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ABSTRACT

Federated learning distributes model training among a multitude of agents, who,
guided by privacy concerns, perform training using their local data but share only
model parameter updates, for iterative aggregation at the server. In this work, we
explore the threat of model poisoning attacks on federated learning initiated by a
single, non-colluding malicious agent where the adversarial objective is to cause
the model to mis-classify a set of chosen inputs with high confidence. We explore
a number of strategies to carry out this attack, starting with simple boosting of
the malicious agent’s update to overcome the effects of other agents’ updates. To
increase attack stealth, we propose an alternating minimization strategy, which
alternately optimizes for the training loss and the adversarial objective. We fol-
low up by using parameter estimation for the benign agents’ updates to improve
on attack success. Finally, we use a suite of interpretability techniques to gener-
ate visual explanations of model decisions for both benign and malicious models,
and show that the explanations are nearly visually indistinguishable. Our results
indicate that even a highly constrained adversary can carry out model poisoning
attacks while simultaneously maintaining stealth, thus highlighting the vulnera-
bility of the federated learning setting and the need to develop effective defense
strategies.

1 INTRODUCTION

Federated learning introduced by [McMabhan et al.|(2017)) has recently emerged as a popular imple-
mentation of distributed stochastic optimization for large-scale deep neural network training. It is
formulated as a multi-round strategy in which the training of a neural network model is distributed
between multiple agents. In each round, a random subset of agents, with local data and computa-
tional resources, is selected for training. The selected agents perform model training and share only
the parameter updates with a centralized parameter server, that facilitates aggregation of the updates.
Motivated by privacy concerns, the server is designed to have no visibility into an agents’ local data
and training process. The aggregation algorithm is agnostic to the data distribution at the agents.

In this work, we exploit this lack of transparency in the agent updates, and explore the possibility
of a single malicious agent performing a model poisoning attack. The malicious agent’s objective is
to cause the jointly trained global model to misclassify a set of chosen inputs with high confidence,
i.e., it seeks to introduce a targeted backdoor in the global model. In each round, the malicious
agent generates its update by optimizing for a malicious objective different than the training loss for
federated learning. It aims to achieve this by generating its update by directly optimizing for the
malicious objective. However, the presence of a multitude of other agents which are simultaneously
providing updates makes this challenging. Further, the malicious agent must ensure that its update
is undetectable as aberrant.

Contributions: To this end, we propose a sequence of model poisoning attacks, with the aim of
achieving the malicious objective while maintaining attack stealth. For each strategy, we consider
both attack strength as well as stealth. We start with malicious update boosting, designed to negate
the combined effect of the benign agents, which enables the adversary to achieve its malicious ob-
jective with 100% confidence. However, we show that boosted updates can be detected as aberrant
using two measures of stealth, accuracy checking on the benign objective and parameter update
statistics. Observing that the only parameter updates that need to be boosted are those that con-
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tribute to the malicious objective, we design an alternating minimization strategy that improves
attack stealth. This strategy alternates between training loss minimization and the boosting of up-
dates for the malicious objective and is able to achieve high success rate on both the benign and
malicious objectives. In addition, we show that estimating the other agents’ updates improves attack
success rates. Finally, we use a suite of interpretability techniques to generate visual explanations of
the decisions made by a global model with and without a targeted backdoor. Interestingly, we ob-
serve that the explanations are nearly visually indistinguishable. This establishes the attack stealth
along yet another axis of measurement and indicates that backdoors can be inserted without drastic
changes in model focus at the input.

Summary of Empirical Results: In our experiments, we consider adversaries which only control
a single malicious agent and at a given time step, have no visibility into the updates that will be
provided by the other agents. We demonstrate that these adversaries can influence the global model
to misclassify particular examples with high confidence. We work with both the Fashion-MNIST
Xiao et al. (2017) and Adult Censusﬂ datasets and for settings with both 10 and 100 agents, our
attacks are able to ensure the global model misclassifies a particular example in a target class with
100% confidence. Our alternating minimization attack further ensures that the global model con-
verges to the same test set accuracy as the case with no adversaries present. We also show that a
simple estimation of the benign agents’ updates as being identical over two consecutive rounds aids
in improving attack success.

