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ABSTRACT

The recent expansion of Machine Learning applications to molecular biology
proved to have a significant contribution to our understanding of biological sys-
tems, and genome functioning in particular. Technological advances enabled the
collection of large epigenetic datasets, including information about various DNA
binding factors (ChIP-Seq) and DNA spatial structure (Hi-C). Several studies have
confirmed the correlation between DNA binding factors and Topologically As-
sociating Domains (TADs) in DNA structure. However, the information about
physical proximity represented by genomic coordinate was not yet used for the
improvement of the prediction models.
In this research, we focus on Machine Learning methods for prediction of folding
patterns of DNA in a classical model organism Drosophila melanogaster. The
paper considers linear models with four types of regularization, Gradient Boosting
and Recurrent Neural Networks for the prediction of chromatin folding patterns
from epigenetic marks. The bidirectional LSTM RNN model outperformed all the
models and gained the best prediction scores. This demonstrates the utilization of
complex models and the importance of memory of sequential DNA states for the
chromatin folding. We identify informative epigenetic features that lead to the
further conclusion of their biological significance.

1 INTRODUCTION

Machine Learning algorithms are used nowadays in multiple disciplines. In particular, the utiliza-
tion of these methods in molecular biology has a significant impact on our understanding of cell
processes (Eraslan et al., 2019). Investigating the large-scale DNA structure, i.e. the spatial orga-
nization of the genome, or chromatin, is one of the challenging tasks in the field. The relevance
of this research is supported by multiple observations of interconnections between gene regulation,
inheritance, disease and chromatin structure (Lupiáñez et al., 2016).

Although the chromatin structure is folded 104 − 105 times, it maintains fundamental and vital pro-
cesses of the cell. Various regulation mechanisms were shown to act through the three-dimensional
structure formation. High-throughput experiments capturing contacting fragments of the genome,
such as Hi-C, have unravelled many principles of chromosomal folding (Lieberman-Aiden et al.,
2009). Although Hi-C-like techniques were developed ten years ago, the experiments of high qual-
ity started to be published mainly during the last several years, and the protocol is still elaborate and
expensive.

Hi-C has also revealed that chromosomes are subdivided into a set of self-interacting domains called
Topologically Associating Domains (TADs) (Ulianov et al., 2016) that can be seen in Figure 1. TADs
were shown to correlate with units of replication timing regulation in mammals (Pope et al., 2014),
as well as with either active or repressed epigenetic domains in Drosophila (Sexton et al., 2012).

Various factors were shown to contribute to structure formation. ChIP-Seq is one of the high-
throughput experiments dedicated to the detection of factors binding on the DNA in vivo. The rapid
growth of its data enables exploring the chromatin structure with more sophisticated and complex
methods such as Machine Learning. The datasets for various factors such as ChIP-Seq experiments
for histone modifications become increasingly available in public databases (Ho et al., 2014). The
relationship between TADs and epigenetics marks has been investigated recently (Ulianov et al.,
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2016). However, the mechanisms that underlie partitioning of the genome into TADs remain poorly
understood. Moreover, there is no comprehensive work investigating all the factors that are publicly
available yet.

Figure 1: Typical representation of Hi-C interaction map as a genome-wide contact matrix, or a
heatmap. Bright triangles can be visible across the diagonal. These structures are called TADs
(topologically associating domains) and interpreted as compact globules of interacting chromatin.
Drosophila melanogaster S2-DRSC cells Chr 3R 22.8 -24.6 Mb

This study focuses on bringing insights into the 3D chromatin structure using Machine Learning.
The goal is to explore the principles of TAD folding and the role of epigenetics in this process. To
that end, the analysis of Drosophila melanogaster chromatin was performed using Linear Regression
models and Recurrent Neural Networks. Quality metrics were calculated, and informative features
were investigated to identify which of chromatin marks are most significant in predicting information
about TADs.

In addition, the same techniques might be used to explore the 3D chromatin structure of mammals
and humans in particular. Such reconstruction of the information about Hi-C map might be useful
not only for understanding the chromatin structure formation but can also have various practical
medical applications. For example, gliomagenesis and limb malformations in humans were demon-
strated to be caused by chromosomal topology disruption (Krijger & De Laat, 2016).

