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Abstract

Although deep learning has enabled unprecedented improvements in the perfor-1

mance of the state-of-the-art speech emotion recognition (SER) systems, recent2

research on adversarial examples has cast a shadow of doubt on the robustness of3

SER systems by showing the susceptibility of deep neural networks to adversarial4

examples that rely only on small and imperceptible perturbations. In this study,5

we evaluate how adversarial examples can be used to attack SER systems and6

propose the first black-box adversarial attack on SER systems. We also explore7

potential defenses including adversarial training and generative adversarial network8

(GAN) to enhance robustness. Experimental evaluations suggest various interesting9

aspects of the effective utilization of adversarial examples that can be useful not10

only for SER robustness but also other speech-based intelligent systems.11

1 Introduction12

Recent progress in machine learning (ML) is reinventing the future of intelligent systems enabling13

plethora of speech controlled applications [1, 2]. In particular, the emotion-aware systems are on the14

rise. And the breakthrough in deep learning is the enabler of highly accurate and robust emotion15

recognition systems [3, 4].16

Despite the superior performance of deep neural networks (DNNs), recent studies have shown that17

they are highly vulnerable to the malicious attacks that use adversarial examples. Adversarial18

examples are custom built by a malicious adversary through the addition of unperceived perturbation19

with the intention of eliciting wrong responses from ML models. These adversarial examples can20

debilitate the performance of image recognition, object detection, and speech recognition models21

[5]. Adversarial attacks can also be used to undermine the performance of speech-based emotion22

recognition (SER) systems [6], which is alarming due to various security-sensitive paralinguistic23

applications of SER systems.24

In this paper, we aim to investigate the utility of adversarial examples to achieve robustness in25

speech emotion classification to adversarial attacks. We consider a “black-box” attack that directly26

perturbs speech utterances with small and imperceptible noises. The generated adversarial examples27

are utilized in different schemes highlighting different trends for the robustness of SER systems.28

We further propose a GAN-based defense for SER systems and show that it can better withstand29

adversarial examples compared to the previous defense solutions such as adversarial training and30

random noise addition.31
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2 Background and Audio Adversarial Examples32

Existing methods of adversarial attacks include fast gradient sign method (FGSM) [7], Jacobian-33

based saliency map attack (JSMA) [8], and DeepFool [9]. In another work, Carlini and Wagner34

[10] compute the perturbation noise based on the gradient of targeted output with respect to the35

input, which can be computed efficiently using backpropagation with the implicit assumption that36

the attacker has complete knowledge of the network and its parameters (such methods are called37

white-box attacks). While the backpropagation method, which needs to compute the derivative of each38

layer of the network with respect to the input layers, can be efficiently applied in image recognition39

due to the differentiability of all layers, the application of such methods is difficult for SER systems40

since these systems rely on complex acoustic features of the input audio utterances—such as Mel41

Frequency Cepstral Coefficients (MFCCs), spectrogram, extended Geneva Minimalistic Acoustic42

Parameter Set (eGeMAPS) [11]. The SER system’s first layer therefore is the pre-processing or the43

feature extraction layer through which there is no efficient way to compute derivative, due to which44

gradient-based methods [8, 9, 10, 12] are not directly applicable to SER systems.45

2.1 Previous Audio Attacks46

Adversarial attacks on ML have triggered an active area of research that is focusing on understanding47

the adversarial attack phenomenon [13] and on techniques that can make ML models robust [14].48

For speech-based systems, Carlini [5] proposed a white-box iterative optimization-based attack for49

DeepSpeech [15], a state-of-the-art speech-to-text model, with 100% success rate. Alzantot et al.50