Related Work: While data poisoning attacks (Biggio et al., 2012} Rubinstein et al., [2009; [Mei &
Zhu, 2015; [Xiao et al., 2015; Mei & Zhu, |2015; |[Koh & Liang, 2017; |Chen et al., [2017a} Jagielski
et al.,2018)) have been widely studied, model poisoning attacks are largely unexplored. A number of
works on defending against Byzantine adversaries consider a threat model where Byzantine agents
send arbitrary gradient updates (Blanchard et al., 2017 [Chen et al., |2017b; Mhamdi et al.| 2018;
Chen et al. 2018 |Yin et al.l [2018). However, the adversarial goal in these cases is to ensure a
distributed implementation of the Stochastic Gradient Descent (SGD) algorithm converges to ‘sub-
optimal to utterly ineffective models’, quoting from [Mhamdi et al.| (2018). In complete constrast,
our goal is to ensure convergence to models that are effective on the test set but misclassify certain
examples. In fact, we show that the Byzantine-resilient aggregation mechanism ‘Krum’ Blanchard
et al| (2017) is not resilient to our attack strategies (Appendix [C). Concurrent work by Bagdasaryan
et al.| (2018)) considers multiple colluding agents performing poisoning via model replacement at
convergence time. In contrast, our goal is to induce targeted misclassification in the global model
by a single malicious agent even when it is far from convergence while maintaining its accuracy for
most tasks. In fact, we show that updates generated by their strategy fail to achieve either malicious
or benign objectives in the settings we consider.

2 FEDERATED LEARNING AND MODEL POISONING

In this section, we formulate both the learning paradigm and the threat model that we consider
throughout the paper. Operating in the federated learning paradigm, where model weights are shared
instead of data, gives rise to the model poisoning attacks that we investigate.

2.1 FEDERATED LEARNING

The federated learning setup consists of K agents, each with access to data D;, where |D;| = ;.
The total number of samples is ) . I; = . Each agent keeps its share of the data (referred to as a
shard) private, i.e. D; = {x¢ - -- XL} is not shared with the server S. The objective of the server is
to learn a global parameter vector w € R™, where n is the dimensionality of the parameter space.
This parameter vector minimizes the losﬂ over D = U,;D; and the aim is to generalize well over
Diest» the test data. Federated learning is designed to handle non-i.i.d partitioning of training data
among the different agents.

At each time step ¢, a random subset of k agents is chosen for aggregation. Every agent i € [k],
minimizes the empirical loss over its own data shard D;, by starting from the global weight vector
w., and running an algorithm such as SGD for E epochs with a batch size of B. At the end

'nttps://archive.ics.uci.edu/ml/datasets/adult
Zapproximately for non-convex loss functions since global minima cannot be guaranteed
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of its run, each agent obtains a local weight vector w'*! and computes its local update 67! =

WE—H — w,, which is sent back to the server. To obtain the global weight vector thH for the
next iteration, any aggregation mechanism can be used. Following McMahan et al,|(2017), we use
synchronous training (i.e., server waits till it has received updates from all the agents selected for
the time step) and weighted averaging based aggregation: thH =wh + Zie[k] aiéfH, where

171’ = oy and ). a; = 1. We also experiment with the Byzantine-resilient aggregation mechanism

‘Krum’ (Blanchard et al, 2017). Details are in Appendix@

2.2 THREAT MODEL: MODEL POISONING

Traditional poisoning attacks deal with a malicious agent who poisons some fraction of the data
in order to ensure that the learned model satisfies some adversarial goal. We consider instead an
agent who poisons the model updates it sends back to the server. This attack is a plausible threat
in the federated learning setting as the model updates from the agents can (i) directly influence the
parameters of the global model via the aggregation algorithm; and (ii) display high variability, due
to the non-i.i.d local data at the agents, making it harder to isolate the benign updates from the
malicious ones.

Adversary Model: We make the following assumptions regarding the adversary: (i) there is exactly
one non-colluding, malicious agent with index m (limited effect of malicious updates on the global
model); (ii) the data is distributed among the agents in an i.i.d fashion (making it easier to discrim-
inate between benign and possible malicious updates and harder to achieve attack stealth); (iii) the
malicious agent has access to a subset of the training data D,,, as well as to auxiliary data D,,x drawn
from the same distribution as the training and test data that are part of its adversarial objective. Our
aim is to explore the possibility of a successful model poisoning attack even for a highly constrained
adversary.