2 LITERATURE REVIEW

Over the last decade, the volume of produced data has significantly increased and brought the op-
portunity of applying complex and efficient methods. Several other studies were focused on pre-
dicting the 3D chromatin architecture using Machine Learning methods. One approach to this prob-
lem is to use the Hi-C map as input of the model, for example, Cristescu et al. (Cristescu et al.,
2018) presented the REcurrent Autoencoders for CHromatin 3D structure prediction (REACH-3D).
REACH-3D reconstructs the chromatin structure, recovers several biological properties and have
high correlation with microscopy measurements.

However, another approach is to predict the information about the chromatin structure from other
types of biological characteristics. In particular, Schreiber et al. (Schreiber et al., 2018) considered
nucleotide sequence as input for a deep Convolutional Neural Network. The objective of this ar-
chitecture was to estimate the Hi-C contacts. This Neural Network demonstrated that the predicted
outcomes are related to histone modification, selected functional elements and replication timing
which correlates with theoretical knowledge.

Moreover, another work that inspired this research was made by Ulianov et al. (Ulianov et al.,
2016). They suggested that active chromatin and transcription play a key role in chromosome par-
titioning into TADs. It was shown that numerous transient interactions between nucleosomes of
inactive chromatin lead to the formation of TADs that are potentially highly dynamic self-organized
structures. On the other hand, nucleosomes, that tend to interact less often, influence the formation
of inter-TADs and TAD boundaries. Ulianov et al. showed that active chromatin marks were prefer-
ably present at TAD borders, and repressive histone modifications that reflect nucleosomes occu-
pancy were depleted within inter-TADs, which reveals the correlation between TADs and chromatin
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marks. Fortin et al. in (Fortin & Hansen, 2015) succeeded in extracting knowledge from ChIP-Seq
data of histone modification to analyze the chromatin structure. They constructed a predictive model
of the Hi-C that unrevealed the correlation with replication timing, which proves the hypothesis of
the possibility of extracting information about the Hi-C contacts from Nucleotide Sequence and
DNaseI assay signal of Homo sapiens cell lines. A principal difference from all described works is
that to our model explores the 3D chromatin characteristics of Drosophila melanogaster using a set
of ChIP-Seq data as input. To the best of our knowledge, no other published work was conducted to
predict Topologically Associated Domain characteristics from epigenetic marks.

3 DATA

3.1 INPUT DATA

Hi-C datasets for Drosophila melanogaster S2-DRSC cells were collected from Ulyanov et al.
(Ulianov et al., 2016). Drosophila dm3 genome assembly was subdivided into 5950 sequential
genomic regions called bins, where each bin coresponds to 200 000 (20-Kb) DNA base pairs. Each
bin can be described by a number of epigenetic features, estimated by ChIP-Seq We downloaded all
available epigenetic datasets at the moment from the modENCODE database (Celniker et al., 2009)
and processed it identically to (Ulianov et al., 2016).

Based on the current model of chromatin formation in Drosophila, we distinguish two ChIP-Seq sets.
The first set has five biologically significant features: Chriz, CTCF, Su(Hw), H3K27me3, H3K27a.
The second set contains Chriz, CTCF, Su(Hw), H3K27me3, H3K27a, BEAF-32, CP190, Smc3,
GAF, H3K36me1, H3K36me3, H3K4me1, H3K9ac, H3K9me1, H3K9me2, H3K9me3, H4K16ac.

For normalization of the input data, each feature was centred by mean and scaled by variance. The
example of eight original ChIP-Seq features and their transformation is seen in Appendix.

3.2 TARGET VALUE

Topologically Associating Domains (TADs) can be represented as the segmentation of the genome
into discrete regions. However, this segmentation is dependent on one or several parameters, cor-
responding to the characteristic size of TADs. We sought for avoiding the problem of parameters
selection in our approach. Thus we adopted the approach from (Ulianov et al., 2016) and calculated
the local characteristic of TAD formation of the genome, namely, gamma transitional.

The procedure of calculation is briefly described below. Armatus software (Filippova et al., 2014)
is used to annotate Topologically Associating Domains (TADs) with scaling parameter gamma that
determines the average size and the number of TADs. When gamma is fixed, each genomic bin is
annotated as part of a TAD, inter-TAD or TAD boundary, as part of segmentation. We characterized
each bin by the scaling parameter gamma at which this bin switches from being a part of a TAD to
being a part of an inter-TAD or a TAD boundary. Given the higher the gamma value, the smaller the
TADs are in the Armatus annotation. See the illustration in Figure 2.

Whole-genome Hi-C maps of chromatin folding in a set of S2-DRSC Drosophila cells were taken
from and processed similarly to (Ulianov et al., 2016).

4 METHODS

4.1 PROBLEM STATEMENT

To avoid ambiguity, let us clearly define our Machine Learning problem.

