
Automated Knowledge Base Construction (2019) Under review

MIDAS: Finding the Right Web Sources
to Fill Knowledge Gaps

Anonymous authors

Abstract

Knowledge bases, massive collections of facts (RDF triples) on diverse topics, support
vital modern applications. However, existing knowledge bases contain very little data
compared to the wealth of information on the Web. This is because the industry standard
in knowledge base creation and augmentation suffers from a serious bottleneck: they rely on
domain experts to identify appropriate web sources to extract data from. Efforts to fully au-
tomate knowledge extraction have failed to improve this standard: these automated systems
are able to retrieve much more data and from a broader range of sources, but they suffer from
very low precision and recall. As a result, these large-scale extractions remain unexploited.

In this paper, we present Midas, a system that harnesses the results of automated
knowledge extraction pipelines to repair the bottleneck in industrial knowledge creation
and augmentation processes. Midas automates the suggestion of good-quality web sources
and describes what to extract with respect to augmenting an existing knowledge base. We
make three major contributions. First, we introduce a novel concept, web source slices, to
describe the contents of a web source. Second, we define a profit function to quantify the
value of a web source slice with respect to augmenting an existing knowledge base. Third,
we develop effective and highly-scalable algorithms to derive high-profit web source slices.
We demonstrate that Midas produces high-profit results and outperforms the baselines
significantly on both real-word and synthetic datasets.

1. Introduction

Knowledge bases support a wide range of applications and enhance search results for multiple
major search engines, such as Google and Bing [2].The coverage and correctness of knowledge
bases are crucial for the applications that use them, and for the quality of the user experience.
However, there exists a gap between facts on the Web and in knowledge bases: compared
to the wealth of information on the Web, most knowledge bases are largely incomplete, with
many facts missing. For example, one of the largest knowledge bases, Freebase [9, 1], does not
provide sufficient facts for different types of cocktails such as the ingredients of Margarita. Yet,
such information is explicitly profiled and described by many web sources, such as Wikipedia.
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Figure 1: Two knowledge extraction procedures and Midas. The output of the automated
process (b) is often discarded in industrial production due to low accuracy. Midas uses the
the automatically-extracted facts to identify the right web sources for the semi-automated
process under the industry standard and therefore resolves a major bottleneck.

Industry standard. Industry typically follows a semi-automated knowledge extraction
process to create or augment a knowledge base with facts that are new to an existing
knowledge base (or new facts) from the Web. This process (Figure 1a) first relies on domain
experts to select web sources; it then uses crowdsourcing to annotate a fraction of entities and
facts and treats them as the training data; finally, it applies wrapper induction [21, 23] and
learns Xpath patterns to extract facts from the selected web sources. Since source selection
and training data preparation are carefully curated, this process achieves high precision and
recall with respect to each selected web source. However, it can only produce a small volume
of facts overall and cannot scale, as the source-selection step is a severe bottleneck, relying
on manual curation by domain experts.

Automated process. To conquer the scalability limitation in the industry standard,
automated knowledge extraction [15, 32] attempts to extract facts with little or no human
intervention. Instead of manually selecting a small set of web sources, automated extraction
(Figure 1b) often takes a wide variety of web sources, e.g., ClueWeb09 [12], as input and uses
facts in an existing knowledge base, or a small portion of labeled input web sources, as training
data. This automated extraction process is able to produce a vast number of facts. However,
because of the limited training data (per source), especially for uncommon facts, e.g., the
ingredients of Margarita, this process suffers from low accuracy. The TAC-KBP competition
showed that automated processes [35, 5, 36, 14] can hardly achieve above 0.3 recall, leaving a
lot of the wealth of web information unexploited. Due to this limitation, such automatically
extracted facts are often abandoned for knowledge bases in industrial production.

In this paper, we propose Midas1, a system that harnesses the correct2 extractions of the
automated process to automatically identify suitable web sources and repair the bottleneck in
the industry standard. The core insight of Midas is that the automatically extracted facts,
even though they may not be of high overall accuracy and coverage, give clues about which
web sources contain a large amount of valuable information, allow for easy annotation, and
are worthwhile for extraction. We demonstrate this through an example.

1. Our system is named after King Midas, known in Greek mythology for his ability to turn what he touched
into gold.

2. We refer to correct facts as facts with confidence value ≥ 0.7 as true.
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ID subject predicate object new? web source

t1 Project Mercury category space_program N http://space.skyrocket.de/doc_sat/mercury-history.htm
t2 Project Mercury started 1959 N http://space.skyrocket.de/doc_sat/mercury-history.htm
t3 Project Mercury sponsor NASA N http://space.skyrocket.de/doc_sat/mercury-history.htm
t4 Project Gemini category space_program N http://space.skyrocket.de/doc_sat/gemini-history.htm
t5 Project Gemini sponsor NASA N http://space.skyrocket.de/doc_sat/gemini-history.htm
t6 Atlas category rocket_family Y http://space.skyrocket.de/doc_lau_fam/atlas.htm
t7 Atlas sponsor NASA Y http://space.skyrocket.de/doc_lau_fam/atlas.htm
t8 Atlas started 1957 Y http://space.skyrocket.de/doc_lau_fam/atlas.htm
t9 Apollo program category space_program N http://space.skyrocket.de/doc_sat/apollo-history.htm
t10 Apollo program sponsor NASA N http://space.skyrocket.de/doc_sat/apollo-history.htm
t11 Castor-4 category rocket_family Y http://space.skyrocket.de/doc_lau_fam/castor-4.htm
t12 Castor-4 started 1971 Y http://space.skyrocket.de/doc_lau_fam/castor-4.htm
t13 Castor-4 sponsor NASA Y http://space.skyrocket.de/doc_lau_fam/castor-4.htm

Figure 2: Facts that are correctly extracted from http://space.skyrocket.de. We compare
the extracted facts with Freebase and mark the facts that are absent from Freebase as “Y” in
the “new” column.

Example 1. Figure 2 shows a snapshot of high-confidence facts (subject, predicate, object)
extracted from 5 web pages under web domain http://space.skyrocket.de. Automated
extraction systems may not be able to obtain high precision and recall in extracting facts from
this website due to lack of effective training data. However, the few correct extracted facts
give important clues on what one could extract from this site.

For each fact, the subject indicates an entity; the predicate and object values further
describe properties associated with the entity. For example, fact t1 specifies that the category
property of the entity Project Mercury is space program. Entities can form groups based on
their common properties. For example, entity “Project Mercury” and entity “Project Gemini”
are both “space programs that are sponsored by NASA”.

The facts labeled “Y” in the “new?” column are absent from Freebase. All of these new facts
are under the same sub-domain and are all “rocket families sponsored by the NASA.” This
observation provides a critical insight: one can augment Freebase by extracting facts pertaining
to “rocket families sponsored by NASA” from http://space.skyrocket.de/doc_lau_fam.

Example 1 shows that one can abstract the contents of a web source through extracted
facts: A web source often includes facts of multiple groups of homogeneous entities. Each
group of entities forms a particular subset of content in the web source, which we call a
web source slice (or slice). The common properties shared by the group of entities not
only define, but also describe the slice of facts. For example, it is easy to tell that a slice
describes “rocket families sponsored by NASA” through its common properties, “category =
rocket family” and “sponsor = NASA”. Moreover, entities in a single web source slice often
belong to the same type, e.g., “rocket families sponsored by NASA”, and thus share similar
predicates. The limited number of predicates in a web source slice simplifies annotation. Our
objective is to discover web source slices that (1) contain a sufficient number of facts that
are absent from the knowledge base we wish to augment, and (2) their extraction effort does
not outweigh the benefit.