A malicious agent can have one of two objectives with regard to the loss and/or classification of a
data subset at any time step ¢ in the model poisoning setting:

1. Increase the overall loss: In this case, the malicious agent wishes to increase the overall
loss on a subset Dy = {x;,y;}i_, of the data. The adversarial objective is in this setting is
A(Dp {xi,yi }iy W) = argmaxy,:. L({xi,yi}i_,,wL), where L(-,-) is an appropriately de-
fined loss function. This objective corresponds to the malicious agent attempting to cause untargeted
misclassification.

2. Obtain desired classification outcome: The malicious agent has data samples {x; }7_, with true
labels {y;}7_, that have to be classified as desired target classes {7;}/_, implying that the adver-
sarial objective is A(Dy, {xi, Ti }{_1, Wg) = argming: L({x;,7;}{_1, wg). This corresponds to
a targeted misclassification attempt by the malicious agent.

In this paper, we will focus on malicious agents trying to attain the second objective, i.e. targeted
misclassification. At first glance, the problem seems like a simple one for the malicious agent to
solve. However, it does not have access to the global parameter vector wi, for the current iteration
as is the case in standard poisoning attacks (Mufioz-Gonzalez et al., |2017; Koh & Liang, 2017)
and can only influence it though the weight update d!, it provides to the server S. The simplest
formulation of the optimization problem the malicious agent has to solve such that her objective is
achieved on the # iteration is then

argmin L({Xiv Ti}::lv WtG)a
5“'

1
st. wh=wh !+ Z ;0! + oot . M

i€[k]\m

2.3  EXPERIMENTAL SETUP

In order to illustrate how our attack strategies work with actual data and models, we use two quali-
tatively different datasets. The first is an image dataset, Fashion-MNISTE](Xiao et al.,[2017) which
consists of 28 x 28 grayscale images of clothing and footwear items and has 10 output classes. The

3Serves as a drop-in replacement for the commonly used MNIST dataset (LeCun et al.,|1998), which is not
representative of modern computer vision tasks
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(a) Metrics of interest for baseline (left) and simultaneous training attacks (right). Unified legend in right plot.
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(b) Baseline attack weight update distribu- (c) Simultaneous training weight update dis-
tion att = 4. tribution at ¢ = 4.

Figure 1: Metrics of interest and representative weight update distributions for the baseline and
simultaneous training attacks. Figures[Ibland [Ic|show weight update distributions for both benign
(left) and malicious agents (right).

training set contains 60,000 data samples while the test set has 10,000 samples. We use a Convolu-
tional Neural Network achieving 91.7% accuracy on the test set for the model architecture.

The second dataset is the UCI Adult datasetEI, which has over 40,000 samples containing information
about adults from the 1994 US Census. The classification problem is to determine if the income for a
particular individual is greater (class ‘0°) or less (class ‘1°) than $50, 000 a year. For this dataset, we
use a fully connected neural network achieving 84.8% accuracy on the test set (Fernandez-Delgado
et al.| 2014) for the model architecture. Owing to space constraints, all results for this dataset are in
the Appendix.

For both datasets, we study the case with the number of agents k set to 10 and 100. When k& = 10,
all the agents are chosen at every iteration, while with k& = 100, a tenth of the agents are chosen
at random every iteration. We run federated learning till a pre-specified test accuracy (91% for
Fashion MNIST and 84% for the Adult Census data) is reached or the maximum number of time
steps have elapsed (40 for £ = 10 and 50 for £ = 100). For most of our experiments, we consider
the case when r = 1, which implies that the malicious agent aims to misclassify a single example in
a desired target class. For both datasets, a random sample from the test set is chosen as the example
to be misclassified. For the Fashion-MNIST dataset, the sample belongs to class ‘5’ (sandal) with
the aim of misclassifying it in class “7° (sneaker) and for the Adult dataset it belongs to class ‘0’
with the aim of misclassifying it in class ‘1°.