- The objects are “bins” – DNA sections of the length of 20,000 nucleotides with no intersection of
Drosophila melanogaster (see Introduction and Section 3.1 for more details).

- The features are ChIP-Seq epigenetic data on chromatin markers (Section 3.1).

- The target value is transitional gamma - parameter of transformation from TAD to inter-TAD, TAD
boundary (Section 3.2).
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Figure 2: Annotation of TADs at different gamma parameter values is on the left side. Higher
gamma values correspond to smaller TADs. Transitional gamma is the value of gamma at which
genomic bin switches from being a part of a TAD to being a part of an inter-TAD or a TAD boundary.
The histogram of the target value transitional gamma in the data is presented in the right part of this
plot.

- The task is to predict the characteristics of the 3D structure of chromatin transitional gamma.
The aim is to identify which of chromatin marks (ChIP-Seq data) are most significant in predicting
information about the Topologically Associating Domains (TADs).

4.2 LOSS FUNCTION

As described in Section 3.2, the target object, transitional gamma, is a continuous value from 0 to
10, which leads to solving a regression problem. The classical optimisation function in this type
of problems is Mean Square Error (MSE). However, the distribution of the target is significantly
unbalanced (Figure 2). The target value of most of the objects is in the diapason between 0 and
3. Nevertheless, the contribution of the error on objects with a high true value of the target will
also be high in the total score using Mean Square Error. Moreover, the biological nature of objects
with a high value of the transitional gamma is different from other objects. For DNA bins with a
transitional gamma value equal to 10, gamma value at which this bin passed from the TAD state to
the inter-TAD or TAD boundary was not found. To build a model that accurately predicts the values
of the transitional gamma for most objects, we have introduced our own custom loss function called
modified weighted Mean Square Error (wMSE). It might be reformulated as MSE multiplied by the
weight (penalty) of the error, depending on the true value of the target variable.

wMSE =
1

n

n∑
i=1

(ytruei − ypredi
)2
α− ytruei

α
,

where n is the number of data points,
ytruei is the true value for data point number i,
ypredi

is the predicted value for data point number i,
α is equal to the maximum value of the ytrue values increased by 1 to avoid multiplying the error
with 0.

As a result the model is penalized less for errors on objects with a high value of the transitional
gamma by using the weighting. The maximum values of the target value in the transitional gamma
dataset is 10, thus α is equal to 11.

4.3 MODELS

To explore the relationships between the 3D chromatin structure and epigenetics data, we built Lin-
ear Regression (LR) models, Gradient Boosting (GB) Regressors and Recurrent Neural Networks
(RNN). The LR were applied with no regularization, either L1 and L2 regularization or both of
them. All the models were trained using the wMSE loss function. The Linear models were chosen
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to create a benchmark for this problem as no other results of ML pipeline is publicly available for
this dataset. It also allows intuitive feature importance interpretation. It is worth mentioning that our
input bins are sequentially ordered in the genome. Due to DNA connectivity and local properties
of clustering, the target variable values might be vastly correlated. Thus, in order to increase the
chance of learning this property of the biological data, we selected RNN models.

DNA is a long structured molecule formed out of nucleotides arranged in a linear sequence. DNA
is double-stranded which means each nucleotide has a complementary pair, together called a base
pair. DNA molecule might be several million base pairs (Mb) long and serves as the storage and
the means of utilization of genetic information. The information content of DNA is equivalent if
read in forward and reverse direction, thus all local properties of its sequence should be independent
of the selected direction. To use this property of DNA molecule, we selected bidirectional LSTM
RNN architecture (Schuster & Paliwal, 1997). The index of the middle bin is calculated as the floor
division of the length of the input by 2.

The variable parameters that we investigated in our LSTM model are:

- A sequence length of input RNN objects is a set of consecutive DNA bins with fixed input length
called window size from 1 to 10.

- Number of LSTM Units: 1, 4, 8, 16, 32, 64, 128, 256.

- Number of training Epochs: 1, 4, 8, 16, 32, 64, 128, 256, 512. Early Stopping to automatically
identify the optimal number of training epochs was used for the final models. - Loss function:
weighted Mean Square Error (wMSE), our custom evaluation function defined in Section 4.

- Optimizer: Adam. The data was always randomly separated into three groups: train dataset 70%
of data, 20% test dataset and 10% for validation.

