
Under review as a conference paper at ICLR 2019

LEARNING GOAL-CONDITIONED VALUE FUNCTIONS
WITH ONE-STEP PATH REWARDS RATHER THAN GOAL-
REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-goal reinforcement learning (MGRL) addresses tasks where the desired goal
state can change for every trial. State-of-the-art algorithms model these problems
such that the reward formulation depends on the goals, to associate them with
high reward. This dependence introduces additional goal reward resampling steps
in algorithms like Hindsight Experience Replay (HER) that reuse trials in which
the agent fails to reach the goal by recomputing rewards as if reached states were
psuedo-desired goals. We propose a reformulation of goal-conditioned value func-
tions for MGRL that yields a similar algorithm, while removing the dependence
of reward functions on the goal. Our formulation thus obviates the requirement of
reward-recomputation that is needed by HER and its extensions. We also extend a
closely related algorithm, Floyd-Warshall Reinforcement Learning, from tabular
domains to deep neural networks for use as a baseline. Our results are competitive
with HER while substantially improving sampling efficiency in terms of reward
computation.

1 INTRODUCTION

Many tasks in robotics require the specification of a goal for every trial. For example, a robotic
arm can be tasked to move an object to an arbitrary goal position on a table (Gu et al., 2017); a
mobile robot can be tasked to navigate to an arbitrary goal landmark on a map (Zhu et al., 2017).
The adaptation of reinforcement learning to such goal-conditioned tasks where goal locations can
change is called Multi-Goal Reinforcement Learning (MGRL) (Plappert et al., 2018). State-of-the-
art MGRL algorithms (Andrychowicz et al., 2017; Pong et al., 2018) work by estimating goal-
conditioned value functions (GCVF) which are defined as expected cumulative rewards from start
states with specified goals. GCVFs, in turn, are used to compute policies that determine the actions
to take at every state.

To learn GCVFs, MGRL algorithms use goal-reward, defined as the relatively higher reward re-
cieved on reaching the desired goal state. This makes the reward function dependent on the desired
goal. For example, in the Fetch-Push task (Plappert et al., 2018) of moving a block to a given lo-
cation on a table, every movement incurs a “-1” reward while reaching the desired goal returns a
“0” goal-reward. This dependence introduces additional reward resampling steps in algorithms like
Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), where trials in which the agent
failed to reach the goal are reused by recomputing rewards as if the reached states were pseudo-
desired goals. Due to the dependence of the reward function on the goal, the relabelling of every
pseudo-goal requires an independent reward-recomputation step, which can be expensive.

In this paper, we demonstrate that goal-rewards are not needed to learn GCVFs. For the Fetch-Push
example, the “0” goal-reward does not need to be achieved to learn its GCVF. Specifically, the agent
continues to receive “-1” reward even when the block is in the given goal location. This reward
formulation is atypical in conventional RL because high reward is used to specify the desired goal
location. However, this goal-reward is not necessary in goal-conditioned RL because the goal is
already specified at the start of every episode. We use this idea, to propose a goal-conditioned RL
algorithm which learns to reach goals without goal-rewards. This is a counter-intuitive result which
is important for understanding goal-conditioned RL.

1

Under review as a conference paper at ICLR 2019

FetchReach FetchPush FetchSlide FetchPickAndPlace

HandReach HandManipulateBlockRotateXYZ HandManipulateEggFull HandManipulatePenRotate

Figure 1: Plappert et al. (2018) introduce challenging tasks on the Fetch robot and the Shadow
Dextrous hand. We use these tasks for our experiments. Images are taken from the technical report.

Let us consider another example to motivate the redundancy of goal-rewards. Consider a student who
has moved to a new campus. To learn about the campus, the student explores it randomly with no
specific goal in mind. The key intuition here is that the student is not incentivized to find specific goal
locations (i.e. no goal-rewards) but is aware of the effort required to travel between points around
the university. When tasked with finding a goal classroom, the student can chain together these path
efforts to find the least-effort path to the classroom. Based on this intuition of least-effort paths, we
redefine GCVFs to be the expected path-reward that is learned for all possible start-goal pairs. We
introduce a one-step loss that assumes one-step paths to be the paths of maximum reward between
pairs wherein the state and goal are adjacent. Under this interpretation, the Bellman equation chooses
and chains together one-step paths to find longer maximum reward paths. Experimentally, we show
how this simple reinterpretation, which does not use goal rewards, performs as well as HER while
outperforming it in terms of reward computation.