3 STRATEGIES FOR MODEL POISONING ATTACKS

We begin by investigating baseline attacks which do not conform to any notion of stealth. We then
show how simple detection methods at the server may expose the malicious agent and explore the
extent to which modifications to the baseline attack can bypass these methods.

‘nttps://archive.ics.uci.edu/ml/datasets/adult
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3.1 LIMITED INFORMATION POISONING OBJECTIVE

In order to solve the exact optimization problem needed to achieve their objective, the malicious
agent needs access to the current value of the overall parameter vector w,, which is inaccessible.
This occurs due to the nature of the federated learning algorithm, where S computes w, once it has
received updates from all agents. In this case, they have to optimize over an estimate of the value of
wh:

A(Dma {Xi7 Ti};:h vAVtG)’

st W = f(Zy,), ?

where f(-) is an estimator for w, based on all the information Z, available to the adversary. We
refer to this as the limited information poisoning objective. The problem of choosing a good esti-
mator is deferred to Section 4| and the strategies discussed in the remainder of this section make the

e In other words, the malicious agent ignores the effects of

assumption that Wi, ~ wi, ' + a,, 0!
other agents. As we shall see, this assumption is often enough to ensure the attack works in practice.

m*

3.2 BASELINE ATTACK

Using the approximation that wi, = wgl + a8t , the malicious agent just has to meet the
adversarial objective argming, L({xi, 7i}{_;, W¢;). Depending on the exact structure of the loss, an
appropriate optimizer can be chosen. For our experiments, we will rely on gradient-based optimizers
such as SGD which work well for neural networks. In order to overcome the effect of scaling by «,
at the server, the final update dﬁn that is returned, has to be boosted.

Explicit Boosting: Mimicking a benign agent, the malicious agent can run E,,, steps of a gradient-

based optimizer starting from th_l to obtain w!, which minimizes the loss over {x;, 7;}/_;. The

malicious agent then obtains an initial update 8!, = w! — Wg_l. However, since the malicious
agent’s update tries to ensure that the model learns labels different from the true labels for the data
of its choice (Dyyx), it has to overcome the effect of scaling, which would otherwise mostly nullify
the desired classification outcomes. This happens because the learning objective for all the other
agents is very different from that of the malicious agent, especially in the i.i.d. case. The final
weight update sent back by the malicious agent is then 8!, = A&, where X is the factor by which
the malicious agent boosts the initial update. Note that if the assumption W, ~ wg_l + bt
holds, and A = i, then w, ~ w’,, implying that the global weight vector should now satisfy the
malicious agent’s objective. This method indirectly accounts for the presence of the other agents
when using a boosting factor of O%

Implicit Boosting: While the loss is a function of a weight vector w, we can use the chain rule to
obtain the gradient of the loss with respect to the weight update 6, i.e. VsL = «,, VL. Then,
initializing & to some appropriate d;,;, the malicious agent can directly minimize with respect to 4.

Results: In the attack with explicit boosting, the mali- 1 Implicit Boosting Baseline
cious agent runs F,, = 5 steps of the Adam optimizer g o

(Kingma & Ba, |2015)) to obtain 8!, and then boosts it 06 Lae Co = W
Conf. Global -
0 4 5 '7)

by — = k. The results for the case with k& = 10 are _

shown in the plot on the left in Figure[Ia] The attack is oz L M /
' Py

0 i i

Confidence/Success

clearly successful at causing the global model to clas- R
sify the chosen example in the target class. In fact, after L2 03 4 5,6 7 8 910
t = 3, the global model is highly confident in its (in-
correct) prediction. The baseline attack using implicit
boosting (Figure[2)) is much less successful than the ex-
plicit boosting baseline, with the adversarial objective only being achieved in 4 of 10 iterations.
Further, it is computationally more expensive, taking an average of 2000 steps to converge at each
time step, which is about 4x longer than a benign agent. Since consistently delayed updates from
the malicious agent might lead to it being dropped from the system in practice, we focus on explicit
boosting attacks for the remainder of the paper as they do not add as much overhead.

Figure 2: Implicit boosting attack metrics



Under review as a conference paper at ICLR 2019

3.2.1 MEASURING ATTACK STEALTH AT SERVER

While the baseline attack is successful at meeting the malicious agent’s objective, there are methods
the server can employ in order to detect if an agent’s update is malicious. We now discuss two
possible methods and their implication for the baseline attack. We note that neither of these methods
are part of the standard federated learning algorithm nor do they constitute a full defense at the server.
They are merely metrics that may be utilized in a secure system.