However, evaluating and quantifying the suitability of a web source slice with
respect to these two desired properties is not straightforward. In addition, the number of
slices in a single web source often grows exponentially with the number of facts, posing a
significant scalability challenge. This challenge is amplified by the massive number of
sources on the Web, in various genres, languages, and domains. Even a single web domain
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Slice description Web source
Education organizations http://www.schoolmap.org/school/
US golf courses https://www.golfadvisor.com/course-directory/2-usa/
Biology facts http://www.marinespecies.org
Board games http://boardgaming.com/games/board-games/
Skyscraper architectures http://skyscrapercenter.com/building
Indian politicians http://www.archive.india.gov.in

Figure 3: Selected top returns (slices) from Midas targeting the augmentation of Freebase.
Midas derived slides using facts extracted from a real-world, large-scale, automated knowledge
extraction pipeline (name hidden for anonymity) that operates on billions of web pages. New
facts refer to extracted facts that are absent from Freebase.

may contain an extensive amount of knowledge. For example, as of July 2018, there are
more than 45 million entries in Wikipedia [3].

Midas addresses these challenges through (1) efficient and scalable algorithms for pro-
ducing web source slices, and (2) an effective profit function for measuring the utility of slices.
In this paper, we first formalize the problem of identifying and describing “good” web sources
as an optimization problem and then quantify the quality of web source slices through a
profit function (Section 2). We then propose an algorithm to generate the high-profit slices
in a single web source and design a scalable framework to extend this algorithm for multiple
web sources (Section 3). Finally, we evaluate our proposed algorithm on both real-word
and synthetic datasets and illustrate that our proposed system, Midas, is able to identify
interesting web sources slices in an efficient and scalable manner (Section 4).
Example 2. We applied Midas on AnonSys, a dataset extracted by a comprehensive knowl-
edge extraction system, which includes 810M facts extracted from 218M web sources. Midas is
able to identify and customize “good” web sources for an existing knowledge base. In Figure 3,
we demonstrate the 5 highest-profit slices that Midas derived to augment Freebase. The web
source slices provide new and valuable information for augmenting the existing knowledge
base; in addition, many of these web sources contain semi-structured data with respect to
entities in the reported web source slice. Therefore, they are easy for annotation.

2. Problem Definition

In this section, we first define web source slices (Section 2.1); we then use these abstractions
to formalize the problem of slice discovery for knowledge base augmentation (Section 2.2).

2.1 Web Source Slice

Web source. URL hierarchies offer access to web sources at different granularities,
such as a web domain (https://www.cdc.gov), a sub-domain (https://www.cdc.gov/niosh),
or a web page (https://www.cdc.gov/niosh/ipcsneng/neng0363.html). Web domains of-
ten use URL hierarchies to classify their contents. For example, the web domain https:
//www.golfadvisor.com classifies facts for “golf course in Jamaica” under the finer-grained
URL https://www.golfadvisor.com/course-directory/8545-jamaica. The URL hierarchies
in these web domains divide their contents into smaller, coherent subsets, providing op-
portunities to reduce unnecessary extraction effort. For example, the web domain https:
//www.cdc.gov requires significant extraction effort as its contents are varied and spread across
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Fact table

EID subject category sponsor started

e1 Project Mercury space_program {NASA} {1959}
e2 Project Gemini space_program {NASA} ∅
e3 Atlas rocket_family {NASA} {1957}
e4 Apollo program space_program {NASA} ∅
e5 Castor-4 rocket_family {NASA} {1971}

Properties

CID Property

c1 (category, space_program)
c2 (category, rocket_family)
c3 (started, 1959)
c4 (started, 1957)
c5 (started, 1971)
c6 (sponsor, NASA)

Web source slices

SID Properties Entities Facts Description

S1 {c1, c3, c6} {e1} {t1, t2, t3} space programs sponsored by NASA and started in 1959
S2 {c2, c4, c6} {e3} {t6, t7, t8} rocket families sponsored by NASA and started in 1957
S3 {c2, c5, c6} {e5} {t11, t12, t13} rocket families sponsored by NASA and started in 1971
S4 {c1, c6} {e1, e2, e4} {t1–t5, t9, t10} space programs sponsored by NASA
S5 {c2, c6} {e3, e5} {t6–t8, t11–t13} rocket families sponsored by NASA
S6 {c6} {e1, e2, e3, e4, e5} {t1–t5,t6–t8, t9, t10,t11–t13} any projects sponsored by NASA

Figure 4: Fact table, properties, and example slices derived from facts in Figure 2. The facts
that are absent from Freebase (t6, t7, t8, t11, t12, and t13) are highlighted in green.

too many categories; the sub-domain https://www.cdc.gov/niosh/ipcsneng represents lower
extraction effort, because its content focuses on “international chemical safety information”.
Midas considers web sources at all granularity levels of the URL hierarchy.
Contents of a web source. Facts extracted from a web source typically correspond to
many different entities. However, they can share common properties: for example, the
entities “Atlas” and “Castor-4” (Figure 2) have the common property of being rocket families
sponsored by NASA. We abstract and formalize the content represented by a group of entities
as a web source slice and define it by the entities’ common properties. The abstraction of
web source slices achieves two goals: (1) it offers a representation of the content of a web
source that is easily understandable by humans, and (2) it allows for the efficient retrieval of
all facts relevant to that content.

As described in Example 1, an extracted fact corresponds to an entity and describes
properties of that entity. Web source slices, in turn, are defined over a group of entities with
common properties. To facilitate this exposition, we organize facts of a web source W in a
fact table FW (Figure 4). A row in the fact table contains facts that correspond to the same
entity (denoted by the subject).
Definition 3 (Fact table). Let TW = {(s, p, o)} be a set of facts, in the form of (subject,
predicate, object), extracted from a web source W , and n be the number of distinct predicates
in TW (n = |{t.p | t ∈ TW }|). We define the fact table FW (subject, pred1, . . . , predn), which
has a primary key (subject) and one attribute for each of the n distinct predicates. Each fact
t ∈ TW maps to a single, non-empty cell in FW :

∀t ∈ TW , t.o ∈ Πt.pσsubject=t.s(FW )

where Π and σ are the Projection and Selection operators in relational algebra.
Note that cells in FW may contain a set of values, corresponding to facts with the same

subject and predicate. For ease of exposition, we use single values in our examples. We now
define properties and web source slices over the fact table FW .
Definition 4 (Property). A property c = (pred, v) is a pair derived from a fact table FW ,
such that pred is an attribute in FW and v ∈ Πpred(FW ). We further denote with CW the set
of all properties in a web source W : CW = ∪FW .pred ∪v∈Πpred(FW ) (pred, v)
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Figure 4 lists all the properties derived from the fact table of our running example.
Midas considers properties where the value is strictly derived from the domain of pred:
v ∈ Πpred(FW ). Our method can be easily extended to more general properties, e.g., “year
> 2000”; however, we decided against this generalization, as it increases the complexity of
the algorithms significantly, without observable improvement in the results. In addition,
Midas does not consider properties on the subject attribute since in most real-word datasets
subjects are typically identification numbers.
Definition 5 (Web Source Slice). Given a set of facts TW extracted from web source W ,
the corresponding fact table FW , and the collection of properties CW , a web source slice (or
slice), denoted by S(W ) (or S for short), is a triplet S(W ) = (C,Π,Π∗), where,

C = {c1, ..., ck} ⊆ CW is a set of properties;
Π = Πsubjectσc1∧...∧ck(FW ) is a non-empty set of entities, each of which includes all of

the properties in C;
Π∗ = {(s, p, o)|(s, p, o) ∈ TW , s ∈ Π} is a non-empty set of facts that are associated with

entities in Π.
Example 6. Figure 4 demonstrates the fact table (upper-left), properties (upper-right), and
slices (bottom) derived from the facts of Figure 2. For example, slice S6 on property {c6}
represents facts for projects sponsored by NASA; slice S4 on properties {c1, c6} represents
facts for space programs sponsored by NASA.
Canonical slice. Different slices may correspond to the same set of entities. For example, in
Figure 4, the slice defined by {c5, c6} corresponds to entity e5, the same as slice S3, but it has
a different semantic interpretation: projects sponsored by NASA and started in 1957. Based
on the extracted knowledge, it is impossible to tell which slice is more precise; reporting and
exploring all of them introduces redundancy to the results and also significantly increases
the overall problem complexity. In Midas, we choose to report canonical slices: among
all slices that correspond to the same set of entities and facts, the one with the maximum
number of properties is a canonical slice.
Definition 7. A slice S(W ) = (C,Π,Π∗) is a canonical slice if there exists no S′(W ) =
(C ′,Π,Π∗) such that |C ′| ≤ |C|.