We also extend a closely related algorithm, Floyd-Warshall Reinforcement Learning (FWRL) (Kael-
bling, 1993) (also called Dynamic Goal Reinforcement learning) to use parametric function ap-
proximators instead of tabular functions. Similar to our re-definition of GCVFs, FWRL learns a
goal-conditioned Floyd-Warshall function that represents path-rewards instead of future-rewards.
We translate FWRL’s compositionality constraints in the space of GCVFs to introduce additional
loss terms to the objective. However, these additional loss terms do not show improvement over
the baseline. We conjecture that the compositionality constraints are already captured by other loss
terms.

In summary, the contributions of this work are twofold. Firstly, we reinterpret goal-conditioned value
functions as expected path-rewards and introduce one-step loss, thereby removing the dependency
of GCVFs on goal-rewards and reward resampling. We showcase our algorithm’s improved sample
efficiency (in terms of reward computation). We thus extend algorithms like HER to domains where
reward recomputation is expensive or infeasible. Secondly, we extend the tabular Floyd-Warshal
Reinforcement Learning to use deep neural networks.

2 RELATED WORK

Goal-conditioned tasks in reinforcement learning have been approached in two ways, depending
upon whether the algorithm explicitly separates state and goal representations. The first approach
is to use vanilla reinforcement learning algorithms that do not explicitly make this separation
(Mirowski et al., 2016; Dosovitskiy & Koltun, 2016; Gupta et al., 2017; Parisotto & Salakhutdi-
nov, 2017; Mirowski et al., 2018). These algorithms depend upon neural network architectures to
carry the burden of learning the separated representations.

The second approach makes this separation explicit via the use of goal-conditioned value functions
(Foster & Dayan, 2002; Sutton et al., 2011). Universal Value Function Appoximators (Schaul et al.,
2015) propose a network architecture and a factorization technique that separately encodes states

2

Under review as a conference paper at ICLR 2019

and goals, taking advantage of correlations in their representations. Temporal Difference Models
combine model-free and model-based RL to gain advantages from both realms by defining and
learning a horizon-dependent GCVF. All these works require the use of goal-dependent reward
functions and define GCVFs as future-rewards instead of path-rewards, contrasting them from our
contribution.

Unlike our approach, Andrychowicz et al. (2017) propose Hindsight Experience Replay, a technique
for resampling state-goal pairs from failed experiences; which leads to faster learning in the pres-
ence of sparse rewards. In addition to depending on goal rewards, HER also requires the repeated
recomputation of the reward function. In contrast, we show how removing goal-rewards removes the
need for such recomputations. We utilize HER as a baseline in our work.

Kaelbling (1993) also use the structure of the space of GCVFs to learn. This work employs com-
positionality constraints in the space of these functions to accelerate learning in a tabular domain.
While their definition of GCVFs is similar to ours, the terminal condition is different. We describe
this difference in Section 4. We also extend their tabular formulation to deep neural networks and
evaluate it against the baselines.

3 BACKGROUND

A reinforcement learning (RL) problem is formalized as a Markov Decision Process (MDP) (Sutton
et al., 1998). A MDP is defined by a five tuple (S,A, T,R, γ), that governs a sequence of state-
action-reward triples [(s0, a0, r0), . . . , (sT , aT , rT)]. S is the state space, A is the action space,
T (s, a) : S ×A → S is the system dynamics, R(s, a) : S ×A → R is the reward function and γ is
the discount factor. In a typical RL problem the transition function T is not given but is known to be
static. In RL, the objective is to find a policy π(s) : S → A that maximizes the expected cumulative
reward over time, Rt =

∑∞
k=t γ

k−trk, called the return. The discount factor, γ < 1, forces the
return to be finite for infinite horizons. Reinforcement learning is typically formulated in single-goal
contexts. More recently there has been interest in multi-goal problems (Andrychowicz et al., 2017;
Pong et al., 2018; Plappert et al., 2018), which is the focus of this work.

