Under review as a conference paper at ICLR 2019

WHERE AND WHEN TO LOOK? SPATIO-TEMPORAL
ATTENTION FOR ACTION RECOGNITION IN VIDEOS

ABSTRACT

Inspired by the observation that humans are able to process videos efficiently by
only paying attention where and when it is needed, we propose a novel spatial-
temporal attention mechanism for video-based action recognition. For spatial at-
tention, we learn a saliency mask only using convolutional layers to allow the
model to focus on the most salient parts of the feature maps. For temporal atten-
tion, we employ a convolutional LSTM based attention mechanism to identify the
most relevant frames from an input video. Further, we propose a set of regulariz-
ers that ensure that our attention mechanism attends to coherent regions in space
and time. Our model can not only effectively improve video action recognition ac-
curacy, but also can localize discriminative regions both spatially and temporally,
despite only trained in a weakly-supervised manner with only classification labels
(no bounding box spatial labels and time frame temporal labels). We evaluate our
proposed approach on several public video action recognition datasets with abla-
tion studies. Furthermore, we quantitatively and qualitatively evaluate our model’s
ability to localize discriminative regions spatially and critical frames temporally.
Experimental results demonstrate the efficacy of our approach, showing superior
or comparable accuracy with the state-of-the-art methods with the same input.

1 INTRODUCTION

An important property of human perception is that one does not need to process a whole scene in its
entirety at once. Instead, humans focus attention selectively on parts of the visual space to acquire
information where and when it is needed, and combine information from different fixations over
time to build up an internal representation of the scene (Rensink, 2000), which can then be used for
interpretation or decision making.

In computer vision and natural language processing, over the last couple of years, attention models
have proved similarly important. Particularly for the tasks where interpretation or explanation re-
quires only a small portion of the image or video. Examples include visual question answering (Lu
etal., 2016; Xu & Saenko, 2016; Xiong et al., 2016), activity recognition (Sharma et al., 2015; Gird-
har & Ramanan, 2017; Li et al., 2018b), and natural machine translation (Bahdanau et al., 2015).
These models have also provided a level of interpretability, by visualizing regions selected or at-
tended over for a particular task or decision. In particular, for video action classification, a proper
attention model can help answer the question of where and when it needs to look at the image evi-
dence to draw a classification decision. It intuitively explains which part the model attends to when
making a particular decision, which is very helpful in real applications, e.g., medical Al systems or
self-driving cars.

In this paper, we propose a novel spatio-temporal attention mechanism that is designed to address
these challenges. Our attention mechanism is efficient, due to its space- and time- separability, and
yet flexible enough to enable encoding of effective regularizers (or priors). As such, our attention
mechanism consists of spatial and temporal components shown in Fig. 1. The spatial attention com-
ponent, that attenuates frame-wise CNN image features, consists of the saliency mask; regularized
to be discriminative and spatially smooth. The temporal component consists of a uni-modal soft
attention mechanism that aggregates information over the near-by attenuated frame features before
passing it into Convolutional LSTM for class prediction.

Contributions: In summary, the main contributions of this work are: (1) We introduce a simple yet
effective spatial-temporal attention for video action recognition, which consists of the saliency mask
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Figure 1: Spatio-temporal attention for video action recognition. The convolutional features are
attended over both spatially, in each frame, and subsequently temporally. Both attentions are soft,
meaning that the effective final representation at time ¢ of an RNN, used to make the prediction, is
a spatio-temporally weighted aggregation of convolutional features across the video along with the
past hidden state from ¢ — 1. For details please refer to Sec. 3.

for spatial attention learned by ConvNets and temporal attention learned by convolutional LSTM. (2)
We introduce three different regularizers, two for spatial and one for temporal attention components,
to improve performance and interpretability of our model; (3) We demonstrate the efficacy of our
model for video action recognition in three public datasets and explore the importance of our model-
ing choices through ablation experiments; (4) Finally, we qualitatively and quantitatively show that
our spatio-temporal attention is able to localize discriminative regions and important frames, despite
being trained in a purely weakly-supervised manner with only classification labels.