Focusing on canonical slices does not sacrifice generality. The canonical slice is always
unique, and one can infer the unreported slices from the canonical slices by taking any subset
of a canonical slice’s properties and validating the corresponding entities. All six slices in
Figure 4 are canonical slices that select at least one fact.

2.2 The Slice Discovery Problem

Definition 8 (Problem Definition). Let E be an existing knowledge base, W = {W1, ...} be a
collection of web sources, TW be the facts extracted from web source W ∈ W, and f(S) be an
objective function evaluating the profit of a set of slices on the given existing knowledge base
E. The web source suggestion problem finds a list of web source slices, S = {S1, ...}, such
that the objective function f(S) is maximized.

Inspired by solutions in [17, 31], we quantify the value of a set of slices as the profit (i.e.,
gain−cost) of using the set of slices to augment an existing knowledge base. We measure the
gain as a function of the number of unique new facts presented in the slices, showing the poten-
tial benefit of these facts in downstream applications. We estimate the cost based on common
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knowledge-base augmentation procedures [15, 27, 32], which contain three steps: crawling the
web source to extract the facts, de-duplicating facts that already exist in the knowledge base,
and validating the correctness of the newly-added facts. In our implementation, we assume
that the gain and cost are linear with respect to the number of (new) facts in all slices. This
assumption is not inherent to our methodology, and one can adjust the gain and cost functions.
Definition 9. Let S be the set of slices derived from web source W and let E be a knowledge
base. We compute the gain and the cost of S with respect to E as G(S) = | ∪S∈S S \ E| and
C(S) = Ccrawl (S) + Cde-dup(S) + Cvalidate(S), respectively. The profit of S is the difference:

f(S) = G(S)− C(S)

In this paper, we measure the crawling cost as Ccrawl(S) = |S| · fp +
∑

W∈W fc · |TW |,
which includes a unit cost fp for training and an extra cost for crawling; de-duplication cost
as Cde-dup(S) = fd · |

⋃
S∈S S|, which is proportional to the number of facts in the slices; and

validation cost as Cvalidate(S) = fv · | ∪S∈S S \ E|, which is proportional to the number of
new facts in the slices. For our experiments, we use the default values fp = 10, fc = 0.001,
fd = 0.01, and fv = 0.1 (we switch to fp = 1 for the running examples in the paper).
Appendix A includes more details on the gain and cost functions. Midas uses this profit
function as the objective function in Definition 8 to identify the set of web source slices that
are best-suited for augmenting a given knowledge base.

3. Deriving Web Source Slices

The objective of the slice discovery problem is to identify the collection of web source slices
with the maximum total profit. Through a reduction from the set cover problem, we can
show that this optimization problem is NP-complete. In addition, because it is a Polynomial
Programming problem with a non-linear objective function, the problem is also APX-complete,
which means that no constant-factor polynomial approximation algorithm exists.
Theorem 10 (Complexity of slice discovery). The optimal slice discovery problem is NP-
complete and it is also APX-complete [6].

In this section, we first present an algorithm, Midasalg, that solves a simpler problem:
identifying the good slices in a single web source (Section 3.1). We then extend the Midasalg
algorithm to the general form of the slice discovery problem and propose a highly-parallelizable
framework, Midas, that detects good slices from multiple web sources (Section 3.2).

3.1 Deriving Slices from a Single Source

The problem of identifying high-profit slices in a single web-source is in itself challenging. As
per Definition 5, given a web source and its extracted facts, any combination of properties,
which are derived from the facts, may form a web source slice. Therefore, the number of
slices in a single web source can be exponential in the number of extracted facts in the web
source. This factor renders most set cover algorithms, as well as existing source selection
algorithms [17, 31], inefficient and unsuitable for solving the slice discovery problem since
they often need to perform multiple iterations over all slices in a web source. Our approach,
Midasalg, avoids property combinations that fail to match any extracted fact by constructing
the slice hierarchy in a bottom-up fashion and guarantees the result quality by further
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traversing the trimmed slice hierarchy. We demonstrate the two steps algorithm for facts
in Example 1 through Figure 7 in Appendix C.

3.1.1 Step 1: Slice hierarchy construction

A key to Midasalg’s efficiency is that it constructs slices only as needed, building a slice
hierarchy in a bottom-up fashion, and smartly pruning slices during construction. The
hierarchy is implied by the properties of slices. For example, slice S4 (Figure 4) has a subset
of the properties of slice S1, and thus corresponds to a superset of entities compared to S1.
As a result, S4 is more general and thus an ancestor to S1 in the slice hierarchy. Midasalg
first generates slices at the finest granularity (least general) and then iteratively generates,
evaluates, and potentially prunes slices in the coarser levels.

Generating initial slices.
Midasalg creates a set of initial slices from the entities in the fact table FW . Each entity e
is associated with the facts (s, p, o) ∈ TW that correspond to that entity (s = e). Each such
fact maps to one property (p, o). Thus, the set of all properties that relate to entity e are:
Ce = {(p, o) | (s, p, o) ∈ TW , s = e}.

For each entity e, Midasalg creates one slice for each combination of properties in Ce, such
that each property is on a different predicate; if e has a single value for each predicate, there
will be a single slice created for e. The algorithm assigns a level to each slice, corresponding
to the number of properties that define the slice. These initial slices contain a maximal
number of properties and are, thus, canonical slices (Definition 2.1). For example, based on
entities in Figure 4, Midasalg creates three slices, S1, S2, and S3, at level 3 from entities
e1, e3, and e5, respectively, and one slice, S4, at level 2 from entities e2 and e4.

Bottom-up hierarchy construction and pruning.
Starting with the initial slices, Midasalg constructs and prunes the slice hierarchy in a
bottom-up fashion. At each level, Midasalg follows three steps: (1) it constructs the parent
slices for each slice in the current level; (2) for each new slice, it evaluates whether it is
canonical and prunes it if it is not; (3) if the slice is canonical, it evaluates its profit and
prunes the slice if the profit is low compared to other available slices. Slices pruned during
construction are marked as invalid :
(1) Constructing parent slices. At each level, Midasalg constructs the next level of the slice
hierarchy by generating the parent slices for each slice in the current level. To generate the
parent slices for a slice, Midasalg uses a process similar to that of building the candidate
itemset lattice structure in the Apriori algorithm [4]. Given a slice S = σC(FW ) with prop-
erties C = {c1, ..., ck}, Midasalg generates k parent slices for S, by removing one property
from C at a time. For example, Midasalg generates three parent slices for slice S2: {c2, c4},
{c2, c6}, and {c4, c6}. For each slice we record its children slices; this will be important for
removing non-canonical slices safely, as we proceed to discuss.
(2) Pruning non-canonical slices. Midas only reports canonical slices, which are slices with
a maximal number of properties (Section 2.1). To identify the canonical slices efficiently,
Midasalg relies on the following property.
Proposition 11. A slice S is canonical if and only if it satisfies one of the following two
conditions:

(1) slice S is an initial slice defined from an entity; or
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(2) slice S has at least two children slices that are canonical.
This proposition, proved by contradiction, formalizes a critical insight: the determination

of whether a slice is canonical relies on two easily verifiable conditions. For example, in
Figure 4, there are two slices, S4 and S5, at level 2 and both of them are canonical slices
(depicted with solid lines) because 1). S4 is one of the initial slices, defined by entities e2

and e4; and 2). S5 has two canonical children, S2 and S3.
In order to record children slices correctly after pruning, Midasalg works at two levels of

the hierarchy at a time: it constructs the parent slices at level l − 1 before pruning slices
at level l. The removal of a non-canonical slice S, also updates the children list of the
slice’s parent, Sp. Each child Sc of the removed slice S becomes a child of Sp if Sc is not
already a descendant of Sp through another node. For slices in Figure 4, Midasalg prunes
the non-canonical slice ({c1, c3}, ..., ...) and makes its child slice S1 a direct child of the
parent slice ({c3}, ..., ...). However, it does not make S1 a child of ({c1}, ..., ...) since S1 is a
descendant of ({c1}, ..., ...) through slice node S4.
(3) Pruning low-profit slices. For the remaining canonical slices, Midasalg calculates the
statistics to identify and prune slices that may lead to lower profit. This pruning step
significantly reduces the number of slices that the traversal (Section 3.1.2) will need to
examine. The pruning logic follows a simple heuristic: the ancestors of a slice are likely to
be low-profit if the slice’s profit is either negative or lower than that of its descendants.

For a slice S, we maintain a set of slices from the subtree of S, denoted by SLB(S). This
set is selected to provide a lower bound of the (maximum) profit that can be achieved by
the subtree rooted at S; we denote the corresponding profit as fLB(S). fLB(S) is always
non-negative, as the lowest profit, achieved by SLB(S) = ∅, is zero. Let CS be the set of
children of slice S. We compute fLB(S) and update SLB(S) by comparing the profit of S
itself with the profit of the slices in the lower bound sets (SLB) of S’s children:

fLB(S) = max{f({S}), f(∪Sc∈CS ,fLB(Sc)>0SLB(Sc))}

Midasalg marks a slice S as low-profit if its current profit is negative or if it is lower than
the total profit that can be obtained from the lower bound slices in its subtree (fLB(S)).
This is because reporting SLB(S) instead of {S} is more likely to lead to a higher profit. For
example, among two canonical slices S4 and S5 at level 2 in Figure 4, Midasalg prunes slice
S4 due to its negative profit. After pruning non-canonical and low-profit slices, Midasalg
significantly reduces the number of slices at level 2.

Constructing the hierarchy of slices is related to agglomerative clustering [33, 26], which
builds the hierarchy of clusters by merging two clusters that are most similar at each iteration.
However, Midasalg is much more efficient than agglomerative clustering, as we show in our
experiments (Section 4).

3.1.2 Step 2: Top-down hierarchy traversal

The hierarchy construction is effective at pruning a large portion of slices in advance, reducing
the number of slices we need to consider by several orders of magnitude (Section 4). However,
redundancies, or heavily overlapped slices, may still present in the trimmed slice hierarchy,
especially for slices that belong to the same subtree. The second step of Midasalg traverses
the hierarchy top-down to select a final set of slices (Algorithm 1). In this top-down traversal,
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Algorithm 1 Midasalg: the top-down traversal
Require: E , FW , H, L
E : existing knowledge base; FW : fact table of the web source W ; H: constructed hierarchy
L: number of levels in the hierarchy; S.valid: slice S is not pruned during construction
S.covered: slice S is not covered by the result set S

1: S ← ∅
2: for l from 1 to L do
3: for S in H[l] do
4: if S.valid & !S.covered & f(S ∪ S) > f(S) then
5: S ← S ∪ S
6: S.covered = true
7: if S.covered then
8: for Sc in CS do
9: Sc.covered = true

10: Return S

Midasalg prioritizes valid (unpruned) slices at higher levels of the hierarchy, since they are
more likely to produce higher profit and cover a larger number of facts than their descendants.
We initialize unpruned slices as valid (S.valid =true) but not covered in the result set
(S.covered =false).
Proposition 12. Midasalg has O(m|P|) time complexity, where m is the maximum number
of distinct (subject, predicate) pairs, and |P| is the number of distinct predicates in the web
source W .

According to Theorem 10, the optimal slice discovery problem is APX-complete. There-
fore, it is impossible to derive a polynomial time algorithm with constant-factor approximation
guarantees for this problem. However, as we demonstrate in our evaluation, Midasalg is effi-
cient and effective at identifying multiple slices for a single web source in practice (Section 4).

3.2 Multiple Slices from Multiple Sources

To detect slices from a large web source corpus, a naïve approach is to apply Midasalg
on every web source. However, this approach leads to low efficiency and low accuracy,
as it ignores the hierarchical relationship among web sources from the same web domain,
e.g., http://space.skyrocket.de/doc_sat/apollo-history.htm is a child of http://space.
skyrocket.de/doc_sat in the hierarchy. The naïve approach repeats computation on the same
set of facts from multiple web sources and returns redundant results. For example, given the
facts and web sources in Figure 1, the naïve approach will perform Midasalg on 7 web sources,
including 5 web pages, 2 sub-domains, and 1 web domain, and report three slices, “rocket fam-
ilies sponsored by NASA” on web source http://space.skyrocket.de/doc_lau_fam, “rocket
families sponsored by NASA and started in 1957” on web source http://space.skyrocket.de/
.../atlas.htm, and “rocket families sponsored by NASA and started in 1971” on web source
http://space.skyrocket.de/.../castor-4.htm. Even though these three slices achieve the
highest profit in their respective web sources, they are as a set redundant and lead to a reduc-
tion in the total profit: since the web sources are in the same domain, reporting the latter two
slices is redundant and hurts the total profit since the first one already covers all their facts.

In this section, we introduce a highly-parallelizable framework that relies on the natural
hierarchy of web sources and explores web source slices in an efficient manner. This framework
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starts from the finest grained web sources and reuses the derived slices to form the initial
slices while processing their parent web source. This framework not only improves the
execution efficiency, but also avoids reporting redundant slices over different web sources in
the same web domain. Here we highlight three core components in the framework.
Sharding. At each iteration, we take a finer-grained child web source and a list of slices as
the input. We generate a one-level-coarser web domain as parent web source (if any) and use
it as the key to shard the inputs.
Detecting. After sharding, Midas first collects a set of slices for each coarser web source
(current) from its finer-grained children, then uses the collected slices to form the initial
hierarchy, and applies Midasalg to detect slices for the current web source.
Consolidating. To avoid hurting the total profit caused by overlapping slices in the parent
and children web sources, Midas prunes the slices in the parent web source when there exists
a set of slices in the children web sources that cover the same set of facts with higher profit.
Midas delivers the remaining slices in the parent web source as the input for the next round.

4. Experimental Evaluation

In this section, we present an extensive evaluation of the efficiency and effectiveness of
Midas over real-world and synthetic datasets. Our experiments show that Midas is sig-
nificantly better than the baseline algorithms at identifying the best sources for knowledge
base augmentation. Due to space limit, in this section, we only present experiment results
on real-world dataset and we demonstrate the results on synthetic datasets in Appendix D.2.

We ran our evaluation on a ProLiant DL160 G6 server with 16GB RAM, two 2.66GHZ
CPUs with 12 cores each, running CentOS release 6.6.