3.1 DEEP REINFORCEMENT LEARNING

A number of reinforcement learning algorithms use parametric function approximators to estimate
the return in the form of an action-value function, Q(s, a):

Qπ(s, a) = Eπ

[
T∑
k=t

γk−tR(sk, ak)

∣∣∣∣∣st = s, at = a

]
, (1)

where T is the episode length. When the policy π is optimal, the Q-function satisfies the Bellman
equation (Bellman, 1954).

Q∗(st, at) =

{
R(st, at) + γmaxa∈AQ∗(st+1, a) if t < T

R(sT , aT) if t = T
. (2)

TheQ∗() function can be learned using Q-learning algorithm (Watkins & Dayan, 1992). The optimal
policy can be computed from Q∗ greedily, π∗(st) = argmaxa∈AQ∗(st, a). In Deep Q-Networks
(DQN), Mnih et al. (2013) formulate a loss function based on the Bellman equation to approximate
the optimal Q∗-function using a deep neural network, Qm:

L(θQm) = Eat∼π(st;θπm)

[
(Qm(st, at; θQm)− yt)

2
]
, (3)

where yt = R(st, at)+maxa γQtgt(st+1, a; θQtgt) , is the target andQtgt is the target network (Mnih
et al., 2015a). The target network is a slower-changing copy of the main network that stabilizes
learning. Mnih et al. (2015a) also employ replay buffers (Lin, 1993) that store transitions from
episodes. During training, these transitions are sampled out of order to train the networks in an
off-policy manner, avoiding correlation in the samples and thus leading to faster learning.

In this work, we use an extension of DQN to continuous action spaces called deep determinis-
tic policy-gradients (DDPG) (Lillicrap et al., 2015). DDPG approximates the policy with a pol-
icy network πtgt(s; θπ) that replaces the max operator in yt. The target thus becomes yt =

3

Under review as a conference paper at ICLR 2019

R(st, at) + γQtgt(st+1, πtgt(st+1; θπ); θQtgt) and the loss function changes accordingly:

L(θQ, θπ) = Eat∼π(st;θπ)[(Qm(st, at; θQ)− yt)2]. (4)

3.2 MULTI-GOAL REINFORCEMENT LEARNING

Multi-Goal Reinforcement Learning (Plappert et al., 2018) focuses on problems where the desired
goal state can change for every episode. State-of-the-art MGRL algorithms learn a goal-conditioned
value function (GCVF), Q (s, a, g), which is defined similar to the Q-function (5), but with an
additional dependence on the desired goal specification g ∈ G :

Qπ (s, a, g) = Eπ

[
T∑
k=t

γk−tR(sk, ak, g)

∣∣∣∣∣st = s, at = a

]
. (5)

The structure of the goal specification, g ∈ G, can be arbitrary. For example, in a robotic arm
experiment, possible goal specifications include the desired position of the end-effector and the
desired joint angles of the robot. The states and achieved goals are assumed to be an observ-
able part of the Goal-MDP to enable the agent to learn the correspondences between them,
[(s0, a0, g0, r0), . . . , (sT , aT , gT , rT)]. Consequently, this Goal-MDP is fully governed by the six
tuple (S,A,G, T,R, γ). The reward, R(s, a, g) : S ×A×G → R, and policy π(s, g) : S ×G → A
are also in turn conditioned on goal information.

Hindsight Experience Replay HER (Andrychowicz et al., 2017) builds upon this definition of
GCVFs (5). The main insight of HER is that there is no valuable feedback from the environment
when the agent does not reach the goal. This is further exacerbated when goals are sparse in the
state-space. HER solves this problem by reusing these failed experiences for learning. It recomputes
a reward for each reached state by relabeling them as pseudo-goals.

In our experiments, we employ HER’s future strategy for pseudo-goal sampling. More specifi-
cally, two transitions from the same episode in the replay buffer for times t and t + f are sam-
pled. The achieved goal gt+f is then assumed to be the pseudo-goal. The algorithm generates a
new transition for the time step t with the reward re-computed as if gt+f was the desired goal,
(st, at, st+1, R(st, at, gt+f)). HER uses this new transition as a sample.