2 RELATED WORK

2.1 NETWORK INTERPRETATION

Various methods have been proposed to try to explain neural networks (Zeiler & Fergus, 2014;
Springenberg et al., 2014; Mahendran & Vedaldi, 2016; Zhou et al., 2016; Zhang et al., 2016; Si-
monyan et al., 2013; Ramprasaath et al., 2016; Ribeiro et al., 2016; 2018; Chang et al., 2018) in
various of ways, including visualizing the gradients, perturbing the inputs, and bridging relations
with other well-studied systems. Visual attention is also one way that tries to explain which part of
the image is responsible for the network’s decision (Li et al., 2018a; Jetley et al., 2018). Besides the
explanation, Li et al. (2018a) build up an end-to-end model to provide supervision directly on these
explanations, specifically network’s attention.

2.2 VISUAL ATTENTION FOR VIDEO ACTION RECOGNITION

For video action recognition, visualizing which part of the frame and which frame of the video se-
quence that the model was attending to provides valuable insight into the model’s behavior. Sharma
et al. (2015) develop an attention-driven LSTM by highlighting important spatial locations for action
recognition. Girdhar & Ramanan (2017) introduce an attention mechanism based on a derivation of
bottom-up and top-down attention as low-rank approximations of bilinear pooling methods. How-
ever, these work only focus on the crucial spatial locations of each image, without considering
temporal relations among different frames in a video sequence. To alleviate this shortcoming, vi-
sual attention is incorporated in the motion stream (Wang et al., 2016b; Li et al., 2018b; Du et al.,
2018). However, the motion stream only employs the optical flow frames generated from conse-
quent frames, cannot consider the long-term temporal relations among different frames in a video
sequence. Moreover, motion stream needs additional optical flow frames as input, which imposes
burden due to additional optical flow extraction, storage and computation and is especially severe
for large datasets. Torabi & Sigal (2017) propose an attention based LSTM model to hightlight
frames in videos, but spatial information is not used for temporal attention. An end-to-end spatial



Under review as a conference paper at ICLR 2019

> CNN — —> @ —>
p—— |

7

Figure 2: Spatial attention component. We use several layers of convolutional network to learn the
importance mask M for the input image feature X;, the output is the element-wise multiplication
X; = X; ® M,;. Details please refer to Sec. 3.2.

and temporal attention model is proposed in (Song et al., 2017) for human action recognition, but
additional skeleton data is needed.

3  SPATIAL-TEMPORAL ATTENTION MECHANISM

Our overall model is an Recurrent Neural Network (RNN) that aggregates frame-based convolu-
tional features across the video to make action predictions as shown in Fig. 1. The convolutional
features are attended over both spatially, in each frame, and subsequently temporally. Both atten-
tions are soft, meaning that the effective final representation at time ¢ of an RNN, used to make the
prediction, is a spatio-temporally weighted aggregation of convolutional features across the video
along with the past hidden state from ¢ — 1. The core novelty is the overall form of our attention
mechanism and the additional terms of the loss function that induce sensible spatial and temporal
attention priors.

3.1 CONVOLUTIONAL FRAME FEATURES

We use the last convolutional layer output extracted by ResNet50 or ResNet101 (He et al., 2016),
pretrained on the ImageNet (Deng et al., 2009) dataset and fine-tuned for the target dataset, as
our frame feature representation. We acknowledge that more accurate feature extractors (for in-
stance, network with more parameters such as ResNet-152 or higher performance networks such
as DenseNet (Huang et al., 2017) or SENet (Hu et al., 2018)) and optical flow features will likely
lead to better overall performance. Our primary purpose in this paper is to prove the efficacy of our
spatial-temporal attention mechanism. Hence we kept the features relatively simple.

3.2 SPATIAL ATTENTION WITH IMPORTANCE MASK

We apply an importance mask M to the i-th image features X; to obtain attended image features
by element-wise multiplication:

X; = X; ® M, (1)

for 1 < ¢ < n. This operation attenuates certain regions of the feature map based on their estimated
importance. Here we simply use three convolutional layers to learn the importance mask (please
refer to Appendix B.2 for network architecture details). Fig. 2 illustrates our spatial attention mech-
anism. However, if left uncontrolled, an arbitrarily structured mask could be learned, leading to
possible overfitting. We posit that, in practice, it is often useful to attend to a few important larger
regions (e.g., objects, elements of the scene). To induce this behavior, we encourage smoothness of
the mask by introducing total variation loss on the spatial attention, as will be described in Sec. 3.4.