4.1 Datasets

ReVerb/NELL: empty initial KB. We evaluate our algorithms over two real-world
datasets. For our experiments on these datasets, we use an empty initial knowledge base
and evaluate the precision of returned slices.
ReVerb. The ReVerb ClueWeb extraction dataset [19] samples sentences from the Web
using Yahoo’s random link service and uses 6 OpenIE extractors to extract facts from these
sentences. The dataset includes facts extracted with confidence score above 0.75. Entities and
predicates in ReVerb are presented in unlexicalized format; for example, the fact (“Boston”,
“be a city in”, “USA”) is extracted from https://en.wikipedia.org. The ReVerb dataset
contains 15M facts extracted from 20M URLs.
NELL. The Never-Ending Language Learner project [13] is a system that continuously
extracts facts from text in webpages and maintains those with confidence score above 0.75.
Unlike ReVerb, NELL is a ClosedIE system and the types of entities follow a pre-defined
ontology; for example, in the fact (“concept/athlete/MichaelPhelps”, “generalizations”, “con-
cept/athlete”), extracted from Wikipedia, the subject “concept/athlete/MichaelPhelps” and
object “concept/athlete” are both defined in the ontology. The NELL dataset includes 2.9M
facts extracted from 340K URLs.
Evaluation Setup. Due to the scale of the ReVerb and NELL datasets, we report the precision
of the returned slices. We manually labeled the correctness of the top-K returned web source
slice. Appendix D.1 includes detailed criteria for assigning the labels.
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ReVerb-Slim/NELL-Slim: existing KB with adjustable coverage. The ReVerb and
NELL datasets provide the input of the slice discovery problem, but they do not contain the
optimal output that suggests “what to extract and from which web source”. To better evaluate
different methods, we generate two smaller datasets, ReVerb-Slim and NELL-Slim, over a 100
sampled web sources in the ReVerb and NELL datasets respectively. We manually label the
content of these sources to create an Initial Silver Standard of their optimal slices with respect
to an empty existing knowledge base. We consider that this optimal, manually-curated set
of slices forms a complete knowledge base (100% coverage). We then create knowledge bases
of varied coverage, by selecting a subset of the Initial Silver Standard: to create a knowledge
base of x% coverage, we (1) randomly select x% of the slices from the Initial Silver Standard;
(2) build a knowledge base with the facts in the selected slices; (3) use the remaining slices
(those not selected in step 1) to form the optimal output for the new knowledge base. The
ReVerb-Slim and NELL-Slim datasets contain 859K and 508K facts respectively.
Evaluation Setup. For ReVerb-Slim and NELL-Slim datasets, we select the web sources and
manually generate the Silver Standard. Appendix D.1 includes more details on the detailed
steps for generating the Silver Standard.

4.2 Comparisons

Naïve. There are no baselines that produce web source slices, as this is a novel concept.
We compare our techniques with a naïve baseline that selects entire web sources (rather than
a slice of their content) based on the number of new facts extracted from each source.
Greedy. Our second comparison is a greedy algorithm that focuses on deriving a single
slice with the maximum profit from a web source. It relies on our proposed profit function
and generates the slice in a web source by iteratively selecting conditions that improve the
profit of the slice the most.
AggCluster. We compare our techniques with agglomerative clustering [33], using our
proposed objective function as the distance metric. This algorithm initializes a cluster for
each individual entity, and it merges two clusters that lead to the highest non-negative profit
gain at each iteration. The time complexity of this algorithm is O(|E|2log(|E|), where |E|
is the number of entities in a web source.
Midas (Section 3.1). Our Midasalg algorithm organizes candidate slices in a hierarchy
to derive a set of slices from a single source. Used as the slice detection module in the
parallelizable framework of Midas (Section 3.2), it derives slices across multiple sources.
Note that our parallelizable framework in Section 3.2 also supports the alternative algorithms,
including Greedy and AggCluster, by adjusting the slice detection algorithm in the Detect-
ing phase. Therefore, with the support of our framework, all of these algorithms can easily run
in parallel. For all alternative algorithms, we compare their effectiveness based on their pre-
cision, recall, and f-measure; and compare their efficiency based on their total execution time.

4.3 Evaluation on Real-World Data

Our evaluation on the real-world datasets includes two components. First, we focus on a
smaller version of the datasets, where we can apply our silver standard to better evaluate the
result quality using precision, recall, and f-measure across knowledge bases of different cov-
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Figure 5: Comparison of algorithms on the ReVerb-Slim dataset. Midas performs better
than all alternative algorithms.

● AggCluster NaiveMIDAS Greedy
●

● ● ●
● ● ● ● ● ●

0.2

0.4

0.6

0.8

20 40 60 80   100
Top−k

P
re

ci
si

on

(a) Precision (ReVerb).

● ● ●
● ● ● ● ● ● ●

●

●

10−3

10−1

101

103

0.00 0.25 0.50 0.75 1.00
Input ratio

T
im

e 
(m

in
)

(b) Exe. time (ReVerb).

●

● ●
● ● ● ● ● ● ●

0.25

0.50

0.75

1.00

20 40 60 80
Top−k

P
re

ci
si

on

(c) Precision (NELL).

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.01

1.00

0.25 0.50 0.75 1.00
Input ratio

T
im

e 
(m

in
)

(d) Exe. time (NELL).

Figure 6: Top-k precision and execution time on ReVerb and NELL data. The input ratio
corresponds to the ratio of sources considered (e.g., a ratio of 0.75 means that 75% of the web
sources are considered by each algorithm). Midas achieves higher precision and outperforms
AggCluster in terms of efficiency.

erage. Second, we study the performance of all methods on ReVerb and NELL, reporting the
precision of the methods’ top-k results, for varying values of k, and their execution efficiency.
Slice quality vs. Knowledge Base coverage. For this experiment, we evaluate the
four methods on the ReVerb-Slim and NELL-Slim datasets, each with the 100 web sources
with labeled silver standard and we run the four methods using input knowledge bases of
coverage varying from 0 to 80%. We show the precision-recall curves for three coverage ratios:
0, 0.4, and 0.8 and the precision, recall, and f-measure with increasing coverage ratio from 0
to 0.8. Due to space limit, we only present the result on ReVerb-Slim dataset in Figure 5 and
we highlight the major observations of results on the NELL-Slim dataset. The full result can
be found in Figure 10 in Appendix D. As shown, Midas performs significantly better than
the alternative algorithms, especially on the ReVerb-Slim dataset, but there is a noticeable
decline in performance with increased coverage. This decline is partially an artifact of our
silver standard: since the silver standard was generated against an empty knowledge base, the
profit of some of its slices drops as the slices now have increased overlap with existing facts.
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Midas tends to favor alternative slices to cover new facts, and may return slices that are not
included in the silver standard but are, in fact, better. Greedy performs poorly on both
datasets (well under 0.5 for all measures). Its effectiveness is dominated by its recall, which
increases with coverage. This is expected since in knowledge bases of higher coverage, there
are fewer remaining slices for each source in the silver standard. AggCluster performs
poorly for ReVerb-Slim. This is because AggCluster is more likely to make mistakes for
datasets with more entities and predicates. In addition, AggCluster requires significantly
longer execution time compared to Midas (as demonstrated in Figure 6d). Naïve ranks
web sources according to the number of new facts, thus its accuracy heavily relies on the
portion of web sources that contain only one high-profit slice. Thus, it achieves similar recall
in all different scenarios. Overall, the performance of this baseline is low across the board.
Due to the limited size of these two datasets, the execution time of the four methods does
not differ significantly. We evaluate the execution efficiency of the methods through our next
experiment on the full datasets, ReVerb and NELL.
Precision and efficiency. We further study the quality of the results of all four methods
by looking at their top-k returned slices, ordered by their profit, when the algorithms operate
on an empty knowledge base. Figures 6a and 6c report the precision for varied values of k up
to k = 100, for ReVerb and NELL, respectively. We observe that the Naïve baseline performs
poorly, with precision below 0.25 and 0.4, respectively. This is expected, as Naïve considers
the number of facts that are new in a source, but does not consider possible correlations among
them. Thus, Naïve may consider a forum or a news website, which contains a large number of
loosely related extractions, as a good web source slice. In contrast, Midas outperforms Naïve
by a large margin, maintaining precision above 0.75 for both datasets. The major disadvantage
of Greedy is that it may miss many high-profit slices as it only derives a single slice per
web source. However, since we only evaluate the top-100 returns, the precision of Greedy
remains high on both datasets. AggCluster performs well on the NELL dataset, but not
as well on ReVerb, which includes a higher number of entities and predicates. This is because
AggCluster is more likely to reach a local optimum for datasets with more entities and
predicates. While AggCluster is comparable to our methods with respect to precision, it
does not scale over web sources with larger input, and its running time is an order of magnitude
(or more) slower than our methods in most cases. In particular, its efficiency drops significantly
on sources with a large number of facts. The NELL dataset contains one source that is
disproportionally larger, and dominates the running time of AggCluster (Figure 6d). In
ReVerb, most sources have a large number of facts, so the increase is more gradual (Figure 6b).
In contrast, the execution time of Greedy, and Midas increases linearly. Naïve is the fastest
of the methods, as it simply counts the number of new facts that a web source contributes.