4 PATH REWARD-BASED GCVFS

In our definition of the GCVF, instead of making the reward function depend upon the goal, we
count accumulated rewards over a path, path-rewards, only if the goal is reached. This makes the
dependence on the goal explicit instead of implicit to the reward formulation. Mathematically,

QPπ (s, a, g∗) =

 Eπ

[
l−1∑
k=t

γk−tRP (sk, ak)

∣∣∣∣∣s, a, gl = g∗

]
if ∃ l such that gl = g∗ (6a)

−∞ otherwise, (6b)

where l is the time step when the agent reaches the goal. If the agent does not reach the goal, the
GCVF is defined to be negative infinity. This first term (6a) is the expected cumulative reward over
paths from a given start state to the goal. This imposes the constraint that cyclical paths in the
state space must have negative cumulative reward for (6a) to yield finite values. For most practical
physical problems, this constraints naturally holds if reward is taken to be some measure of negative
energy expenditure. For example, in the robot arm experiment, moving the arm must expend energy
(negative reward). Achieving a positive reward cycle would translate to generating infinite energy .
In all our experiments with this formulation, we use a constant reward of -1 for all states,RP (s, a) =
−1 ∀s, a.

For the cases when the agent does reach the goal at time step l (6a), the Bellman equation takes the
following form:

QP∗ (st, at, g
∗) =

{
RP (st, at) + γmax

a∈A
QP∗ (st+1, a, g

∗) if t < l − 1 (7a)

RP (sl−1, al−1) if t = l − 1 . (7b)

4

Under review as a conference paper at ICLR 2019

Notice that terminal step in this equation is the step to reach the goal. This differs from Equation (3),
where the terminal step is the step at which the episode ends. This formulation is equivalent to the
end of episode occuring immediately when the goal is reached. This reformulation does not require
goal-rewards, which in turn obviates the requirement for pseudo-goals and reward recomputation.

One-Step Loss To enable algorithms like HER to work under this reformulation we need to rec-
ognize when the goal is reached (7b). This recognition is usually done by the reception of high goal
reward. Instead, we use (7b) as a one-step loss that serves this purpose which is one of our main
contributions:

Lstep(θQ) = (QP∗ (sl−1, al−1, gl; θQ)−R(sl−1, al−1))2. (8)

This loss is based on the assumption that one-step reward is the highest reward between adjacent
start-goal states and allows us to estimate the one-step reward between them. Once learned, it serves
as a proxy for the reward to the last step to the goal (7b). The Bellman equation (7), serves as a
one-step rollout to combine rewards to find maximum reward paths to the goal.

One-step loss is different from the terminal step of Q-Learning because one-step loss is applicable
to every transition unlike the terminal step. However, one-step loss can be thought of as Q-Learning
where every transition is a one-step episode where the achieved goal is the pseudo goal.

One-step loss also different from the terminal condition in Kaelbling (1993). Kaelbling (1993) de-
fines QP∗ (., ., .) similar to Eq (7) except the terminal condition is defined as QP∗ (st, a, g∗) = 0
when gt = g∗. Under the stated assumptions, the two definitions are equivalent but one-step loss is
advantageous as it can be applied to every transition unlike the Kaelbling (1993) terminal condition
which can be only applied when gt = g∗.

We modify an implementation of HER to include the step-loss term and disable goal rewards for
our experiments. As in HER, we use the DDPG loss Lddpg while using the “future” goal sampling
strategy described in the paper. The details of the resulting algorithm are shown as pseudo-code in
Algorithm 1 in the Appendix.

4.1 DEEP FLOYD-WARSHALL REINFORCEMENT LEARNING

The GCVF redefinition and one step-loss introduced in this paper are inspired by the tabular for-
mulation of Floyd-Warshall Reinforcement Learning (FWRL) (Kaelbling, 1993). We extend this
algorithm for use with deep neural networks. Unfortunately, the algorithm itself does not show sig-
nificant improvement over the baselines. However, the intuitions gained in its implementation led to
the contributions of this paper.