3.3 TEMPORAL ATTENTION

Inspired by attention for neural machine translation (Bahdanau et al., 2015), we introduce the tem-

poral attention mechanism which generates energy for each attended frame X at each time step
t’

eri = O(Hi—1, X;), 2
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Figure 3: Temporal attention component. The temporal attention learns a temporal attention
weight wy; at each time step ¢. The final feature map Y; at time ¢ to the ConvLSTM is a weighted
sum of the feature from all the previous masked frames. Details please refer to Sec. 3.3.

where H;_; represents the ConvLSTM hidden state at time ¢ —1 that implicitly contains all previous
information up to time step ¢ — 1, X; represents the i-th frame masked features. ® = &g (H;_1) +

®x(X;), where @y and P x are feed-forward neural networks which are jointly trained with all
other components of the proposed system.

This temporal attention model directly computes soft attention weight for each frame at each time ¢
as shown in Fig. 3. It allows the gradient of the cost function to be backpropagated through. This
gradient can be used to train the entire spatial-temporal attention model jointly.

The importance weight wy; for each frame is:

exp(e;)
> iz (exp(es))
forl <i < n,1 <t <T. This importance weighting mechanism decides which frame of the video

to pay attention to. The final feature map Y; to the ConvLSTM is a weighted sum of the feature
from all of the frames as the ConvLSTM cell inputs:

3)

Wy =

1 & -
Y, = n Zl wy; X )
where X ; denotes the i-th masked frame of each video, n represents the total number of frames for

each video.

For RNN, instead of using conventional LSTM (Graves, 2013), we use Convolutional LSTM (Con-
vLSTM) (Shi et al., 2015) instead. The drawback of conventional LSTM is its use of full connections
in the input-to-state and state-to-state transitions in which no spatial information is encoded. In con-
trast, each input, cell output, hidden state, gate are 3D tensors whose last two dimensions are spatial
dimensions which can preserve spatial information, which is more suitable for image inputs.

We use the following initialization strategy for the ConvLSTM cell state and hidden state for faster
convergence:

1 & 1~ 5
Co = ge( Y X)), Ho= (- > X)) )
=1 i=1

where g. and g, are two layer convolutional networks with batch normalization (Ioffe & Szegedy,
2015).

We calculate the average hidden states of ConvLSTM over time length 7',
— 1
H=_-) H (6)

and send it to a fully connected classification layer for the final video action classification.
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3.4 LOSS FUNCTION

Considering the spatial and temporal nature of our video action recognition; we would like to learn
(1) a sensible attention mask for spatial attention, (2) reasonable importance weighting scores for
different frames, and (3) improve the action recognition accuracy at the same time. Therefore, our
loss function L:

L= LCE + )\TVLTV + AComrastLcontra‘st + AumimodalLu]ﬂimodal7 (7)

where Lcg is the cross entropy loss for classification, Lty represents the total variation regular-
ization (Rudin et al., 1992); Lcontrast represents the mask and background contrast regularizer; and
Lynimodal Tepresents unimodality regularizer. Ay, Acontrast and Aunimodal are the weights for cor-
responding regularizers.

The total variation regularization Lty of the learnable attention mask encourages spatial smoothness
of the mask and is defined as:

n

Loy =30 (D217 - a3 (MR ®)
i=1 \ j,k J.k

where M is the mask for the i-th frame, and M s entry at the (7, k)-th spatial location of the
mask. Different from the total variation of the mask of using L loss in Dabkowski & Gal (2017), we
use L1 loss instead. The contrast regularization L.ontrast Of learnable attention mask is to suppress
the irrelevant information and highlight important information:

—~ (1 1
Leontrast = ; (—2Mi ©Bi+ ;M © (1~ Bi)) ©)
where B; = I{ M, > 0.5} represents the binarized mask, I is the indicator function applied element-
wise.

The unimodality regularizer L,nimodal €ncourages the temporal attention weights to be unimodal,
biasing against spurious temporal weights. This stems from our observation that in most cases only
one activity would be present in the considered frame window, with possible irrelevant information
on either or both sides. Here we use the log concave distribution to encourage the unimodal pattern
of temporal attention weights:

T n—1
Lunimodal = Z Z max{O, We,i—1 Wt i4+1 — wt277,} (10)
t=1 i=2
where T represents the ConvLSTM time sequence length and n is the number of frames for each
video. More details on this log concave sequence please refer to Appendix A.

4 EXPERIMENTS

In this section, we first conduct experiments to evaluate our proposed method on video action recog-
nition task on three public available datasets. Then we evaluate our spatial attention mechanism on
the spatial localization task and our temporal attention mechanism on the temporal localization task
respectively.