5. Related Work

Knowledge extraction systems extract facts from diverse data sources and generate facts
in either fixed ontologies for their subjects/predicate categories, or in unlexicalized format:
ClosedIE extraction systems, including KnowledgeVault [15], NELL [13], PROSPERA [28],
DeepDive/Elementary [32, 29], and extraction systems in the TAC-KBP competition [14],
often generate facts of the first type; whereas OpenIE extraction system [19, 20] normally
extract facts of the latter type. In addition, there are many data cleaning and data fusion
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tools [16, 8] to improve extraction quality of such extraction systems. Midas solves the
problem of identifying web source slices for augmenting the content of knowledge bases by
leveraging on the extracted and cleaned facts. Therefore, the quality of web source slices
Midas derives significantly relies on the performance of the above systems.

Similar to source selection techniques [17] for data integration tasks, Midas also uses
customized gain and cost functions to evaluate the profit of a web source slice. However,
the slice discovery problem is fundamentally different from source selection problems since
the candidate web source slices are unknown.

Collection Selection [11, 10] has been long recognized as an important problem in dis-
tributed information retrieval. Given a query and a set of document collections stored in
different servers or databases, collection selection techniques retrieve a ranked list of relevant
documents: They first perform the selection algorithm on each collection, based on the pre-
generated collection descriptions and a similarity metric, and then integrate and consolidate
the results into a single coherent ranked list. The slice discovery problem is correlated with
the collection selection problem: web sources under the same web domain form a collection,
which is further described by the extracted facts; our goal, finding the right web sources for
knowledge gaps, can also be considered as a query operate on the collections of web sources.
However, instead of a query of keywords, our query is an existing knowledge base. Other
than the difference on the queries, there are several additional properties that render these
two problems fundamentally different: first, the similarity metrics, which focus on measuring
the semantic similarity, in collection selection, do not apply to the slice discovery problem;
second, the web sources in a collection in the slice discovery problem form a hierarchy;
third, the slice discovery problem not only targets retrieving relevant web sources, but also
generating descriptions for the web sources with respect to our query on the fly.

Finally, the slice discovery problem in this paper is related to clustering of entities in
a web source [25] . However, it is unclear how to form features for entities. In addition,
existing clustering techniques [34], fail to provide any high level description of the content in
a cluster, thus they are ill-suited for solving the slice discovery problem.

6. Conclusions

In this paper, we presented Midas, an effective and highly-parallelizable system, that
leverages extracted facts in web sources, for detecting high-profit web source slices to fill
knowledge gaps. In particular, we defined a web source slice as a selection query that indicates
what to extract and from which web source. We designed an algorithm, Midasalg, to detect
high-quality slices in a web source and we proposed a highly-parallelizable framework to
scale Midas to million of web sources. We analyzed the performance of our techniques
in synthetic data scenarios, and we demonstrated that Midas is effective and efficient in
real-world settings.

However, there are still many challenges towards solving this problem due to the quality
of current extraction systems. There is a substantial number of missing extractions due to
the lack of training data and one cannot infer the quality of web sources with respect to
such missing extractions. In our future work, we plan to extend our techniques to conquer
the limitations of extractions and improve the quality of the derived web source slices.
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Appendix A. The objective function

The gain of web source slices

The purpose of web source slices is to augment the information in an existing knowledge
base. An intuitive way to measure how well a set of slices achieves this objective is to count
the new facts that the slices contribute to the knowledge base; this is the gain of a set of
web source slices.
Definition 13. Let E be an existing knowledge base, and S be a collection of web source
slices. The gain of S with respect to E is the number of facts selected by these slices that do
not appear in E:

G(S) =

∣∣∣∣∣ ⋃
S∈S

S \ E

∣∣∣∣∣
In our gain function, we take the union of facts and consider the gain of slices in the same

web domain as a whole, to avoid double-counting the gain for slices that have overlapping
facts. However, we do not penalize the overlap facts across different web domains because
acquiring data from multiple web domains helps us evaluate the utility of facts in the same
category.

The cost of web source slices

Using web source slices to augment a knowledge base incurs the cost of extracting the cor-
responding facts. We estimate this cost based on the common knowledge base augmentation
procedure [15, 27, 32]. This procedure follows three steps: crawling the web source to extract
the facts, de-duplicating facts that already exist in the knowledge base, and validating the
correctness of the newly-added facts. Given an existing knowledge base E , a set of web source
slices S from the web sources W, we estimate the cost as follows.
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Crawling. The first step of the augmentation process is to crawl and extract the facts in a
given web source. This requires training the crawler for the facts in each slice. We use a
unit cost fp to model the cost of training, which includes annotating and schema matching,
for each slice. The cost for the rest of the crawling process is proportional to the size of the
web source [18]. Measuring the size of web sources is hard due to their diverse design and
format; instead, we estimate it based on the total number of facts extracted from the web
sources, scaled proportional to an adjustable normalization factor fc:

Ccrawl (S) = |S| · fp +
∑

W∈W
fc · |TW |

De-duplication. A typical step in the augmentation process is to identify and purge redun-
dant facts before adding them to the knowledge base. This de-duplication is often performed
through linkage [7, 24, 22] between the facts of the slice and those of the knowledge base.
Thus, the de-duplication cost is proportional to the number of facts selected by the web
source slice, subject to an adjustable normalization factor (fd):

Cde-dup(S) = fd ·

∣∣∣∣∣ ⋃
S∈S

S

∣∣∣∣∣
Validation. Before adding facts to a knowledge base, it is essential to verify their validity.
The cost of this step is proportional to the new facts that the slice contributes, and sub-
ject to an adjustable normalization factor (fv) that depends on the employed validation
technique [37, 30]:

Cvalidate(S) = fv ·

∣∣∣∣∣ ⋃
S∈S

S \ E

∣∣∣∣∣
Finally, we compute the cost of slices in the same web domain C(S) as the sum of the

respective costs of the crawling, de-duplication, and validation steps.

C(S) = Ccrawl (S) + Cde-dup(S) + Cvalidate(S).

The four adjustable normalization factors included in the computation of each of the
three costs relate to the particular techniques used for the corresponding steps (e.g., different
de-duplication methods may result in different values for fd). In this paper, we set these
factors such that they are roughly proportional to the actual execution time of such techniques.
However, one can always adjust the setting of these factors. For our experiments, we use
the default values fp = 10, fc = 0.001, fd = 0.01, and fv = 0.1 (we switch to fp = 1 for the
running examples in the paper). Thus, de-duplication is more costly than crawling, and
validation is proportionally the most expensive operation except training.

The objective function

We measure the suitability of a collection of slices S under the same web domain for
augmenting a given knowledge base as the profit of the slice, namely, the difference between
the gain and the cost.
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Definition 14. Let S be the web source slices derived from web source W , we denote the
gain and the cost of S with respect to knowledge base E as G(S, E) (or G(S)) and C(S, E)
(or C(S)), respectively.

f(S) = G(S)− C(S).