The core contribution of FWRL is a compositionality constraint in the space of GCVFs. This con-
straint states that the optimal Q∗ value from any state st to any goal gt+f is greater than or equal to
the sum of optimal Q∗ values via any intermediate state-goal pair (sw, gw):

Q∗ (st, at, gw) +Q∗ (sw, π∗(sw, gt+f ; θπ), gt+f) ≥ Q∗ (st, at, gt+f) . (9)

We translate these constraints into loss terms and add them to the DDPG loss Lddpg and one-step
loss Lstep. Taking cue from Mnih et al. (2015b), we do not repeat the the main online network Qm
in the loss term. We use a target network Qtgt and split the constraint into two loss terms. One loss
term acts as a lower bound Llo and the other acts as an upper bound Lup:

Llo = ReLU[Qtgt (st, at, gw) +Qtgt (sw, πt(sw, gt+f ; θπ), gt+f)−Qm (st, at, gt+f)]
2 (10)

Lup = ReLU[Qm (st, at, gw) +Qtgt (sw, πt(sw, gt+f ; θπ), gt+f)−Qtgt (st, at, gt+f)]
2. (11)

Note that the above terms differ only by choice of the target and main network.

FWRL Sampling We augment HER sampling to additionally get the intermediate state-goal pair
(sw, gw). Once a transition (st, at, rt, st+1) and a future goal gt+f have been sampled from the
same episode, we sample another intermediate state and goal pair (sw, gw) such that t ≤ w ≤ t+ f .

5

Under review as a conference paper at ICLR 2019

Fe
tc

h
R

ea
ch

0 5 10 15

0

0.1

0.2

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 1 2 3 4 5

·104Reward Computations

Ours

HER

FWRL

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 1 2 3 4 5

·104Reward Computations

Ours

HER

FWRL

Fe
tc

h
P

us
h

0 5 10 15 20

0

0.1

0.2

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 1 2 3

·105Reward Computations

Ours

HER

FWRL

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 1 2 3

·105Reward Computations

Ours

HER

FWRL

Fe
tc

h
P

ic
k

A
nd

P
la

ce

0 10 20 30

0

0.1

0.2

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 1 2 3 4 5

·105Reward Computations

Ours

HER

FWRL

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 1 2 3 4 5

·105Reward Computations

Ours

HER

FWRL

Fe
tc

h
S

lid
e

0 50 100 150 200

0

0.2

0.4

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 0.2 0.4 0.6 0.8 1

·106Reward Computations

Ours

HER

FWRL

0 50 100 150 200

0

5 · 10−2

0.1

0.15

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 0.2 0.4 0.6 0.8 1

·106Reward Computations

Ours

HER

FWRL

Figure 2: For the Fetch tasks, we compare our method (red) against HER (blue) (Andrychowicz
et al., 2016) and FWRL (green) (Kaelbling, 1993) on the distance-from-goal and success rate met-
rics. Both metrics are plotted against two progress measures: the number of training epochs and the
number of reward computations. Except for the Fetch Slide task, we achieve comparable or better
performance across the metrics and progress measures.

5 EXPERIMENTS

We use the environments introduced in Plappert et al. (2018) for our experiments. Broadly the en-
vironments fall in two categories, Fetch and Hand tasks. Our results show that learning is possi-
ble across all environments without the requirement of goal-reward. More specifically, the learning
happens even when reward given to our algorithm is agent is always “-1” as opposed to the HER
formulation where a special goal-reward of “0” is needed for learning to happen.

The Fetch tasks involve a simulation of the Fetch robot’s 7-DOF robotic arm. The four tasks are
Reach, Push, Slide and PickAndPlace. In the Reach task the arm’s end-effector is tasked to reach the
a particular 3D coordinate. In the Push task a block on a table needs to be pushed to a given point
on it. In the Slide task a puck must be slid to a desired location. In the PickAndPlace task a block on
a table must be picked up and moved to a 3D coordinate.

The Hand tasks use a simulation of the Shadow’s Dexterous Hand to manipulate objects of different
shapes and sizes. These tasks are HandReach, HandManipulateBlockRotateXYZ, HandManipula-
teEggFull and HandManipulatePenRotate. In HandReach the hand’s fingertips need to reach a given
configuration. In the HandManipulateBlockRotateXYZ, the hand needs to rotate a cubic block to a
desired orientation. In HandManipulateEggFull, the hand repeats this orientation task with an egg,
and in HandManipulatePenRotate, it does so with a pen.

Snapshots of all these tasks can be found in Figure 1. Note that these tasks use joint angles, not
visual input.

5.1 METRICS

Similar to prior work, we evaluate all experiments on two metrics: the success rate and the average
distance to the goal. The success rate is defined as the fraction of episodes in which the agent is
able to reach the goal within a pre-defined threshold region. The metric distance of the goal is the
euclidean distance between the achieved goal and the desired goal in meters. These metrics are

6

Under review as a conference paper at ICLR 2019

plotted against a standard progress measure, the number of training epochs, showing comparable
results of our method to the baselines.