4.1 VIDEO ACTION RECOGNITION

We first conduct extensive studies on the widely used HMDBS51 and UCF101 datasets. The purpose
of these experiments is mainly for ablation study to examine the effects of different sub-components.
Then we show that our method can be applied to the challenging large-scale Moments in Time
dataset.

Datasets. HMDBS51 dataset (Kuehne et al., 2011) contains 51 distinct action categories, each con-
taining at least 101 clips for a total of 6,766 video clips extracted from a wide range of sources.
These videos include general facial actions, general body movements, body movements with object
interaction, body movements for human interaction.
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Model HMDB51 UCF101
Visual attention (Sharma et al., 2015) 41.31 84.96
VideoLSTM (Li et al., 2018b) 43.30 79.60
Attentional Pooling (Girdhar & Ramanan, 2017) | 50.80 -
ResNet101-ImageNet 50.04 83.30
Ours 53.07 87.11
Ablation Experiments

Ours w/o spatial attentionz 51.98 85.78
Ours w/o temporal attention 52.25 85.86
Ours w/o Ly 52.01 85.89
Ours W/0 Leontrast 52.10 85.98
Ours W/0 Lynimodal 52.05 86.10

Table 1: Top-1 accuracy (%) on HMDB51 and UCF101 dataset.

UCF101 dataset (Soomro et al., 2012) is an action recognition dataset of realistic action videos,
collected from YouTube, with 101 action categories.

Moments in Time Dataset (Monfort et al., 2018) is a collection of one million short videos with
one action label per video and 339 different action classes. As there could be more than one action
taking place in a video, action recognition models may predict an action correctly yet be penalized
because the ground truth does not include that action. Therefore, it is believed that top 5 accuracy
measure will be more meaningful for this dataset.

Experimental setup. We use the same parameters for HMDB51 and UCF101: single Convolutional
LSTM layer with hidden-state dimension 512, sequence length 7" = 25, Apy = 1072, Aeontrast =
10™%, Aunimoda; = 1. For the Moments in Time dataset, we use time sequence length T' = 15. For
more details on the experimental setup please refer to Appendix B.1.

Quantitative results. We show the top-1 video action classification accuracy for HMDBS51 and
UCF101 dataset in Table 1. Our proposed model outperforms previous attention based model
(Sharma et al., 2015; Li et al., 2018b; Girdhar & Ramanan, 2017) and conventional ResNet101-
ImageNet. From the ablation experiments, it demonstrates that all the sub-components of the pro-
posed method contribute to improving the final performance.

The results on the Moments in Time dataset are reported in Table 2. Our method achieves the
best accuracy comparing to other single-modality-based methods, and obtains better or comparative
results comparing to the methods which uses more than one modality. TRN-Multiscale (Zhou et al.,
2018), which uses both RGB and optical flow images, has better performance than ours, however,
extracting optical flow images for such large datasets is very time-consuming and needs the same
order of magnitude of storage as RGB images.

Model Modality Top-1 (%) Top-5 (%)
ResNet50-ImageNet (Monfort et al., 2018) | RGB 26.98 51.74
TSN-Spatial (Wang et al., 2016a) RGB 24.11 49.10
TRN-Multiscale (Zhou et al., 2018) RGB 27.20 53.05
BNInception-Flow (Monfort et al., 2018) Optical flow 11.60 27.40
ResNet50-DyImg (Monfort et al., 2018) Optical flow 15.76 35.69
TSN-Flow (Wang et al., 2016a) Optical flow 15.71 34.65
TSN-2stream (Wang et al., 2016a) RGB+Optical flow  25.32 50.10
TRN-Multiscale (Zhou et al., 2018) RGB+optical flow  28.27 53.87
Ours | RGB 27.55 53.52

Table 2: Results on Moments in Time dataset. ResNet50-ImageNet and TRN-Multiscale spatial
results reported here are based on authors’ (Monfort et al., 2018) released trained model.

Qualitative results. We visualize the spatial attention and temporal attention results in Fig. 4. We
can see that the spatial attention can correctly focus on important spatial area of the image, and the
temporal attention shows a unimodal distribution for the entire action from starting the action to
completing the action. More results are shown in Appendix C.1.
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Figure 4: Examples of spatial temporal attention. (Best viewed in color.) A frame sequence
from a video of Drink action in HMDBS51. The original images are shown at the top row, spatial
attention is shown as heatmap (red means important) in the middle row, and temporal attention score
is shown as the gray image (the brighter the frame is, the more crucial the frame is) at the bottom
row. It shows that spatial attention can focus on important areas while temporal attention can attend
to crucial frames. The temporal attention also shows a unimodal distribution for the entire action
from starting to drink to completing the action.