The profit function underlines three important properties for web source slices.
Productivity. Midas prioritizes slices that can contribute a larger number of new facts: if
S1 contributes more new facts than S2, then G({S1}) > G({S2}).
Specificity. Midas prioritizes slices with fewer irrelevant facts: if S1 on W1 contributes the
same number of new facts as S2 onW2, but |TW1 | < |TW2 |, then Ccrawl ({S1}) < Ccrawl ({S2})
and f({S1}) > f({S2}).
Dissimilarity. Midas prioritizes slices with fewer facts overlapping with E : if S1 contributes
the same new facts and is extracted from the same web source as S2, but S1 has more facts
already appearing in E , then Cde-dup({S1}) > Cde-dup({S2}) and f({S1}) < f({S2}).

In our objective function f(S), we follow the state-of-the-art procedure and further
simplify it with several assumptions: we assume the gain and cost are linear with respect
to the number of (new) facts in all slices. However, such assumptions are not inherent in
Midas; one can adjust the gain and cost functions and use the same methodology to derive
high-profit web source slices.

Midas uses the above profit function as the objective function f(S) in Definition 8 to
identify the set of web source slices that are best-suited for augmenting a given knowledge
base. Note that although we define our gain and cost functions as linear functions over the
number of (new) facts in all slices, they are non-linear to the input S since slices in S may
overlap with each other.
Example 15. In Figure 4, there are three set of slices, {S2, S3}, {S5}, and {S6}, that cover
all the new facts in the web source. Among these slices, reporting S5 is intuitively the most
effective option, since S5 selects all new facts in the web source and covers zero existing one.
We reflect this intuition in our profit function (f(S)): slice {S5} has the same gain, but lower
de-duplication cost (6fd vs. 13fd), compared to slice {S6} as it contains fewer facts; slice
{S5} and slices {S2, S3} also has the same gain, but {S5} has lower crawling cost (fp vs.
2fp) as it avoids the unit cost for training an additional slice.

Appendix B. Proofs

B.1 Proof of Theorem 10

Theorem 11. The optimal slice discovery problem is NP-complete.

Proof. We demonstrate that the slice discovery problem is NP-complete by reducing the
set cover problem to a the slice discovery problem. Given an instance of a set cover problem
with a set of elements, U = {u1, ..., um}, and a collection of sets, S = {S1, ..., Sn} over the
elements such that ∪1≤i≤nSi = U , we construct the following slice discovery problem: for
each element ui ∈ U , we create a fact ti; for each set Si ∈ S, we create a slice S′i such that
all the facts that are associated with the elements ui ∈ Si are also covered by slice S′i; and
we set the existing knowledge as empty and adjust the parameters in the profit function with
fp = 1

|S|+1 and fc = fd = fv = 0.
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⇒ The optimal solution of the set cover problem is the optimal solution for the constructed
slice discovery problem.
Let I as the optimal solution for the set cover problem with |I| sets, the corresponding slices
J is the optimal solution for the slice discovery problem with profit |U | − |J |/(|S|+ 1). This
is because removing any of the slices in J will hurt the gain by at least 1, but save less than
1 in cost as ∀k > 0, (|J | − k)/(|S|+ 1) < 1. Replacing or adding slices in J will also hurt the
gain without improving the cost.
⇐ The optimal solution for the constructed slice discovery problem is the optimal solution of
the set cover problem.
Let J as the optimal solution for the slice discovery problem, the corresponding sets I is
the optimal solution for the set cover problem. First, J must cover all facts in the problem.
We may prove this through contradiction: let us assume J does not cover all facts, then
any collection of slices, e.g., J ′, that cover all facts will have a higher profit than J since
|J |/(|S| + 1) − |J ′|/(|S| + 1) < 1. In addition, among all slice collections that cover all
facts, |J | is minimum because otherwise it will not be the optimal solution. As a result, the
corresponding collection of sets, I, is also optimal.
Therefore, the slice discovery problem is NP-Complete.

B.2 Proof of Proposition 11 condition (2)

Proposition 12 (2). A slice S is canonical if slice S has at least two children slices that
are canonical.

Proof. Let Si = (Ci,Πi,Π
∗
i ) and Sj = (Cj ,Πj ,Π

∗
j ) as two children slices of slice S =

(C,Π,Π∗). We say S is also canonical if both Si and Sj are canonical. We prove this through
contradiction: Assume S is not canonical, it means that there must exist another slice
S′ = (C ′,Π,Π∗) such that C ⊂ C ′. Since S is the parent of Si and Sj , we know that Πi ⊂ Π
, Πj ⊂ Π, Πi

∗ ⊂ Π∗, and Πj
∗ ⊂ Π∗. As S′ and S cover the same set of entities and facts, the

above conclusion also holds for slice S′. However, since C ⊂ C ′, S cannot be the parent of
Si and Sj as there is at least another slice, S′, that is between Si and S (or Sj and S). This
contradicts with our initial assumption, therefore S must also be canonical.

Appendix C. A Running Example

Figure 7 demonstrates the two steps algorithm for identifying slices from a single web source
(Section 3.1). During the slice hierarchy construction step, Midasalg first creates three slices,
S1, S2, and S3, at level 3 from entities e1, e3, and e5, respectively, and one slice, S4, at level
2 from entities e2 and e4.

Midasalg then generates parent slices for slices at the lowest level. For example, Midasalg
generates three parent slices for slice S2: {c2, c4}, {c2, c6}, and {c4, c6}. While constructing
the slice hierarchy, Midasalg prunes non-canonical slices. For example, at level 2 in Figure 7b,
slices S4 and S5 are canonical slices (depicted with solid lines) because S4 is one of the initial
slices, defined by entities e2 and e4, and S5 has two canonical children, S2 and S3.

In order to record children slices correctly after pruning, Midasalg works at two levels of
the hierarchy at a time: it constructs the parent slices at level l − 1 before pruning slices
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S4:  

LB:?;  
Cur:? 

{c1, c6}

S2:  
LB:?; 
Cur: ? 

{c2, c4, c6} S3:  
LB:?;  
Cur: ? 

{c2, c5, c6}S1:  
LB:?;  
Cur:? 

{c1, c3, c6}

(a) Initial slices formed by entities.

S1:  
LB:0;  
Cur:-1.013 

S4:  

LB:?;  
Cur:? 

S5:  

LB:?;  
Cur:? 

S2:  
LB:1.657; 
Cur: 1.657 

S3:  
LB: 1.657;  
Cur: 1.657 

  {c1, c3}
{c1, c6}

  {c3, c6}   {c4, c6}   {c2, c4}   

{c2, c6}
{c2, c5}   {c5, c6}

{c1, c3, c6} {c2, c4, c6} {c2, c5, c6}

  {c1}   {c2}  {c3}   {c4}   {c5}  {c6}

(b) Pruning non-canonical slices (Level 2).

S1:  
LB:0;  
Cur:-1.013 

S4:  
LB:0;  
Cur:-1.083 

S2:  

S5:  
LB:4.327;  
Cur:4.327 

LB:1.657; 
Cur: 1.657 

{c2, c4, c6}

{c1, c6} {c2, c6}

  {c1}   {c2}  {c3}   {c4}   {c5}  {c6}

S2:  
LB:1.657; 
Cur: 1.657 

S3:  
LB: 1.657;  
Cur: 1.657 

Level	3	

Level	2	

Level	1	

{c1, c3, c6} {c2, c4, c6} {c2, c5, c6}

(c) Pruning low-profit slices (Level 2).