To emphasize that our method does not require goal-reward and reward re-computation, we plot
these metrics against another progress measure, the number of reward computations used during
training. This includes both the episode rollouts and the reward recomputations during HER sam-
pling.

5.2 HYPER-PARAMETERS CHOICES

Unless specified, all our hyper-parameters are identical to the ones used in the HER implementa-
tion (Dhariwal et al., 2017). We note two main changes to HER to make the comparison more fair.
Firstly, we use a smaller distance-threshold. The environment used for HER and FWRL returns the
goal-reward when the achieved goal is within this threshold of the desired goal. Because of the ab-
sence of goal-rewards, the distance-threshold information is not used by our method. We reduce the
threshold to 1cm which is reduction by a factor of 5 compared to HER.

Secondly, we run all experiments on 6 cores each, while HER uses 19. The batch size used is a
function of the number of cores and hence this parameter has a significant effect on learning.

To ensure fair comparison, all experiments are run with the same hyper-parameters and random
seeds to ensure that variations in performance are purely due to differences between the algorithms.

5.3 RESULTS

All our experimental results are described below, highlighting the strengths and weaknesses of our
algorithm. Across all our experiments, the distance-to-the-goal metric achieves comparable perfor-
mance to HER without requiring goal-rewards.

Fetch Tasks The experimental results for Fetch tasks are shown in Figure 2. For the Fetch Reach
and Push tasks, our method achieves comparable performance to the baselines across both metrics
in terms of training epochs and outperforms them in terms of reward recomputations. Notably, the
Fetch Pick and Place task trains in significantly fewer epochs. For the Fetch Slide task the opposite
is true. We conjecture that Fetch Slide is more sensitive to the distance threshold information, which
our method is unable to use.

Hand Tasks For the Hand tasks, the distance to the goal and the success rate show different trends.
We show the results in Figure 3. When the distance metric is plotted against epochs, we get com-
parable performance for all tasks; when plotted against reward computations, we outperform all
baselines on all tasks except Hand Reach. The baselines perform well enough on this task, leav-
ing less scope for significant improvement. These trends do not hold for the success rate metric,
on which our method consistently under-performs compared to the baselines across tasks. This is
surprising, as all algorithms average equally on the distance-from-goal metric. We conjecture that
this might be the result of high-distance failure cases of the baselines, i.e. when the baselines fail,
they do so at larger distances from the goal. In contrast, we assume our method’s success and failure
cases are closer together.

6 ANALYSIS

To gain a deeper understanding of the method we perform three additional experiments on different
tasks. We ask the following questions: (a) How important is the step loss? (b) What happens when
the goal-reward is also available to our method? (c) How sensitive is HER and our method to the
distance-threshold?

How important is the step loss? We choose the Fetch-Push task for this experiment. We run our
algorithm with no goal reward and without the step loss on this task. Results show that our algorithm
fails to reach the goal when the step-loss is removed (Fig. 4a) showing its necessity.

7

Under review as a conference paper at ICLR 2019

H
an

d
R

ea
ch

0 10 20 30 40

2

4

6

8

·10−2

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

M
an

ip
ul

at
eB

lo
ck

R
ot

at
eX

Y
Z

0 10 20 30 40

0.4

0.6

0.8

1

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

0 10 20 30 40

0

0.2

0.4

0.6

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

M
an

ip
ul

at
eE

gg
Fu

ll

0 10 20 30 40

0.4

0.6

0.8

1

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

0 10 20 30 40

0

0.1

0.2

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

Pe
nR

ot
at

e

0 10 20 30 40

0.6

0.8

1

Epochs

D
is

ta
nc

e
fro

m
go

al
(m

) Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

0 10 20 30 40

0

0.1

0.2

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

Ours

HER

FWRL

0 0.5 1 1.5 2 2.5

·105Reward Computations

Ours

HER

FWRL

Figure 3: For the hand tasks, we compare our method (red) against HER (blue) (Andrychowicz et al.,
2016) and FWRL (green) (Kaelbling, 1993) for the distance-from-goal and success rate metrics.
Furthermore, both metrics are plotted against two progress measures, the number of training epochs
and the number of reward computations. Measured by distance from the goal, our method performs
comparable to or better than the baselines for both progress measurements. For the success rate, our
method underperforms against the baselines.