Figure 5: Examples of spatial attention for action localization. (Best viewed in color.) Blue
bounding boxes represent ground truth while the red ones are predictions from our learned spatial
attention. (a) long jump, (b) rope climbing, (c) skate boarding, (d) soccer juggling, (e) walking with
dog, (f) biking.

4.2 WEAKLY SUPERVISED LOCALIZATION

Due to the existence of spatial and temporal attention mechanisms, our model can not only classify
the action of the video, but also give a better interpretability of the results, i.e. telling which region
and frames contribute more to the prediction. In other words, our proposed model can also localize
the most discriminant region and frames at the same time. To verify this, we conduct the spatial
localization and temporal localization experiments.

4.2.1 SPATIAL ACTION LOCALIZATION

Dataset. UCF101-24 is a subset of 24 classes out of 101 classes of UCF101 that comes with
spatio-temporal localization annotation, released as bounding box annotations of humans with THU-
MOS2013 and THUMOS2014 challenge (Jiang et al., 2014).

Experimental setup. For training, we only use the classification labels without spatial bounding box
labels. For evaluation, we threshold the produced saliency mask at 0.5 and the tightest bounding
box that contains the thresholded saliency map is set as the predicted localization box for each
frame. Then these predicted localization boxes are compared with the ground truth bounding boxes
at different Intersection Over Union (IOU) levels.

Qualitative results. We show some qualitative results in Fig. 5. Our spatial attention can attend to
important action areas. The ground truth bounding boxes include all the entire human actions, while
our attention could attend to crucial parts of an action such as in Fig.5 (d) and (e). Furthermore, our
attention mechanism is able to attend to areas with multiple human actions. For instance, in Fig.5
(f) the ground truth only includes one person bicycling, but our attention can include both people
bicycling. More qualitative results including failure cases are included in Appendix C.2.

Quantitative results. Table 3 shows the quantitative results for UCF101-24 spatial localization re-
sults. Our attention mechanism works better compared with the baseline methods when the ToU
threshold is lower mainly because our model only focuses on important spatial areas rather than
the entire human action annotated by bounding boxes. Compared with the baseline methods train-
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Methods \ a=00 a=01 a=02 a=03

Fast action proposal * (Yu & Yuan, 2015) 42.8% - - -

Learning to track * (Weinzaepfel et al., 2015) | 54.3% 51.7% 47.7% 37.8%
R-C3D * (Xu et al., 2017) - 54.4% 51.5% 44.8%
Ours 67.0% 56.1% 34.1% 17.7%

Table 3: Spatial action localization results on UCF101-24 dataset measured by mAP at different
IoU thresholds .. * The baseline methods are strongly supervised spatial localization methods.
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Figure 6: Examples temporal localization with temporal attention from THUMOS14. The
upper two rows show Volleyball action original images and imposed with temporal attention weights
respectively. The lower two rows show Throw Discus action. Our temporal attention module can
automatically highlight important frames and avoid irrelevant frames corresponding to non-action
poses or background.

ing with ground truth bounding boxes, we only use the action classification label, no ground truth
bounding boxes are used.

4.2.2 TEMPORAL ACTION LOCALIZATION

Dataset. The action detection task of THUMOS 14 (Jiang et al., 2014) consists of 20 classes of sports
activities, and contains 2765 trimmed videos for training, while 200 and 213 untrimmed videos for
validation and test respectively. More details on this dataset and pre-processing are included in
Appendix B.1.

Experimental setup. We use the same hyperparameters for THUMOS14 as HMDBS51, UCF101
and UCF101-24. For training, we only use the classification labels without temporal annotation
labels. For evaluation, we threshold the normalized temporal attention importance weight at 0.5.

Then these predicted temporal localization frames are compared with the ground truth annotation at
different IoU thresholds.

Qualitative results. We first visualize some examples of learned attention weights on the test data of
THUMOS14 in Fig. 6. We see that our temporal attention module is able to automatically highlight
important frames and to avoid irrelevant frames corresponding to background or non-action human
poses. More qualitative results are included in Appendix C.4.