Figure 3: Scheme of Bidirectional LSTM Recurrent Neural Networks with one output that was
implemented. The values of {x1, .., xt} are the DNA bins with input window size t, {h1, .., ht} are
the hidden states of the RNN model, yt/2 represents the corresponding target values Transitional
gamma of bins the middle bin xt/2.

5 RESULTS

For each type of the models, we have performed training several times to get more consistent results.
The results are presented for the observations of ten experiments. The weighted Mean Square Error
(wMSE) that is defined in Section 4.2 was calculated for each experiment. The best score of the
weighted Mean Square Error using Linear Regression with L1 and L2 regularization (Elastic Net
model) with parameter alpha equal to 0.2 was performed using a grid search. The wMSE of these
experiments on train and test datasets was found and is presented in Table 1. The values of MSE,
MAE and R2 can be found in Table 2 and Figure 10, where LR - Linear Regression models, GB-X
- Grad Boosting models with X estimators. Feature importance can be analyzed by exploring the
weight coefficients of the Linear models. The prediction is created based on the multiplication of
each weight on the corresponding feature. Thus, larger absolute values of the feature result in the
stronger influence of this particular feature on the prediction of the model. Thus we were able to
extract the prioritization in terms of the influence of the features. After performing experiments on
the first dataset with five ChIP-Seq characteristics, the resulting weights happen to be significantly
stable as it is shown below in the table of feature coefficient of Linear Regression (Figure 4). As a
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result, we obtain that the most valuable in terms of the absolute value of the feature weight is Chriz,
then CTCF, H3K27ac and H3K27me3, when the weight of Su(Hw) is the smallest.

Figure 4: Weights of features of 5 trained Linear Regression models (rows) on the dataset with 5
ChIP-Seq features (columns)

We adopted the same approach to the second dataset of ChIP-Seq characteristics. In comparison to
the same application on a dataset of five features the coefficient order by absolute weights values
is less stable (a table with sorting of the indexes of features by their weights can be seen in Sup-
plementary Section). The numbers of occurrences of each of the feature indexes in the list of most
influencing features were calculated. We have sorted the features based on this frequency number.
Chriz was proved to be the most robustly reproduced influential factor. CTCF and CP190 were
identified as the second degree on the scale of significant factors.

Another result worth mentioning is the selection of only one important feature Chriz out of both
datasets while using the model of Linear Regression with L1 regularization (visualization can be
found in the supplementary materials).

We implemented also Gradient Boosting (GB) for regression. The GB additive model has outper-
formed the linear regression models. However, there was a strong tendency to over-fitting for a
wide range of variable parameters such as the number of estimators, learning rate, maximum depth
of the individual regression estimators, minimum number of samples required to split an internal
node. The best results were observed while setting the ’n estimators’: 100, ’max depth’: 3 and
n estimators’: 250, ’max depth’: 4, ’learning rate’: 0.01 and they are presented bellow in Table 1.

The main Neural Network that we were exploring is Bidirectional LSTM. As described above, the
sequential relationship of the input objects in terms of the physical distance in the DNA justifies the
usage of Recurrent Neural Networks. For each variation of parameters, experiments were conducted
and evaluation metrics were calculated (tables with results can be found in Section 9).

To explore the dependencies of weighted Mean Square Error on the sizes of sequence length, Bidi-
rectional RNN models were trained with different input window size and number of LSTM Units.
The result is shown in Figure 5 where an optimal sequence size equals to input window size 6 and
64 LSTM Units was revealed.

This result has a clear biological interpretation as the typical size of TADs from around 120 Kb,
which corresponds to 6 bins of 20,000 that turned out to have the strongest prediction scores.

As a result, the Bidirectional LSTM Recurrent Neural Networks with 64 LSTM Units and sequence
of 6 bins taken as input data were trained and achieved better evaluation scores than a constant
prediction, Linear models and Gradient Boosting models (Table 1). The constant prediction was
made using the mean value of the training dataset.

To explore the importance of each feature X from the input space, we replaced the values of the
corresponding column of the feature matrix with zeros. Further, we calculate the evaluation metrics
and check how significantly different they are from the results obtained while using the complete set
of data (Figure 8).

The results of wMSE on the test set do not differ dramatically from using full dataset. When we drop
out each of the five features, we get the same score of around 0.9 that is almost equal to using all
of them together. This means that our RNN is able to achieve the same score with a subset of these
four features out of all five. The results of applying the same technique while omitting each feature
one by one using the second dataset of ChIP-Seq features allowed the evaluation of the biological
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Figure 5: Weighted Mean Square Error of trained Bidirectional LSTM. The upper row of graphs
present the results for the train dataset, the bottom row shows wMSE counted on the test objects.
The left half shows the results of training RNN with 64 units for different sizes of sequence length.
The rights half shows wMSE for training RNNs with an input sequence of 6 bins for a different
number of LSTM Units. The green box is surrounding the optimal scores.