[16] proposed an adversarial attack on speech commands classification model by adding a small51

random noise (background noise) to the audio files. They achieved 87% success without having any52

information of the underlying model. Song et al. [17] proposed a mechanism that directly attacks the53

microphone used for sensing voice data and showed that an adversary can exploit the microphone’s54

non-linearity to control the targeted device with inaudible voice commands. Gong et al. [6] presented55

an architecture to craft adversarial examples for computational paralinguistic applications. They56

perturbed the raw audio file and were able to cause a significant reduction in performance. Various57

other studies [18, 19, 20] have also presented adversarial attacks for speech recognition system.58

Most of the previous research on targeted attacks for speech-based applications [5, 6, 16, 17, 18, 19,59

20] has considered attacks on the model without investigating how adversarial examples may be60

utilized to make the ML models more robust. Our work is different since we not only propose an61

adversarial attack for SER system using adversarial examples but also leverage adversarial examples62

for making ML models more robust. We evaluate our proposed attack on two well-known emotional63

corpora (IEMOCAP [21] and FAU-AIBO [22]) using Long Short-Term Memory (LSTM) [23],64

a popular recurrent neural network (RNN), as the classifier. We achieved 79% success rate for65

FAU-AIBO dataset without changing the perception of human emotion captured in an audio file.66

3 Proposed Audio Adversarial Examples67

In this work, we adopt a simple approach to craft adversarial examples by adding imperceptible68

noise to the legitimate samples. For this, we take an audio utterance x with label y, and generate an69

adversarial example x
′
= x+ δ such that the SER system fails to correctly classify the given input70

while ensuring that x and x
′

are very similar as perceived by humans. Previous speech-related studies71

have studied different noise as adversarial noises. DolphinAttack exploits inaudible ultrasounds as72

adversarial noise to control the victim device inconspicuously but the attack sound used was out of73

the human perception. Similarly, Alzantot et al. [16] used random noise for creating an adversarial74

attack on speech recognition. It has however been empirically observed that the state-of-the-art75

classifiers are relatively robust to random noise [13]. By considering these observations, we propose76

a black-box attack for SER system where an adversary can add some real-world noise as adversarial77

perturbation. We empirically show that the addition of real-world noisy speech samples can fool the78

classier while not being perceptible to the human ear.79

Quantification of δ: The quantification distortion caused by δ is performed through a simple rule.80

SER systems are designed to detect speakers’ emotion independently from the background noise.81

In real-world scenarios, such background noise can take multiple forms such as car engine noise,82

passing-by-vehicle noise, or result from human discussion, music, etc. SER systems, or indeed any83
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Table 1: Binary class mapping of different emotions
Dataset Positive class Negative Class

IEMOCAP happiness, exited, neutral anger, sadness
FAU-AIBO neutral, motherese, and joyful angry, touchy, reprimanding, and emphatic

intelligent speech-based system, have to be robust enough to tackle these sources of noise for their84

deployment in real-world. Our aim in this study is to design adversarial example by using some of85

these noises and their addition is done based on human perception. For this, we use three noises of86

real-world and their addition level is based on the already existing background noises (microphone87

noise and discussion noise) in the utterances. We estimate the existing noise in utterances using a88

well-known technique proposed in [24] that estimate noise using spectral and log-amplitude. The89

detected noise (Nex) is used a reference for quantification of δ. For δ, we use three noise (Nadd) (café,90

meeting, and station) from the Demand Noise database [25] and make their the mean and variance91

equal to the reference noise (Nex as existing noise). We also use ε as the variation parameter to92

further control the perturbation amplitude. In this way, the adversarial noise (Nadd) has a very small93

value similar to the existing noise and the adversarial example and is unrecognizable to the human94

ear in the human perception test. This noise (Nadd) added to utterances is multiplied with different95

perturbation amplitude (ε) to generate the adversarial examples. This noise acts as the background96

noise and does not change the emotional context of a given audio file.97

Human Perception and Classifier Test: In order to assess the effect of added adversarial noise on98

the human listener, we asked five human listeners to listen to 200 adversarial examples for different99

perturbation amplitude (ε) and differentiate it from the original audio file. For the IEMOCAP and100

