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ABSTRACT

Regularizing the gradient norm of the output of a neural network with respect to
its inputs is a powerful technique, rediscovered several times. This paper presents
evidence that gradient regularization can consistently improve classification ac-
curacy on vision tasks, using modern deep neural networks, especially when the
amount of training data is small. We introduce our regularizers as members of a
broader class of Jacobian-based regularizers. We demonstrate empirically on real
and synthetic data that the learning process leads to gradients controlled beyond
the training points, and results in solutions that generalize well.

1 INTRODUCTION

Regularizing the gradient norm of a neural network’s output with respect to its inputs is an old idea,
going back to Double Backpropagation (Drucker & LeCun, 1991). Variants of this core idea has
been independently rediscovered several times since 1991 (Sokolic et al., 2017; Ororbia II et al.,
2017; Czarnecki et al., 2017; Gulrajani et al., 2017), most recently by the authors of this paper.
Most recent applications (Gu & Rigazio, 2014; Sokolic et al., 2017; Ororbia II et al., 2017; Slavin
Ross & Doshi-Velez, 2017) focus on robustness against adversarial sampling (Szegedy et al., 2013).
Here we argue that gradient regularization can be used for the more fundamental task of increasing
classification accuracy, especially when the available training set is small. Calculating and imple-
menting gradient regularization terms is made easy and fast by modern tensor libraries, making our
proposed approach readily available for networks that are hundreds of layers deep.

Our work has explored a broad class of of Jacobian-based regularizers, which provides a unified
framework for various gradient regularization approaches. In this extended abstract we present
the two most promising variants: 1) classic Double Backpropagation (Drucker & LeCun, 1991)
which we refer to as DataGrad after Ororbia II et al. (2017) who discovered it independently, and
2) SpectReg which is our contribution. Our complete results can be found in Varga et al. (2017).

2 ANALYSIS

We consider feed-forward classifier networks with a loss function L(x, y,Θ) = M(f(x,Θ), y) =
M(softmax(g(x,Θ)), y), where x is the input, y is the one-hot encoded desired output, f rep-
resents the network with a softmax layer on top, Θ are the network parameters and M is the
categorical cross entropy function. The inputs and outputs of the softmax layer are called logits
and probabilities, respectively. The central object of our investigation is the Jacobian of the logits
Jg(x) = ∂

∂xg(x) with respect to the inputs.

Gradient regularization penalizes large changes in the output of some neural network layer, to en-
force a smoothness prior. We get different variants depending on where the gradients are computed
(logits, probabilities, loss term), with respect to what (inputs or some hidden activations) 1, what loss
function is used to create a scalar loss.2 Some of these variants require the expensive computation of

1Controlling changes with respect to hidden activations is a promising future direction.
2In our investigation, we use the squared L2 norm, but the L1 norm could also be reasonable.
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a full Jacobi matrix, which can be made efficient by the application of some projection, introducing
new variants.

The two variants presented in this extended abstract are

• DataGrad (Double Backpropagation): penalize the L2 norm of the gradient of the original
loss term with respect to the inputs.

LDG(x, y,Θ) = L(x, y,Θ) + λ‖( ∂
∂x
L(x, y,Θ))‖2

• SpectReg (Spectral Regularization): penalize the L2 norm of the randomly projected Ja-
cobian of the logits with respect to the inputs.

LSpectReg(x, y,Θ) = L(x, y,Θ) + λ‖Prnd(Jg)‖
where Prnd(Jg) = JT

g r and r ∈ N (0, Im), and m is the number of class labels.

These variants are more related than it might first appear. As we prove it in Varga et al. (2017),
DataGrad as well can be interpreted as minimizing the L2 norm of a particular projection of the
Jacobian of the logits. This projection is PDataGrad(Jg) = JT

g (f(x)− y), determined by how well
the model predicts the desired output. In contrast, SpectReg controls the Jacobian in all directions.

While both DataGrad and SpectReg work with the Jacobian Jg , they avoid having to compute the
full matrix. The trick that achieves this is based on the linearity of the gradient. If our regularizer is
of the form ‖JT

g w‖2, where w is a vector from logit space, then ‖( ∂
∂xg(x))Tw‖ = ‖ ∂

∂x 〈g(x), w〉‖.
Hence, expensive Jacobian calculation can be replaced with a gradient calculation. Besides speeding
up computation, this can also introduce beneficial regularization. The idea of applying a random
projection on the Jacobian also appears in Czarnecki et al. (2017).