Table 1: Weighted MSE of all Models

5 features 18 features
Train Test Train Test

Constant prediction 1.61 1.62 1.61 1.62
Linear Regression 1.19 1.19 1.13 1.13
Linear Regression + L1 1.16 1.16 1.10 1.10
Linear Regression + L2 1.19 1.18 1.13 1.14
Linear Regression + L1 + L2 1.16 1.16 1.10 1.10
Grad Boosting 100 estimators 1.13 1.13 1.07 1.08
Grad Boosting 250 estimators 1.06 1.06 0.98 0.98
biLSTM 64 units & 6 bins 0.85 0.85 0.72 0.72

impact of the features. These wMSE scores are presented in Figure 6 as well as the result of training
the model on all features together.

The difference between the wMSE using all the features and omitting each one separately is pre-
sented on Figure 6. This provides the opportunity of identifying how valuable a particular biological
characteristic is using RNN.

6 CONCLUSION

The ChIP-Seq data usage for chromatin folding patterns prediction was confirmed by training ML
models with dignified evaluation scores. Moreover, the results were interpretable and biologically
relevant.

Linear Regression models, Gradient Boosting Trees and Recurrent Neural Networks were for the
first time applied to our new dataset of chromatin characteristics. All models have performed better
than constant prediction with the mean value of the training dataset. The utilization of memory of
previous states linearly ordered by DNA molecule improves the prediction significantly as the best

7



Under review as a conference paper at ICLR 2020

Table 2: Evaluation scores for all models

5 features
model type MSE MSE MAE MAE R2

Train Test Train Test
Const 3.73 3.52 1.36 1.31 0
LR + L1 2.84 2.72 1.11 1.1 0.24
LR + L2 2.76 2.66 1.11 1.1 0.26
LR + L1 + L2 2.79 2.68 1.1 1.09 0.25
GB-250 2.27 2.29 1 0.98 0.38
biLSTM RNN 2.36 2.9 0.92 1.01 0.33

18 features
LR + L1 2.72 2.63 1.07 1.07 0.27
LR + L2 2.61 2.55 1.07 1.09 0.3
LR + L1 + L2 2.68 2.61 1.07 1.07 0.28
GB-250 2.27 2.29 1 0.98 0.38
biLSTM RNN 2.03 2.45 0.85 0.9 0.43

Figure 6: On the left the weighted Mean Square Error on Train and Test dataset while dropping
out one of the input ChIP-Seq features and wMSE of training using all features. On the right the
difference between the weighted Mean Square Error using all the features and dropping each one
separately. Blue bars correspond to the wMSE on a testing dataset, red - training. Bidirectional
LSTM with 64 units and six input bins was used.

results were obtained by bidirectional LSTM RNN model. The optimal input window size was also
equal to six which has a biological meaning as it strongly aligns with the average TAD length.

Feature importance analysis of the input ChIP-Seq data was conducted. The Linear models weights
provided a biologically meaningful prioritization of the ChIP-Seq. Moreover, after training Linear
Regression with L1 regularization detected one ChIP-Seq feature Chriz on both of the datasets as
the most influencing. The results of applying Neural Network models allowed the evaluation of the
biological impact of the features.

Exploration of the transferability of the models between different cell types and species might be
an interesting development of this work. More input features of different biological nature, such as
DNA sequence itself, is another direction of research.

The code is open sourced and the implemented pipeline can be easily adapted to any similar biolog-
ical dataset of chromatin features.
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A APPENDIX

Figure 7: Histograms of (A) original ChIP-Seq data and (B) normalized data of first 8 ChIP-Seq
features of all input bins.

Figure 8: Weighted Mean Square Error on Train and Test dataset while dropping out one of the
input ChIP-Seq features and using this full dataset. Bidirectional LSTM with 64 units with six input
bins with Early Stopping was used.
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Figure 9: Weights of features of 8 trained Linear Regression models (corresponding to the rows) of
the second dataset of ChIP-Seq characteristics (columns).

Figure 10: MSE, MAE,R2, weighted MSE metrics for various ML models experiments. Here ”LR”
stands for Linear Regression models, ”GB-X” - Grad Boosting models with X estimators, ”* best”
means that the presented scores for the best of models of type *.
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