0 5 10 15 20 25 30

Epoch

0.050

0.075

0.100

0.125

0.150

0.175

D
is

ta
nc

e
fr

om
go

al
(t

es
t)

Ours (No step loss)

HER

Ours

0 5 10 15 20 25 30

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

ra
te

(t
es

t)

Ours (No step loss)

HER

Ours

(a) Do we really need the step-loss?

0 20 40 60 80 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

ra
te

(t
es

t)

HER

Ours (goal rewards)

Ours

0 20 40 60 80 100

Epoch

0.05

0.10

0.15

0.20

0.25

D
is

ta
nc

e
fr

om
go

al
(t

es
t) HER

Ours (goal rewards)

Ours

(b) Effect of goal-rewards

Figure 4: (a) Effects of removing the step-loss from our methods. Results show that it is a critical
component to learning in the absence of goal-rewards. (b) Adding goal-rewards to our algorithm
that does have an effect further displaying how they are avoidable.

0 5 10 15 20 25 30

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

ra
te

(t
es

t)

HER, ε = 0.01

HER, ε = 0.05

HER, ε = 0.001

0 5 10 15 20 25 30

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

ra
te

(t
es

t)

Ours, ε = 0.01

Ours, ε = 0.05

Ours, ε = 0.001

(a) Sucesss rate

0 5 10 15 20 25 30

Epoch

0.050

0.075

0.100

0.125

0.150

0.175

D
is

ta
nc

e
fr

om
go

al
(t

es
t) HER, ε = 0.01

HER, ε = 0.05

HER, ε = 0.001

0 5 10 15 20 25 30

Epoch

0.050

0.075

0.100

0.125

0.150

0.175

D
is

ta
nc

e
fr

om
go

al
(t

es
t) Ours, ε = 0.01

Ours, ε = 0.05

Ours, ε = 0.001

(b) Distance from goal

Figure 5: We measure the sensitive of HER and our method to the dsitance-threshold (ε) with respect
to the success-rate and distance-from-goal metrics. Both algorithms success-rate is sensitive the
threshold while only HER’s distance-from-goal is affected by it.

8

Under review as a conference paper at ICLR 2019

What happens when the goal-reward is also available to our method? We run this experiment
on the Fetch PickAndPlace task. We find that goal-rewards do not affect the performance of our
algorithm further solidifying the avoidability of goal-reward (Fig 4b).

How sensitive is HER and our method to the distance-threshold? In the absence of goal-
rewards, our algorithm is not to able capture distance threshold information that decides whether
the agent has reached the goal or not. This information is available to HER. To understand the sen-
sitivity of our algorithm and HER on this parameter, we vary it over 0.05 (the original HER value),
0.01 and 0.001 meters (Fig. 5). Results show that for the success-rate metric, which is itself a func-
tion of this parameter, both algorithms are affected equally (Fig. 5a). For the distance-from-goal,
only HER is affected (Fig. 5b). This fits our expectations as set up in section 5.2.

7 CONCLUSION

In this work we pose a reinterpretation of goal-conditioned value functions and show that under this
paradigm learning is possible in the absence of goal reward. This is a surprising result that runs
counter to intuitions that underlie most reinforcement learning algorithms. In future work, we will
augment our method to incorporate the distance-threshold information to make the task easier to
learn when the threshold is high. We hope that the experiments and results presented in this paper
lead to a broader discussion about the assumptions actually required for learning multi-goal tasks.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

Richard Bellman. The theory of dynamic programming. Technical report, RAND Corp Santa Mon-
ica CA, 1954.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Alexey Dosovitskiy and Vladlen Koltun. Learning to act by predicting the future. arXiv preprint
arXiv:1611.01779, 2016.

David Foster and Peter Dayan. Structure in the space of value functions. Machine Learning, 49
(2-3):325–346, 2002.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In Robotics and Automation (ICRA),
2017 IEEE International Conference on, pp. 3389–3396. IEEE, 2017.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, Carnegie-
Mellon Univ Pittsburgh PA School of Computer Science, 1993.

