly trained the model on all tasks simultaneously by performing a forward pass for each task,
computing the loss function for each task, and then calculating the gradients based on a weighted
sum of the losses, viz. Ltotal =

∑
i αiLi, where the sum runs over all the tasks. We used a uni-

form weighting strategy in our current experiments. More advanced weighting strategies showed no
benefit for the tagging task.

We used the “Adam” optimizer Kingma & Ba (2014) with parameters β0 = 0.9, β1 = 0.99 ,
ε = 10−8. The learning rate was decayed by a factor of .95 every 5 epochs, as this was found to
improve convergence. We used a batch size of 48 across all experiments, since it was the largest
batch size permissible by the computational resources available to us. Adding the noise reduction
and upsampling tasks required a separate forward propagation of the noisy and downsampled audio,
respectively. Exact values for all important parameters of the model can be found in Table 4.

9

Published as a conference paper at ICLR 2019

6.4 HYPERPARAMETERS

Table 4: Important hyperparameter values for all experimental runs
Parameter Value

Trunk # Blocks 3
Layers 6
Units 64

Optimizer Type Adam
Learning rate 3× 10−4

Epochs per step 5
Schedule multiplier 0.95

Audio Tagging Head # Layers 1
Units - hidden 512
Units - output 41
Learning rate 5.37× 10−5

Epochs per step 5
Schedule multiplier 0.95

Next-step Head # Layers 2
Units - hidden 128
Units - output 1
Learning rate 5× 10−3

Epochs per step 5
Schedule multiplier 0.95

Noise Reduction Head # Layers 2
Units - output 128
Filter width 11
Learning rate 5× 10−3

Epochs per step 5
Schedule multiplier 0.95

Upsampling Head # Layers 2
Units 128
Units - output 1
Filter width 11
Learning rate 5× 10−3

Epochs per step 5
Schedule multiplier 0.95

10

	Introduction
	Related Work
	Experimental Setup
	WaveNet Trunk
	Supervised Tasks
	Self-supervised Tasks

	Results
	Multitask learning improves label efficiency
	Multitask learning is additive with data augmentation
	Transfer Learning

	Future Directions
	Appendix
	Wavenet Trunk
	Task-specific Heads
	Next-Step Prediction
	Noise-Reduction
	Upsampling

	Training
	Hyperparameters