Accuracy checking: When any agent sends a weight update to the server, it can check the validation
accuracy of w! = wgl + 8¢, the model obtained by adding that update to the current state of the
global model. If the resulting model has a validation accuracy much lower than that of the other
agents, the server may be able to detect that model as coming from a malicious agent. This would
be particularly effective in the case where the agents have i.i.d. data.

In Figure [Ta] the left plot shows the accuracy of the malicious model on the validation data (Acc.
Mal) at each iteration. This is much lower than the accuracy of the global model (Acc. Global) and

is no better than random for the first few iterations.
70

Weight update statistics: There are both qual- 65
itative and quantitative methods the server can 60 :
apply in order to detect weight updates which g s % 2
are malicious, or at the least, different from a g s
majority of the other agents. We investigate A O
the effectiveness of two such methods. The ©

first, qualitative method, is the visualization s {
of weight update distributions for each agent. w0
Since the adversarial objective function is dif- N 4 6 s 0 1
ferent from the training loss objective used by
all the benign agents, we expect the distribution
of weight updates to be very different.

Baseline (Benign
Baseline (Malicious
Alt. Min. (Benign

Alt. Min. (Malicious) ==
Alt. Min. w/ dist. (Benign
Alt. Min. w/ dist. (Malicious)

Time

This is borne out by the representative weight
update distribution at ¢ = 4 observed for the
baseline attack in Figure Compared to the
weight update from a benign agent, the update
from the malicious agent is much sparser and
has a smaller range. This difference is more
pronounced for later time steps (see Figure O3]

in Appendix B).

Figure 3: Minimum and maximum Lo distances
between weight updates. For each strategy, we
show the spread of Lo distances between all the
benign agents and between the malicious agent
and the benign agents. Going from the baseline
attack to the alternating minimization attack with
and without distance constraints, we see that the
gap in the spread of distances reduces, making the

The second, quantitative method uses the
spread of pairwise L,, distances between weight
update vectors to identify outliers. At each time
step, the server computes the pairwise distances

attack stealthier. The benign agents behave al-
most identically across strategies, indicating that
the malicious agent does not interfere much with
their training.

between all the weight updates it receives, and

flags those weight updates which are either much closer or much farther away than the others. In
Figure 3] the spread of L, distances between all benign updates and between the malicious update
and the benign updates is plotted. For the baseline attack, both the minimum and maximum distance
away from any of the benign updates keeps decreasing over time steps, while it remains relatively
constant for the other agents. This can enable detection of the malicious agent.

3.3 ATTACK WITH SIMULTANEOUS TRAINING

To bypass the two detection methods discussed in the previous section, the malicious agent can try
to simultaneously optimize over the adversarial objective and training loss for its local data shard
D,,. The resulting objective function is then argming: L({x;,7;:}{_,,W5) + kL(D,,, w},). Note
that for the training loss, the optimization is just performed with respect to w!,, as a benign agent

would do. When doing explicit boosting, W, is replaced by wl, as well, and the initial weight

update 5}571 is boosted by A before being sent to the server. This is the only attack strategy explored
in concurrent and independent work by [Bagdasaryan et al.| (2018)).
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(a) Metrics of interest for alternating minimization attack without (left) and with distance constraints(right).

140000

Benign Benign
Malicious 60000 Malicious
120000

50000
100000
80000
60000

40000

20000

04 04
-0.20 =015 -0.10 -0.05 000 005 010 015 020 -0.20 =015 -0.10 -0.05 000 005 010 015 020
Weight values Weight values

(b) Alternating minimization attack weight(c) Alternating minimization attack with dis-
update distribution at t = 4 tance constraints weight update distribution
att =4

Figure 4: Metrics of interest and representative weight update distributions for the alternating mini-
mization attack with and without distance constraints.

Results: In practice, we optimize over batches of D,,, and concatenate each batch with the single
instance {x,7} to be misclassified, ensuring that the adversarial objective is satisfied. In fact, as
seen in Figure [T]in the plot on the right, the adversarial objective is satisfied with high confidence
from the first time step ¢ = 1.