9

https://github.com/openai/baselines
https://github.com/openai/baselines

Under review as a conference paper at ICLR 2019

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in
complex environments. arXiv preprint arXiv:1611.03673, 2016.

Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith An-
derson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, and Raia
Hadsell. Learning to navigate in cities without a map. arXiv preprint arXiv:1804.00168, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015a.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015b.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. arXiv preprint arXiv:1702.08360, 2017.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312–1320, 2015.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press,
1998.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pp. 761–768. International Foundation for Autonomous Agents
and Multiagent Systems, 2011.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pp. 3357–3364. IEEE, 2017.

10

Under review as a conference paper at ICLR 2019

0 10 20 30

0

0.5

1

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

HER+Lstep + Llo + Lup

HER -Lddpg + Lstep + Llo + Lup

HER+Llo + Lup

HER+Lstep

HER+Llo

HER+Lup

HER

Figure 6: Ablation on loss functions for Fetch
Push task. The Floyd-Warshall inspired loss
functions Llo and Lup do not help much. Lstep
helps a little but only in conjunction with
HER Andrychowicz et al. (2016).

0 10 20 30

0

0.5

1

Epochs

S
uc

ce
ss

R
at

e
(te

st
)

HER +Lstep

HER - Goal reward+Lstep

HER - Goal rewards

HER

Figure 7: Even when the Goal rewards are
removed from HER Andrychowicz et al.
(2016) training, the HER is able to learn
only if the Lstep is added again. (HER-Goal
Rewards+Lstep) is our proposed method.

8 APPENDIX

Our algorithm 1 is different from HER Andrychowicz et al. (2016) because it contains additional
step-loss term Lstep at line number 17 which allows the algorithm to learn even when the rewards
received are independent of desired goal. Also in HER sampling (line 13), the algorithm recomputes
the rewards because the goal is replaced with a pseudo-goal. Our algorithm does not need reward
recomputation because the reward formulation does not depend on the goal and is not affected by
choice of pseudo-goal. Our algorithm is also different from Floyd-Warshall Reinforcement learning
because it does not contain Lup and Llo terms and contains the additional Lstep.

Algorithm 1: Path-reward reinforcement learning
/* By default all states are unreachable */

1 Initialize networksQm
(
si, ai, gj ; θQ

)
and π(si, sg ; θπ) ;

2 Copy the main network to target networkQtgt
(
si, ai, gj ; θQ

)
← Qm

(
si, ai, gj ; θQ

)
;

3 Initialize replay memoryM ;
4 for e← 1 toE do
5 Sample ge ∈ G ;
6 Set t← 0;
7 Observe state st and achieved goal gt ;

/* Episode rollout */
8 for t← 1 to T do
9 Take action at ← ε-greedy(πm(st, g; θπ)) ;

10 Observe st+1, gt+1, rt ;
11 Store (st, gt, at, st+1, gt+1, rt; ge) in memoryM [e] ;

/* Train */
12 for t← 1 to T do
13 HER sample batchB = [(si, gi, ai, si+1, gi+1, ri; gi+fi

), . . . , (sb, gb, ab, sb+1, gb+1, rb; gb+fb
)] fromM ;

14 L(. . .) = 0 ;
15 for b ∈ 1to|B| do
16 (sb, gb, ab, sb+1, gb+1, rb, gb+fb

) = B[b] ;

/* Step loss */

17 L(. . .)+ = (Qm
(
sb, ab, gb+1

)
− rb)2 ;

/* DDPG loss */

18 L(. . .)+ = (Qm

(
sb, ab, gb+fb

)
− rb − γQtgt

(
sb+1, πtgt(sb+1, gb+fb

; θπ), gb+fb

)
)2 ;

19 Update gradients forQm and πm using lossL(. . .);

Result:Qm, πm

9 ABLATION ON LOSS AND GOAL REWARDS

In Figure 6 and Figure 7 we show ablation on loss functions and goal rewards. In Figure 7 Our
method is shown in blue with HER - Goal rewards + Lstep.

11

	Introduction
	Related Work
	Background
	Deep Reinforcement learning
	Multi-goal Reinforcement learning

	Path Reward-Based GCVFs
	Deep Floyd-Warshall Reinforcement Learning

	Experiments
	Metrics
	Hyper-parameters choices
	Results

	Analysis
	Conclusion
	Appendix
	Ablation on loss and goal rewards