Quantitative results. With our spatial temporal attention mechanism, the video action classification
accuracy for the THUMOS’ 14 20 classes improved from 74.45% to 78.33%: a 3.88% increase.
Besides improving the classification accuracy, we show our temporal attention mechanism is able
to highlight discriminative frames quantitatively in Table 4. Compared with reinforcement learning
based method (Yeung et al., 2016) and weakly supervised method (Wang et al., 2017), our method
achieves the best accuracy in terms of different levels of IoU thresholds.



Under review as a conference paper at ICLR 2019

Method [a=01 a=02 a=03 a=04 a=05

(Yeung et al., 2016) | 48.9% 44.0% 36.0% 26.4% 17.1%
(Wang et al., 2017) | 44.4% 37.7% 28.2% 21.1% 13.7%
Ours 70.0% 61.4% 48.6% 32.6% 17.9%

Table 4: Temporal action localization results on THUMOS’14 dataset measured by mAP at
different IoU thresholds «.

5 CONCLUSION

In this work, we develop a novel spatial-temporal attention mechanism for the task of video action
recognition, demonstrating the efficacy across three publicly available datasets. Also, we introduce
a set of regularizers that ensure our attention mechanism attends to coherent regions in space and
time, further improving the performance and increasing the model interpretability. Moreover, we
qualitatively and quantitatively show that our spatio-temporal attention is able to localize discrim-
inative regions and important frames, despite being trained in a purely weakly-supervised manner
with only classification labels.
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A LOG-CONCAVE SEQUENCE

In probability and statistics, a unimodal distribution is a probability distribution that has a single peak
or mode. If a distribution has more modes it is called multimodal. The temporal attention weights are
a univariate discrete distribution over the frames, indicating the importance of the frames for the task
of classification. In the context of activity recognition, it is reasonable to assume that the frames that
contain salient information should be consecutive, instead of scattered around. Therefore, we would
like to design a regularizer that encourages unimodality. To this end, we introduce a mathematical
concept called the log-concave sequence and define the regularizer based on it.

We first give a formal definition of the unimodal sequence.
Definition 1. A sequence {a;}?_, is unimodal if for some integer m,
ai—1 < a; if i <m,
a; 2 Ai4+1 if 4 Z m.

A univariate discrete distribution is unimodal, if its probability mass function forms a unimodal
sequence. The log-concave sequence is defined as follows.

Definition 2. A non-negative sequence {a;}?_, is log-concave if a? > i1y

This property gets its name from the fact that if {a;}?_, is log-concave, then the sequence
{logay}, is concave. The connection between unimodality and log-concavity is given by the
following proposition.

Proposition 1. A log-concave sequence is unimodal.

Proof. Rearranging the defining inequality for log-concavity, we see that
a; > QAi+1

- 9

aj—1 a;

so the ratio of consecutive terms is decreasing. Until the ratios decrease below 1, the sequence is
increasing, and after this point, the sequence is decreasing, so it is unimodal. [
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Given the definition of log-concavity, it is straightforward to design a regularization term that en-

courages log-concavity:
n—1

R= Z max{0,a;_1a;41 — a;}. (11)
i=2
By Proposition 1, this regularizer also encourages unimodality.

B MORE DATASETS AND IMPLEMENTATION DETAILS

B.1 MORE DETAILS ON THE DATASET AND EXPERIMENTAL SETUP

HMDBS1 and UCF101 The dataset pre-processing and data augumentation are the same as the
ResNet ImageNet experiment (He et al., 2016). All the videos are resized to 224 x 224 resolution
and fed into a ResNet-50 pretrained on ImageNet. The last convolutional layer feature map size is
2048 x 7 x 7. The experimental setup for the Moments in Time dataset is the same as HMDBS51 and
UCF101 except time sequence and image resolution.

Moments in Time For the Moments in Time dataset (Monfort et al., 2018), the videos only have 3
seconds, much shorter than HMDBS51 and UCF101. We extract RGB frames from the raw videos
at 5 fps. Therefore, the sequence length is 7' = 15. Following the practice in (Monfort et al.,
2018) to make all the videos uniform resolution, we resize the RGB frames to 340 x 256 pixels.
When extracting features, we use the ResNet-50 pretrained on ImageNet model using resized images
with resolution of 256 x 256 pixels. The data augmentation is the same as the ResNet ImageNet
experiment (He et al., 2016). The feature map size of the last convolutional layer is 2048 x 8 x 8.