If the random normal projector of SpectReg is normalized onto the unit sphere (spherical SpectReg),
the norm of the projection is a lower bound to the (hard to compute) spectral norm of the Jacobian,
which motivates our naming. Furthermore, one can easily show that spherical SpectReg is an unbi-
ased estimator of the Frobenius norm of the Jacobian. Consequently, so is SpectReg, up to a constant
scaling. We have not observed any empirical differences between the spherical and the unnormal-
ized variants. For multi-valued functions, directly calculating, or even approximating the spectral
norm is infeasible. The Frobenius norm is within a constant factor of the spectral norm, so it can be
interpreted as a proxy when our goal is to enforce a Lipschitz property locally.3

It is instructive to consider the toy edge case when the neural network consists of a single dense
linear layer. Here the weight matrix and the Jacobian coincide. Thus, minimizing the Frobenius
norm of the Jacobian coincides with weight decay. The Frobenius norm is submultiplicative, and
the gradient of the ReLU is upper bounded by 1. Thus, for a dense ReLU network the product of
layer-wise weight norms is an upper bound for the Frobenius norm of the Jacobian. Applying the
inequality of arithmetic and geometric means, we can see that the Frobenius norm can be upper
bounded by the total weight norm. This suggests an inherent connection between weight decay and
gradient regularization, which is worth further investigation.

A reasonable objection to gradient regularization methods is that they control the gradients only in
the training points. A highly over-parameterized network is capable of representing a ”step function”
that is extremely flat around the training points and contains unwanted sudden jumps elsewhere. All
our experiments indicate, however, that stochastic gradient descent does not reach these pathological
minima and the learned function has smaller gradient norms in randomly selected test points as well.
We are still working to better understand this phenomenon, and we believe it can lead to important
insights into the learning process.

3 EXPERIMENTS

We present a selection of experiments conducted on the MNIST and CIFAR-10 datasets. More
results and more details can be found in Varga et al. (2017). We find that gradient regularization
increases classification accuracy in a wide range of scenarios, compared with strong baseline models.

3However, the example of L1 and L2 weight regularization reminds us that optimizing different regulariza-
tion terms can lead to very different behavior even when they are within a constant factor of each other.
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Gradient Regularization vs. Dropout and Batch Normalization On MNIST, both gradient
regularizers outperform Dropout (Srivastava et al., 2014) and Batchnorm (Ioffe & Szegedy, 2015).
Combining DataGrad and Dropout provides the best test accuracy. Table 1 summarizes these results.

Table 1: Comparison of Dropout, Batch Normalization, DataGrad and SpectReg, on MNIST with
training size 2000. Numbers are averages of 10 runs, with standard deviations in parentheses.

NoGR SpectReg DataGrad
Baseline 96.99 (0.15) 97.59 (0.13) 97.56 (0.24)
Batchnorm 96.89 (0.23) 96.94 (0.27) 96.89 (0.22)
Dropout 97.29 (0.19) 97.65 (0.14) 97.98 (0.12)

Gradient Regularization on a residual network alongside data augmentation Data augmen-
tation is a crucial ingredient for building models with good generalization properties. The role of
standard regularization methods to prevent overfitting often diminishes when used alongside data
augmentation as reported by Pereyra et al. (2017). Using a well tuned baseline on the augmented
full CIFAR-10 dataset that achieves 93.71% accuracy, we obtain small improvement with SpectReg
(93.74%) and significant improvement with DataGrad (94.14%).

The effect of training set size The effect of regularizers is more significant for smaller training
sets, however, we show in Figure 1 Left that they maintain a significant benefit even for as much
as 20000 training points on MNIST. Besides DataGrad and SpectReg, we also compare Confidence
Penalty by Pereyra et al. (2017), Jacobian Regularizer (JacReg) by Sokolic et al. (2017), FrobReg
(which directly minimizes the Frobenius norm of the Jacobian without projection) and a baseline
model with weight decay. We find that DataGrad performs better than any of its peers for all sizes.
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Figure 1: Left: Comparison of various regularization methods on MNIST using different training
set sizes. DataGrad performs best consistently for all sizes. Right: Increasing the weight of the
SpectReg regularizer forces the network to learn an increasingly flat function. Although the gradient
is controlled only in 100 training points, the whole manifold becomes smoother.

Local gradient control does not lead to pathological gradient landscape Using a small syn-
thetic dataset generated from f : R → R, f(x) = sin(5x), we show in Figure 1 Right that
SpectReg 4 makes the output smoother, not only around the training points, but globally as well.

4 CONCLUSION

Our paper presents evidence that gradient regularization can increase classification accuracy in vi-
sion tasks. We identify two methods that outperform strong baselines: DataGrad and Spectral
Regularization. The improvement is most pronounced for smaller training set sizes. Despite the fact
that gradient control is applied only at the training points, we find that stochastic gradient descent
converges to a solution where gradients are globally controlled. Even for very small training set
sizes, the regularized models become smoother on the whole data manifold.

4We obtain similar curves when using DataGrad.
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Academy of Sciences, Budapest, Hungary, December 2017. URL https://arxiv.org/
abs/1712.09936.

4