Figure 7: Constructing the slice hierarchy with Midasalg for the facts of Figure 2. LB is
short for the profit lower bound (fLB(S)), and Cur is short for current profit (f(S)). The
initial slices, identified by extracted entities, are highlighted in light gray, and identified
canonical slices in each step are depicted with solid lines. If the current profit of a slice
is lower than the lower bound, we highlight it in red; these slices are low-profit and are
eliminated during the pruning stage. The remaining, desired slices are depicted in bold black
lines, and have current profit greater or equal to the lower bound.

at level l. For example, in Figure 7, Midasalg has constructed the parent slices at level 1,
as it is pruning slices at level 2. The removal of a non-canonical slice S, also updates the
children list of the slice’s parent, Sp. Each child Sc of the removed slice S becomes a child of
Sp if Sc is not already a descendant of Sp through another node. In Figures 7b–7c, Midasalg
prunes the non-canonical slice ({c1, c3}, ..., ...) and makes its child slice S1 a direct child of
the parent slice ({c3}, ..., ...). However, it does not make S1 a child of ({c1}, ..., ...) since S1

is a descendant of ({c1}, ..., ...) through slice node S4.
Besides non-canonical slices, Midasalg also prunes low-profit slices. For example, in

Figure 7b there are two canonical slices, S4 and S5, remaining at level 2. To prune low-profit
slices, Midasalg first calculates the statistics of these two slices and then prunes S4 since its
profit is negative. After pruning non-canonical and low-profit slices (Figure 7c), Midasalg
significantly reduces the number of slices at level 2 from 8 to 1.

Appendix D. Experiment setup and additional results

D.1 Experiment Setup

ReVerb/NELL Datasets Evaluation Setup. Due to the scale of the ReVerb and NELL
datasets, we report the precision of the returned slices. We consider a web source slice as
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Dataset # of facts # of pred. # of URLs Existing KB

ReVerb 15M 327K 20M Empty
NELL 2.9M 330 340K Empty
ReVerb-Slim 859K 33K 100 Adjustable
NELL-Slim 508K 280 100 Adjustable

Figure 8: Statistics of real-world datasets.

URL Desired slices description

http://www.nationsencyclopedia.com Information about nations
https://www.drugs.com Medicinal chemical
https://www.citytowninfo.com/places US city profiles
http://www.u-s-history.com/ Events in US history
http://blogs.abcnews.com No desired slice
http://voices.washingtonpost.com No desired slice

Figure 9: A snapshot of selected web sources in the silver standard: Among 100 selected web
sources, 50 of them contain at least one high-profit slice.

“correct” if it satisfies two criteria: (1), whether it provides information that is absent from
the existing knowledge base; and (2), whether it allows for easy annotation. We implement
these two criteria based on two statistics: (a) The ratio (Rnew) of new facts for the covered
entities; (b) The ratio (Ranno) of entities that provide homogeneous information. To evaluate
a given web source slice, we first randomly select K or fewer entities and their web pages;
then, we display them to human workers, together with the slice description and existing facts
associated with the entity; finally, we ask human workers to label the above two statistics.
For this set of experiments on ReVerb and NELL, since the initial knowledge base is empty,
the first ratio Rnew becomes binary: it equals to 1.0 when there exist facts of the associated
entities, or 0.0 otherwise. In our experiment, we set K = 20 and mark a slice as “correct” if
both statistics are above 0.5.
ReVerb-Slim/NELL-Slim Datasets Evaluation Setup. For ReVerb-Slim and NELL-
Slim datasets, we select the web sources and generate the Initial Silver Standard as follows:
(1) we manually select 100 web sources, such that 50 of them contain at least one high-profit
slice, with respect to an empty knowledge base; (2) we apply all algorithms on the selected
web sources with an empty knowledge base; (3) we manually label slices and web sources
returned by the algorithms, and add those labeled as correct to the Initial Silver Standard.
We demonstrate a snapshot of the selected web sources and the description of the labeled
silver standard slices for the ReVerb-Slim dataset in Figure 9. As described earlier, the
initial silver standard allows us to adjust the coverage of the existing knowledge base and the
optimal output. In our experiment, we evaluate the performance of the different methods
against knowledge bases of varied coverage, ranging from 0% (empty KB) to 80%.

D.2 Evaluation on Synthetic Data

We use synthetic data to perform a deeper analysis of the tradeoffs between the three
algorithms, Greedy, Midas, and AggCluster, that use our objective function and to
study the effectiveness of the pruning strategies of our proposed algorithm, Midas. We
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(c) Coverage ratio = 0.8.
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(f) Comparison on F-measure.

Figure 10: Comparison of algorithms on the NELL-Slim dataset. Greedy and Naïve
perform poorly. AggCluster competes with Midas, but is significantly slower (Figure 6d).
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Figure 11: Comparison of the methods that use our objective function. Midas outperforms
AggCluster in effectiveness and efficiency. Greedy is less effective than Midas, but it is
faster.

create synthetic data by randomly generating facts in a web source based on user-specified
parameters: the number of slices k, the number of optimal slices m ≤ k (output size), and
the number of facts n (input size): For each slice, we first generate its selection rule that
consists 5 conditions and then creates n · 1% entities in this slice. To better simulate the
real-world scenario, we also introduce some randomness while generating the facts in the
optimal slice: for each entity, the probability of having a condition in the corresponding
selection rule is above 0.95 and the probability of having a condition absent from the selection
rule is below 0.05. Among k slices, we select m of them as optimal slices and construct the
existing knowledge base accordingly: for non-optimal slices, we randomly select 0.95 of their
facts and add them in the existing knowledge base. In addition, we ensure that each optimal
web source slice covers at least 5% of the total input facts.

D.2.1 Comparison on accuracy and efficiency

We compare the Greedy, Midas, and AggCluster in terms of their total running times
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Figure 12: Midas’s pruning strategies are effective at reducing the hierarchy size by several
orders of magnitude.

and their f-measure scores (Figure 11). In our first experiment, we fix b = 20,m = 10 (10
optimal slices out of 20 slices in a web source), and range the number of facts from 1,000 to
10,000. Midas remains highly accurate in detecting web source slices in all these settings.
However, due to its time complexity, the execution time of Midas grows linearly with the
number of facts. AggCluster tends to make more mistakes when there are more facts and
its execution time grows at a significantly higher rate than Midas. The greedy algorithm,
Greedy, runs much faster than the other algorithms, but it can only detect one out of ten
optimal slices.

In our second experiment, we use a web source with 5000 facts (n = 5000) on 20 slices
(b = 20), and vary the number of optimal slices in the web source from 1 to 10. We report
the execution time and f-measure in Figures 11d and 11c, respectively. AggCluster is
much slower than Midas and it fails to identify the optimal slices under several settings.
This is expected as AggCluster only combines two slices at a time, thus it needs more
iterations to finish and the probability of reaching a local optimum is much higher than
Midas. Notably, Midas achieves perfect f-measure across the board. Greedy is three times
faster than Midas, but its f-measure score declines quickly as the number of slices increases.
This is expected, as Greedy can only retrieve a single high-profit slice. At the same time,
Greedy is able to find the optimal slice when there is only one.

D.2.2 Evaluating the pruning strategy of MIDAS

Midas prunes non-canonical slices and low-profit slices while constructing the hierarchy
(Section 3.1.1). Here, we further study the effectiveness of these two pruning strategies
by comparing the number of slices in the constructed hierarchy. More specifically, using
synthetic data, we compare Midas with both non-canonical and low-profit slice pruning
(Midas-PruneAll), Midas with the pruning of non-canonical slices strategy only (Midas-
PruneNonCan), and Midas with no pruning strategy (Midas-NoPrune). Figure 12a
shows the number of slices with increasing number of facts (n = 1000 ∼ 10000) and a fixed
number of optimal slices (m = 10). Midas-PruneAll generates significantly fewer slices
than Midas-PruneNonCan. Midas-NoPrune needs to examine every non-empty slice in
the web source, thus produces several orders of magnitude more slices than Midas-PruneAll
and Midas-PruneNonCan. Figure 12b demonstrates the number of slices with fixed num-
ber of facts (n = 5000) and an increasing number of optimal slices (m = 1 ∼ 10). Similar to
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our observation in the previous experiment, Midas-PruneNonCan and Midas-NoPrune
generate significantly more slices than Midas-PruneAll across all settings.
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