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Abstract

We present a probabilistic framework for session based recommendation. A latent variable
for the user state is updated as the user views more items and we learn more about their
interests. We provide computational solutions using both the re-parameterization trick and
using the Bouchard bound for the softmax function, we further explore employing a vari-
ational auto-encoder and a variational Expectation-Maximization algorithm for tightening
the variational bound. Finally we show that the Bouchard bound causes the denominator
of the softmax to decompose into a sum enabling fast noisy gradients of the bound giving
a fully probabilistic algorithm reminiscent of word2vec and a fast online EM algorithm.

1. A Latent Variable Model For Item Views

Our model describes a generative process for the types of products that user’s co-view
in sessions. We use u to denote a user or a session, we use t time to denote sequential
time and v to denote which product they viewed from 1 to P where P is the number of
products, the user’s interest is described by a K dimensional latent variable ωu which can
be interpreted as the user’s interest in K topics. The session length of user u is given
by Tu. We then assume the following generative process for the views in each session:
ωu ∼ N (0K , IK), vu,1, .., vu,Tu ∼ categorical(softmax(Ψωu + ρ)). This model is a
linear version of the model presented in Liang et al. (2018).

Consider the case where we have estimated that Ψ and ρ. In production we have
observed a user’s online viewing history vu,1, .., vu,Tu and we would like to produce a rep-
resentation of the user’s interests. Our proposal is to use Bayesian inference in order to
infer p(ω|vu,1, .., vu,Tu ,Ψ,ρ) as a representation of their interests. This representation of
interests can then be used as a feature for training a recommender system. If we have a
recommender system that has just seven products and the products have embeddings:

Ψ =



ΨSleek Phone

ΨCity Phone

ΨCouscous

ΨRice

ΨBeer

ΨFemale Shirt

ΨMale Shirt


=



.9 0.05 0 0.05 0
1 0 0 0 0
0 .95 0 0.1 0
0 1 0 0 0
0 0.2 .7 0 0
0 0 0 1 −1
0 0 0 −1 1


, ρ = 0.
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Figure 1: User representation (left) and next item prediction for a user with one sleek phone
in their history

Figure 2: User representation (left) and next item prediction for a user with one sleek phone
and twenty city phones in their history

We now consider how different user histories affect p(ω|vu,1, .., vu,Tu ,Ψ,ρ). Approximation
of this quantity can be made accurately and easily using the Stan probabilistic programming
language Stan Development Team (2018) or using variational approximations.

In Figure 1 - 2 the intuitive behavior of this simple model is demonstrated. The results
of the three approximate methods are presented and shown to be in good agreement. A
single product view indicates interest in that class of products, but considerable uncertainty
remains. Many product views in the same class represent high certainty that the user is
interested in that class. For next item prediction we consider both taking the plug-in
predictive based on the posterior mean VB (approx) and using Monte Carlo samples to
approximate the true predictive distribution MCMC and VB (MC).

2. Approximate Inference

2.1. Product Embedding Learning

The model we introduce has the form:

log p(v1, .., vT ,ωu|Ψ) =

(
T∑
t

Ψvtωu + ρvt

)
− T log{

P∑
p

exp(Ψpωu + ρp)} −
K

2
log(2π)− 1

2
ωTuωu.

If we use a normal distribution ω ∼ N (µq,Σq), then variational bound has the form:
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L = E
q(ω)

[log p(v1, .., vT ,ωu|Ψ)− log q(ω)] =

(
T∑
t

Ψvtµq + ρvt

)
− T E

q(ω)
[log{

P∑
p

exp(Ψpωu + ρp)}]

− K

2
log(2π)− 1

2
{µTq µq + trace(Σq)}+

1

2
log |2πeΣq|,

but we still need to be able to integrate under the denominator of the softmax.
The Bouchard bound Bouchard (2007) introduces a further approximation and addi-

tional variational parameters a, ξ but produces an analytical bound:

L ≥ LBouch =

(
T∑
t

Ψvtµq + ρvt

)
− T [a+

P∑
p

Ψpµq + ρp − a− ξp
2

+ λJJ(ξp){(Ψpµq + ρp − a)2 + ΨpΣqΨ
T
p − ξ2

p}+ log(1 + eξp)]

− K

2
log(2π)− 1

2
{µTq µq + trace(Σq)}+

1

2
log |2πeΣq|.

Where λJJ(·) is the Jaakola and Jordan function Jaakkola and Jordan (1997): λJJ(ξ) =
1
2ξ

(
1

1+e−ξ
− 1

2

)
.

Alternatively the re-parameterization trick Kingma and Welling (2014) proceeds by
simulating: ε(s) ∼ N (0K , IK), and then computing: ω(s) = LΣqε

(s)+µq. Where LΣqL
T
Σq =

Σq, and then optimizing the noisy lower bound:

LMC =

(
T∑
t

Ψvtµq + ρvt

)
− T log[

P∑
p

exp{Ψp(LΣqε
(s) + µq) + ρp}]

− K

2
log(2π)− 1

2
{µTq µq + trace(Σq)}+

1

2
log |2πeΣq|.

In order to prevent the variational parameters growing with the amount of data we
employ a variational auto-encoder. This involves using a flexible function i.e. µq, Σq =

fΞ(v1, ...vT ), or in the case of the Bouchard bound: µq, Σq, a,= fBouch
Ξ (v1, ...vT ) and

ξp = h(Ψp,ρp, a,Σq,ρq). Where any function (e.g. a deep net) can be used for fΞ(·) and

fBouch
Ξ (·). We demonstrate that our method using the RecoGym simulation environment

Rohde et al. (2018). We fit the model to the training set, we then evaluate by providing
the model v1, ..vTu−1 events and testing the model’s ability to predict vTu .