FAU-AIBO datasets, 96% and 91% of the samples were indistinguishable from the original utterances.101

When these examples were given to the classifier, the attack success rate was 72% and 79% for102

IEMOCAP and FAU-AIBO, respectively.103

4 Experimental Setup and Results104

We evaluated the generated adversarial examples using two well-known emotional corpora: IEMO-105

CAP and FAU-AIBO. We consider binary classification problem for both these datasets as used106

in [3] and [26]. Table 1 shows the considered emotions and their binary class mapping. We use107

the eGeMAPS features, a popular features set specifically suited for paralinguistic applications, for108

representing the audio samples.109

Classification Model: We consider LSTM-RNN for emotion classification. LSTM is a popular110

RNN and widely employed in audio [27] and emotion classification [4] due to their ability to model111

contextual information. We find the best model structure by evaluating different number of layers.112

We obtained the best results with two LSTM layers, one dense layer, and softmax as the last layer.113

We initially used a learning rate of 0.002 to start training the model and halved this rate after every 5114

epochs if performance did not improve on the test set. This process stopped when the learning rate115

reached below 0.00001.116

Emotion Classification Results: For experimentation, we evaluated the model in a speaker inde-117

pendent scheme. IEMOCAP dataset consists of five sessions: we used four session for training and118

one for testing, consistent with the methodology of previous works [3, 4]. In the case of FAU-AIBO,119

we followed the speaker-independent training strategy proposed in the 2009 Interspeech Emotion120

Challenge [26]. For emotion classification on legitimate examples, we achieved 68.35% and 56.41%121

unweighted accuracy (UA) on FAU-AIBO and IEMOCAP dataset, respectively. The results on adver-122

sarial examples are compared with these results. We generated adversarial examples with different123

values of ε (0.1–2) to evaluate the performance of model with different perturbation amplitude. Figure124

1 presents the emotion classification error on adversarial samples with different values of ε.125

3



(a) (b)

Figure 1: The error rate (%) with different perturbation factors for speech emotion classification for
FAU-AIBO (left) and IEMOCAP (right) datasets.

5 Possible Defenses126

5.1 Training with Adversarial Examples127

Adversarial training of model is considered as a possible defense to adversarial attacks when the128

exact nature of the attack is known. Model training on the mixture of clean and adversarial examples129

can somewhat help regularization [28]. Training on adversarial samples is different from data130

augmentation methods that are performed based on the expected translations in test data. To the131

best of our knowledge, adversarial training is not explored for SER systems and other speech/audio132

classification systems. We explore this phenomenon by mixing adversarial examples with training133

data to highlight the robustness of model against attack. We trained the model with training data134

comprising a varying percentage of adversarial examples (10% to 100% of training data). Figure 2135

shows the classification error rate (%) that is significantly decreased with increasing the percentage136

of adversarial examples in training data. However, the classification error is higher (5% to 15% in137

different scenarios) compared to the classification when the model is trained on clean utterances.138

(a) (b)

Figure 2: The error rate (%) with varying the percentage of adversarial samples as training data for
FAU-AIBO (left) and IEMOCAP (right) datasets.

5.2 Training with Random Noise139

Training of models by adding random noise in training data might help against adversarial attacks140

on the speech-based system. It is reported in [29] that the addition of a random noise layer to the141

neural network can prevent strong gradient-based attacks in the image domain. We evaluated this142

phenomenon in speech emotion classification system by adding a small random noise to overall143

training data and evaluated the performance against the proposed attacks. This can be noted from144

Table 2 that emotion classification error reduced only slightly with the addition of random noise in145

training data, which indicates that this strategy is not particularly effective in the SER settings.146
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Table 2: Emotion classification error (%) by adding random noise in training data
Dataset Adversarial Perturbations Error (max) with adversarial attack Error by training with random noise