Effect on stealth: Since the entire weight update corresponding to both adversarial and training
objectives is boosted, the accuracy of w, on the validation is low throughout the federated learning
process. Thus, this attack can easily be detected using the accuracy checking method. Further, while
the weight update distribution for this attack (Figure|lc) is visually similar to that of benign agents,
its range differs, again enabling detection.

3.4 ALTERNATING MINIMIZATION FORMULATION

The malicious agent only needs to boost the part of the weight update that corresponds to the adver-
sarial objective. In the baseline attack, in spite of this being the entire update, the resulting distribu-
tion is sparse and of low magnitude compared to a benign agent’s updates. This indicates that the
weights update needed to meet the adversarial objective could be hidden in an update that resembled
that of a benign agent. However, as we saw in the previous section, boosting the entire weight up-
date when the training loss is included leads to low validation accuracy. Further, the concatenation
strategy does not allow for parts of the update corresponding to the two different objectives to be
decoupled.

To overcome this, we propose an alternating minimization attack strategy which works as follows for
iteration ¢. For each epoch 4, the adversarial objective is first minimized starting from w’. 1, giving

m

an update vector 8%, This is then boosted by a factor A and added to w’*. Finally, the training

loss for that epoch is minimized starting from W' = w1t + \§%¢, providing the malicious weight
vector wi! for the next epoch. The malicious agent can run this alternating minimization until both

the adversarial objective and training loss have sufficiently low values.

Results: In Figure [da] the plot on the left shows the evolution of the metrics of interest over itera-
tions. The alternating minimization attack is able to achieve its goals as the accuracy of the malicious
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model closely matches that of the global model even as the adversarial objective is met with high
confidence for all time steps starting from ¢ = 3.

Effect on stealth: This attack can bypass the accuracy checking method as the accuracy on test
data of the malicious model is close to that of the global model. Qualitatively, the distribution of the
malicious weight update (Figure b)) is much more similar to that of the benign weights as compared
to the baseline attack. Further, in Figure [3] we can see that the spread in distances between the
malicious updates and benign updates much closer to that between benign agents compared to the
baseline attack. Thus, this attack is stealthier than the baseline.

3.5 CONSTRAINING THE WEIGHT UPDATE

To increase the attack stealth, the malicious agent can also add a distance-based constraint on v?ri;f,
which is the intermediate weight vector generated in the alternating minimization strategy. There
could be multiple local minima which lead to low training loss, but the malicious agent needs to
send back a weight update that is as close as possible (1n an appropriate distance metric) to the

update they would have sent had they been benign. So, w’! is constramed with respect to w!, ...,

obtained by minimizing the training loss over D,, starting from WG , i.e. with the malicious agent
mimicking a benign one.

For our experiments, we use the L, norm as a constraint on w’?, the weight vector obtained at the
end of the training loss minimization phase, so p||wm pen — Wot||2 is added to the loss function.
Constraints based on the empirical distribution of wezghts such as the Wasserstein or total variation
distances may also be used.

Results and Effect on stealth: The adversarial objective is achieved at the global model with high
confidence starting from time step ¢ = 2 and the success of the malicious model on the benign
objective closely tracks that of the global model throughout. The weight update distribution for this
attack (Figure[dc) is again similar to that of a benign agent. Further, in Figure[3] we can see that the
distance spread for this attack closely follows and even overlaps that of benign updates throughout,
making it hard to detect using the Lo distance metric.

4 IMPROVING ATTACK PERFORMANCE THROUGH ESTIMATION

In this section, we look at how the malicious agent can choose a better estimate for the effect of the
other agents’ updates at each time step that it is chosen. In the case when the malicious agent is not
chosen at every time step, this estimation is made challenging by the fact that it may not have been
chosen for many iterations.