A further approximate algorithm which is useful when P is large is to note that the bound
can be written as a sum that decomposes not only in data but also over the denominator
of the softmax, The noisy lower bound becomes:
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Train Online RC@5 DCG@5
Algorithm

Bouch/AE AE 0.082 0.079
Bouch/AE EM 0.117 0.130
RT/Deep AE AE 0.080 0.068
RT/Deep AE EM 0.090 0.106

Table 1: Results on the test set for all approaches on the RecoGym dataset with 2000
products. For both metrics, a higher value is better.

L̂Bouch(v1, ..., vT , n1, ...nS ,Ξ,Ψ) =

(
T∑
t

Ψvtµq + ρvt

)

− T [a+
P

S

S∑
s′=1

Ψns′µq + ρns′ − a− ξns′
2

+ λJJ(ξns′ ){(Ψns′µq + ρns′ − a)2 + Ψns′ΣqΨ
T
ns′
− ξ2

ns′
}+ log(1 + eξns′ )]

− K

2
log(2π)− 1

2
{µTq µq + trace(Σq)}+

1

2
log |2πeΣq|.

where v1, ..., vT are the items associated with the session and n1, ...nS are S < P negative
items randomly sampled. Similar to the word2vec algorithm Mikolov et al. (2013) but
without any non-probabilistic heuristics.

We consider two alternative methods for training the model: Bouch/AE - A linear
variational auto-encoder using the Bouchard bound; RT/Deep AE - A deep auto-encoder
again using the re-parameterization trick. The deep auto-encoder consists of mapping an
input of size P to three linear rectifier layers of K units each. Results showing recall@5 and
discounted cumulative gain at 5 are shown in Table 1.

2.2. User Embedding Learning

The EM algorithm allows an approximation to be made of q(ω) assuming (Ψ,ρ) and a
user history v1, .., vT are known and can be used in place of a variational auto-encoder.
The algorithm here is the dual of the one presented in Bouchard (2007) as we assume the
embedding Ψ is fixed and ω is updated where the algorithm they present does the opposite.
The EM algorithm consists of cycling the following update equations:

Σ−1
q = Ik+2T

∑
p

λJJ(ξp)Ψ
T
p Ψp, µq = Σq

(
(

T∑
t

ΨT
vt)− T

[
P∑
p

{1

2
+ 2(ρp − a)λJJ(ξp)}ΨT

p

])
,

a =
−1 + P

2 +
∑

p 2λJJ(ξp)(Ψpµq + ρp)

2
∑

p λJJ(ξp)
,

ξp = h(Ψp,ρp, a,Σq,ρq) =
√

ΨpΣqΨ
T
p + (Ψpµq + ρp − a)2.
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We further note that the EM algorithm is (with the exception of the a variational
parameter) a fixed point update (of the natural parameters) that decomposes into a sum.
The terms in the sum come from the softmax in the denominator. After substituting a
co-ordinate descent update of a with a gradient descent step update, then the entire fixed
point update becomes a sum:

(Σ−1
q )new = Ik + 2

∑
p

λJJ(h(Ψp,ρp, a,Σq,ρq))Ψ
T
p Ψp,

(Σ−1
q µq)

new =

(
(

T∑
t

ΨT
vt)− T

[
P∑
p

{1

2
+ 2(ρp − a)λJJ{h(Ψp,ρp, a,Σq,ρq)}}ΨT

p

])

anew = a+
−1 + P

2

2
+
∑
p

λJJ{h(Ψp,ρp, a,Σq,ρq)}(Ψpµq + ρp)− aλJJ{h(Ψp,ρp, a,Σq,ρq)}

That is the EM algorithm can be written:

(
(Σ−1

q )new, (Σ−1
q µq)

new, anew
)

=
P∑
p

g(Ψp,ρp,Σ
−1
q ,Σ−1

q µq, a).

As noted in Cappé and Moulines (2009) when an EM algorithm can be written as a fixed
point update over a sum, then the Robbins Monro algorithm can be applied. Allowing
updates of the form (p is chosen randomly):

(
(Σ−1

q )(s), (Σ−1
q µq)

(s), a(s)
)

= (1−∆s)
(

(Σ−1
q )(s−1), (Σ−1

q µq)
(s−1), a(s−1)

)
+ ∆sg(Ψp,ρp, (Σ

−1
q )(s−1), (Σ−1

q µq)
(s−1), a(s−1)).

where ∆ is a slowly decaying Robbins Monro sequence (Robbins and Monro (1951)) with
∆1 = 1 (meaning no initial value of (Σ−1

q )(0), (Σ−1
q µq)

(0), a(0)) is needed. For large P this
algorithm is many times faster than the generic EM algorithm.

What is distinct about both this online EM algorithm and the negative sampling SGD
approach is that it is the denominator of the softmax that may be sub-sampled rather than
individual records. The Bouchard bound is also used for decomposing the softmax into a
sum in Titsias (2016) but they do per-batch optimization of the variational parameters,
instead we use an auto-encoder allowing direct SGD. Our method also differs from Ruiz
et al. (2018) again in using an auto-encoder allowing the more flexible SGD algorithm in
place of stochastic variational inference (Hoffman et al. (2013)) which requires complete data
exponential family assumptions. Finally unlike those methods we are considering variational
inference of a latent variable model as well as using variational bounds to approximate the
softmax.
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