Café 56.87 54.02
FAU-AIBO Meeting 52.58 49.24

Station 53.57 48.51
Café 64.58 56.73

IEMOCAP Meeting 63.88 52.57
Station 66.87 60.87

5.3 Using Generative Adversarial Network147

Generative adversarial networks (GANs) [30] are deep models that learn to generate samples, ideally148

indistinguishable from the real data x, that are supposed to belong to an unknown data distribution,149

pdata(x). GANs consist of two networks, a generator (G) and a discriminator (D). The generator150

network (G) maps latent vectors from some known prior pz to samples and discriminator tasked151

to differentiate between the real sample x or fake G(y). Mathematically, this is represented by the152

following optimization program:153

min
G

max
D

Ex[log(D(x))] + Ey[log(1−D(G(y)))] (1)

where G and D play this game to fool each other using this min-max optimization program. GANs154

have already been applied for speech enhancement [31, 32] in speech recognition systems, therefore,155

we are using GANs as a defense strategy against adversarial noises. In our case, G network is156

tasked to remove the adversarial noise from the adversarial examples y. The G network is structured157

like an autoencoder using LSTM layers. The LSTM based encoder-decoder architecture is well158

suited for capturing emotions due to the demonstrated superior performance of LSTM in capturing159

long-range context such as those present in emotions [4]. In the G network, the encoder part160

compresses the contextual (emotional) information of the input speech features and the decoder uses161

this representation for reconstruction. The D network follows the same encoder-decoder architecture.162

For training G and D for different possible scenarios, we used the training data from both the datasets163

to train the GAN. For each G step, the discriminator was updated twice. For faster convergence, we164

pretrained the G network in each case. We train GAN using RMSProp optimizer with learning rate165

1× 10−4 and batch size of 32, until convergence.166

We trained the GAN using utterances corrupted by the three adversarial noises (café, meeting, station)167

as noisy data and it was tasked to clean the utterances. Data cleaned by GAN (G(y)) is given to the168

classifier for emotion classification. Table 3 shows emotion classification results on audio utterances169

cleaned by GAN.170

Table 3: Emotion classification error (%) by utilizing GAN for adversarial noise removal
Dataset Adversarial Perturbations Error (max) with adversarial attack Error by using GAN

Café 68.82 38.31
FAU-AIBO Meeting 62.58 36.02

Station 66.87 35.14
Café 65.87 49.20

IEMOCAP Meeting 67.70 48.18
Station 69.87 46.24

6 Discussion171

From the experimental evaluation for SER robustness, we have discovered that GAN-based defense172

against adversarial audio examples is able to better withstand adversarial examples compared to other173

approaches. Figure 3 shows a comparison of the different defenses using two well-known datasets: the174

addition of random noise in training utterances is able to slightly reduce speech emotion classification175

error while with adversarial training, classification error is significantly reduced; however, the best176

results are shown by using GAN for cleaning the utterances and then running classification on the177

clean utterances.178

Our results highlight the power of GAN for speech emotion classification in the face of adversarial179

examples, which motivate further research for its utilization in other speech-based intelligent systems180
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(a) (b)

Figure 3: The error rate (%) with three different approaches against adversarial examples for FAU-
AIBO (left) and IEMOCAP (right) datasets.

for the minimization of adversarial perturbations. It is worth pointing out that GANs require181

information about the exact type and nature of adversarial examples for its training, but this is also an182

essential requirement for the adversarial training mechanism.183

7 Conclusions184

In this paper, we propose a black-box method to generate adversarial perturbations in audio examples185

of speech emotion recognition system (SER) and also propose defense strategies. In particular, we186

propose a Generative Adversarial Network (GAN)-based mechanism for enhancing the robustness of187

SER system by first cleaning the perturbed utterances through GANs and then running a classifier on188

it. We compared our GAN-based defense against adversarial training and the addition of random189

noise in training examples and showed that our GAN-based defense provides consistently better190

results in speech emotion recognition. The attack and defense that we propose can also be utilized191

more generally for other speech-based intelligent systems.192
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