4.1 ESTIMATION SETUP

The malicious agent’s goal is to choose an appropriate estimate for 6tk]\m = Zle[k}\m ;6! from

Eq. [I} At a time step ¢t when the malicious agent is chosen, the following 1nformat10n is avaﬂable
to them from the previous time steps they were chosen: i) Global parameter vectors wG wG -1
ii) Malicious weight updates 6t0 6’5 ; and iii) Local training data shard D,,, where to is the
first time step at which the mahclous agent is chosen. Given this information, the malicious agent

computes an estimate 5[tk]\m which it can use to correct for the effect of other agents in two ways:

Post- optimization correction: In this method, once the malicious agent computes its weight update
8!, it subtracts /\ﬁt K\m from it before sending it to the server. If 6[k]\ = J[k I\ and A = —, this

will negate the effects of the other agents. However, due to estimation inaccuracy and the fact that
the optimizer has not accounted for this correction, this method leads to poor empirical performance.

Pre-optimization correction: Here, the malicious agent assumes that Wi, = wi ' + 6[k]\m

Q61+, Tn other words, the malicious agent optimizes for 8¢, assuming it has an accurate estimate
of the other agents’ updates. For attacks which use explicit boosting, this involves starting from

14 5[tk]\m instead of just wi; !
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Figure 5: Metrics of interest for the baseline and alternating minimization attacks with explicit
boosting and previous step estimation.

4.2 ESTIMATION STRATEGIES AND RESULTS

When the malicious agent is chosen at time step ¢ E[, information regarding the probable updates
from the other agents can be obtained from the previous time steps at which the malicious agent was
chosen.

Previous step estimate: In this method, the malicious agent’s estimate 5fk]\m assumes that the
other agents’ cumulative updates were the same at each step since ¢’ (the last time step at which at

t t/ st/
_wt s ..
Fa—¥¢Om In the case when the malicious agent

. . . St _ ost—1
is chosen at every time step, this reduces to 6[k]\m = 6[k]\m.

Results: Attacks using previous step estimation with the pre-optimization correction are more effec-
tive at achieving the adversarial objective for both the baseline and alternating minimization attacks.
In Figure[3] the global model misclassifies the desired sample with a higher confidence for both the
baseline and alternating minimization attacks at t = 2.

. . . At _
the malicious agent was chosen), i.e. 5[k]\m =

5 INTERPRETING POISONED MODELS

Neural networks are often treated as black boxes with little transparency into their internal repre-
sentation or understanding of the underlying basis for their decisions. Interpretability techniques
are designed to alleviate these problems by analyzing various aspects of the network. These include
(i) identifying the relevant features in the input pixel space for a particular decision via Layerwise
Relevance Propagation (LRP) techniques (Montavon et al.| (2015)); (ii) visualizing the association
between neuron activations and image features (Guided Backprop (Springenberg et al.|(2014)), De-
ConvNet (Zeiler & Fergus|(2014))); (iii) using gradients for attributing prediction scores to input fea-
tures (e.g., Integrated Gradients (Sundararajan et al.| (2017)), or generating sensitivity and saliency
maps (SmoothGrad (Smilkov et al|(2017)), Gradient Saliency Maps (Simonyan et al.[|(2013))) and
so on. The semantic relevance of the generated visualization, relative to the input, is then used to
explain the model decision.

These interpretability techniques, in many ways, provide insights into the internal feature represen-
tations and working of a neural network. Therefore, we used a suite of these techniques to try and
discriminate between the behavior of a benign global model and one that has been trained to satisfy
the adversarial objective of misclassifying a single example. Figure [6] compares the output of the
various techniques for both the benign and malicious models on a random auxiliary data sample.
Targeted perturbation of the model parameters coupled with tightly bounded noise ensures that the
internal representations, and relevant input features used by the two models, for the same input, are
almost visually imperceptible. This reinforces the stealth achieved by our attacks along with respect
to another measure of stealth, namely various interpretability-based detection techniques.

3If they are chosen at ¢t = 0 or ¢ is the first time they are chosen, there is no information available regarding
the other agents’ updates
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Figure 6: Interpretation of benign (5 — 5) and malicious (5 — 7) model decisions via visualization
of feature relevance and representations for a randomly chosen auxiliary data sample.