THUMOS14 The action detection task of THUMOS’ 14 (Jiang et al., 2014) consists of 20 classes
of sports activities, and contains 2765 trimmed videos for training, while 200 and 213 untrimmed
videos for validation and test respectively. Following the standard practice (Yeung et al., 2016;
Zhao et al., 2017), we use the validation set as training and evaluate on the testing set. Following
the standard practice (Xu et al., 2017) to avoid the training ambiguity, we remove the videos with
multiple labels. We extract RGB frames from the raw videos at 10 fps. The last convolutional layer
feature map size is 2048 x 7 x 7.

B.2 SPATIAL ATTENTION NETWORK ARCHITECTURE

The detailed architecture of spatial attention network described in Section 3.2 is listed in the Table 5.

Index | Inputs Operation Output shape
@) - X 2048 x H x W
2) (1) CONV-(N1024, K3, S1,P1), BN, ReLU | 1024 x H x W
3) 2) CONV-(N512, K3, S1, P1), BN, ReLU 512 x H x W
4) 3) CONV-(N1, K3, S1, P1), Sigmoid 1x HxW

Table 5: Architecture of spatial attention network. H and W are the height and width of the feature
map, respectively.

B.3 MORE IMPLEMENTATION DETAILS

All the experiments are evaluated on machines with a single Nvidia GeForce GTX 1080Ti GPU. The
networks are implemented using the Pytorch library and our code will be publicly available with the
paper.

C MORE RESULTS

C.1 MORE SPATIAL TEMPORAL ATTENTION RESULTS

Fig. 7 shows more results on spatial temporal attention.

12



Under review as a conference paper at ICLR 2019

Figure 7: Multiple actions in one image for video action recognition The Sir action from
HMDBS51. In the first two frames, there is no sitting action while the spatial attention capture
the important area, but the temporal attention can effectively ignore them as the background infor-
mation. It is interesting that in the last few frames, there is another person trying to sit down, but the
visual attention can only capture one sitting person.

Cliff Diving  Floor Gymnastics  Ice Dancing Horse Riding Pole Vault

Figure 8: Examples of spatial attention for action localization. (Best viewed in color.) Blue
bounding boxes represent ground truth while the red ones are predictions from our learned spatial
attention. Our spatial attention mechanism is able to focus on important part of the action, while the
ground truth bounding boxes labels focus on the entire human pose. As in the training stage, the
ground truth bounding boxes are not used, and the model can only depend on crucial spatial area
rather than the entire action to make prediction. For actions with object interactions, such as Horse
Riding and Pole Vault, the ground truth box focuses on human pose while the model focuses on
objects (such as Horse, Pole) as well.

- =
Fencing Biking Diving Floor Gymnastics Basketball Dunk

Figure 9: Failure cases for spatial localization. (Best viewed in color.) In the ground truth bound-
ing boxes, there is only one bounding box in human action for each frame but there may be more
than one person performing the same action. Typical IOU=0 case is that our attention focuses on
the unlabeled human action, such as Fencing and Biking shown here. Strong motion blur also leads
to failure cases, such as the Diving and Floor Gymnastics frames shown here. The diving and gym-
nastics poses are highly motion blurred so the spatial attention focuses on the swimming pool and
audiences respectively. Some of the important background information also leads to failure cases,
such as the basketball frame in the Basketball Dunk shown here.

C.2 MORE SPATIAL LOCALIZATION RESULTS

Fig. 8 shows more spatial localization results. Fig. 9 shows some failure cases.
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Figure 10: Failure example for temporal attention localization. A sequence of Tennis Swing
action from one video of THUMOS14. All temporal localization is correctly localized except the
frame (b). The labeled action starts from frame (b) but our temporal attention module still assigns a
low importance score.

Base network ResNet50 ResNet101 ResNetl52
w/o spatial-temporal attention 47.5 49.7 50.1
w our spatial-temporal attention | 49.8 53.1 54.4

Table 6: Top-1 accuracy (%) on HMDBS1 with different base networks

C.3 MORE ACTION RECOGNITION RESULTS
Table 6 shows results of our spatial-temporal attention model with different base networks. Our

spatial-temporal attention mechanism is a easy plug-in model which could be based on different
network architectures, and can boost performance.

C.4 MORE TEMPORAL LOCALIZATION RESULTS

Fig. 10 shows more results on temporal localization with our temporal attention.
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