6 DISCUSSION

In this paper, we have started an exploration of the vulnerability of multi-party machine learning
algorithms such as federated learning to model poisoning adversaries, who can take advantage of
the very privacy these models are designed to provide. In future work, we plan to explore more
sophisticated detection strategies at the server, which can provide guarantees against the type of
attacker we have considered here. In particular, notions of distances between weight distributions
are promising defensive tools. Our attacks in this paper demonstrate that federated learning in its
basic form is very vulnerable to model poisoning adversaries, as are recently proposed Byzantine
resilient aggregation mechanisms. While detection mechanisms can make these attacks more chal-
lenging, they can be overcome, demonstrating that multi-party machine learning algorithms robust
to attackers of the type considered here must be developed.
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A FURTHER RESULTS

A.1 RESULTS ON ADULT CENSUS DATASET

Results for the 4 different attack strategies on the Adult Census dataset (Figure[7) confirm the broad
conclusions we derived from the Fashion MNIST data. The baseline attack is able to induce high
confidence targeted misclassification for a random test example but affects performance on the be-
nign objective, which drops from 84.8% in the benign case to just around 80%. The alternating
minimization attack is able to ensure misclassification with a confidence of around 0.7 while main-
taining 84% accuracy on the benign objective.
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Figure 8: Metrics of interest for the baseline and alternating minization attack with £ = 100 agents
for the Fashion-MNIST dataset.

A.2 RANDOMIZED AGENT SELECTION

When the number of agents increases to £ = 100, the malicious agent is not selected in every
step. Further, the size of |D,,| decreases, which makes the benign training step in the alternating
minimization attack more challenging. The challenges posed in this setting are reflected in Figure
[Bl where although the baseline attack is able to introduce a targeted backdoor, it cannot ensure it
for every step due to steps where only benign agents provide updates. The alternating minimization
attack is also able to introduce the backdoor, as well as increase the classification accuracy of the
malicious model on test data. However, the improvement in performance is limited by the paucity
of data for the malicious agent. It is an open question if data augmentation could help improve this
accuracy.

B VISUALIZATION OF WEIGHT UPDATE DISTRIBUTIONS

Figure [B] shows the evolution of weight update distributions for the 4 different attack strategies on
the CNN trained on the Faishon MNIST dataset. Time slices of this evolution were shown in the
main text of the paper. The baseline and concatenated training attacks lead to weight update dis-
tributions that differ widely for benign and malicious agents. The alternating minimization attack
without distance constraints reduces this qualitative difference somewhat but the closest weight up-
date distributions are obtained with the alternating minimization attack with distance constraints.
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Figure 9: Weight update distribution evolution over time for all attacks on a CNN for the Fashion
MNIST dataset.

C BYPASSING BYZANTINE-RESILIENT AGGREGATION MECHANISMS

Blanchard et al.| (2017) recently proposed a gradient aggregation mechanism known as ‘Krum’ that
is provably resilient to Byzantine adversaries. We choose to evaluate Krum as it is efficient, provably
resilient and can be used a building block for better mechanisms Mhamdi et al.| (2018). As stated in
the introduction, the aim of Byzantine adversaries considered in this work and others (Chen et al.
(2017b); Mhamdi et al.| (2018)); |(Chen et al.| (2018); [Yin et al.| (2018))) is to ensure convergence to
ineffective models. The goals of the adversary in this paper are to ensure convergence to effective
models with targeted backdoors. This difference in objectives leads to ‘Krum’ being ineffective
against our attacks.

We now briefly describe Krum. Given n agents of which f are Byzantine, Krum requires that
n > 2f + 3. At any time step ¢, updates (8%, ..., d") are received at the server. For each 8¢, the
n — f — 2 closest (in terms of L, norm) other updates are chosen to form a set C; and their distances
added up to give a score S(}) = > 5.¢. 107 — d]|. Krum then chooses dxrum = ] with the lowest
score to add to w! to give wﬁ“ =w! + Okrum-

In Figure[T0] we see the effect of our attack strategies on Krum with a boosting factor of A = 2 for
a federated learning setup with 10 agents. Since there is no need to overcome the constant scaling
factor «,,, the attacks can use a much smaller boosting factor A to ensure the global model has the
targeted backdoor. Even with the baseline attack, the malicious agent’s update is the one chosen
by Krum for 34 of 40 time steps but the global model is unable to attain high test accuracy. The
alternating minimization attack ensures that the global model maintains relatively high test accuracy
while the malicious agent is chosen for 26 of 40 time steps. These results conclusively demonstrate
the effectiveness of model poisoning attacks against Krum.
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