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ABSTRACT

Generative adversarial nets (GANs) have been successfully applied to the artificial
generation of image data. In terms of text data, much has been done on the artificial
generation of natural language from a single corpus. We consider multiple text
corpora as the input data, for which there can be two applications of GANs: (1)
the creation of consistent cross-corpus word embeddings given different word
embeddings per corpus; (2) the generation of robust bag-of-words document em-
beddings for each corpora. We demonstrate our GAN models on real-world text
data sets from different corpora, and show that embeddings from both models lead
to improvements in supervised learning problems.

1 Introduction

Generative adversarial nets (GAN) (Goodfellow et al., 2014) belong to a class of generative models
which are trainable and can generate artificial data examples similar to the existing ones. In a GAN
model, there are two sub-models simultaneously trained: a generative model G from which artificial
data examples can be sampled, and a discriminative model D which classifies real data examples and
artificial ones from G. By training G to maximize its generation power, and training D to minimize
the generation power of G, so that ideally there will be no difference between the true and artificial
examples, a minimax problem can be established. The GAN model has been shown to closely
replicate a number of image data sets, such as MNIST, Toronto Face Database (TFD), CIFAR-10,
SVHN, and ImageNet (Goodfellow et al., 2014; Salimans et al., 2016).

The GAN model has been extended to text data in a number of ways. For instance, Zhang et al.
(2016) applied a long-short term memory (LSTM) (Hochreiter & Schmidhuber, 1997) generator and
approximated discretization to generate text data. Moreover, Li et al. (2017) applied the GAN model
to generate dialogues, i.e. pairs of questions and answers. Meanwhile, the GAN model can also be
applied to generate bag-of-words embeddings of text data, which focus more on key terms in a text
document rather than the original document itself. Glover (2016) provided such a model with the
energy-based GAN (Zhao et al., 2017).

To the best of our knowledge, there has been no literature on applying the GAN model to multiple
corpora of text data. Multi-class GANs have been proposed (Liu & Tuzel, 2016; Mirza & Osindero,
2014), but a class in multi-class classification is not the same as multiple corpora. Because knowing
the underlying corpus membership of each text document can provide better information on how the
text documents are organized, and documents from the same corpus are expected to share similar
topics or key words, considering the membership information can benefit the training of a text model
from a supervised perspective. We consider two problems associated with training multi-corpus
text data: (1) Given a separate set of word Mikolov et al. (2013b), how to obtain a better set of
cross-corpus word embeddings from them? (2) How to incorporate the generation of document
embeddings from different corpora in a single GAN model?

For the first problem, we train a GAN model which discriminates documents represented by different
word embeddings, and train the cross-corpus word embedding so that it is similar to each existing word
embedding per corpus. For the second problem, we train a GAN model which considers both cross-
corpus and per-corpus “topics” in the generator, and applies a discriminator which considers each
original and artificial document corpus. We also show that with sufficient training, the distribution of
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the artificial document embeddings is equivalent to the original ones. Our work has the following
contributions: (1) we extend GANs to multiple corpora of text data, (2) we provide applications of
GANs to finetune word embeddings and to create robust document embeddings, and (3) we establish
theoretical convergence results of the multi-class GAN model.

Section 2 reviews existing GAN models related to this paper. Section 3 describes the GAN models on
training cross-corpus word embeddings and generating document embeddings for each corpora, and
explains the associated algorithms. Section 4 presents the results of the two models on text data sets,
and transfers them to supervised learning. Section 5 summarizes the results and concludes the paper.

2 Literature Review

In a GAN model, we assume that the data examples x are drawn from a distribution px(·), and the
artificial data examples G(z) := G(z, θg) are transformed from the noise distribution z ∼ pz(·). The
binary classifier D(·) outputs the probability of a data example (or an artificial one) being an original
one. Because the probabilistic structure of a GAN can be unstable to train, the Wasserstein GAN
(Arjovsky et al., 2017) is proposed which applies a 1-Lipschitz function as a discriminator.

We note that in many circumstances, data sets are obtained with supervised labels or categories, which
can add explanatory power to unsupervised models such as the GAN. For instance, the CoGAN (Liu
& Tuzel, 2016) considers pairs of data examples from different categories, and the weights of the first
few layers (i.e. close to z) are tied. Mirza & Osindero (2014) proposed the conditional GAN where
the generator G and the discriminator D depend on the class label y. Salimans et al. (2016) applied
the class labels for semi-supervised learning with an additional artificial class. However, all these
models consider only images and do not produce word or document embeddings, therefore being
different from our models.

For generating real text, Zhang et al. (2016) proposed textGAN in which the generator has an
LSTM form, and a uni-dimensional convolutional neural network (Collobert et al., 2011; Kim, 2014)
is applied as the discriminator. Also, a weighted softmax function is applied to make the argmax
function differentiable. The focus of our work is to summarize information from longer documents, so
we apply document embeddings such as the tf-idf to represent the documents rather than to generate
real text.

For generating bag-of-words embeddings of text, Glover (2016) proposed a GAN model with the
mean squared error of a de-noising autoencoder as the discriminator, and the output x is the one-hot
word embedding of a document. Our models are different from this model because we consider tf-idf
document embeddings for multiple text corpora in the deGAN model (Section 3.2), and weGAN
(Section 3.1) can be applied to produce word embeddings. Also, we focus on robustness based on
several corpora, while Glover (2016) assumed a single corpus.

For extracting word embeddings given text data, Mikolov et al. (2013a) proposed the word2vec model,
for which there are two variations: the continuous bag-of-words (cBoW) model (Mikolov et al.,
2013a), where the neighboring words are used to predict the appearance of each word; the skip-gram
model, where each neighboring word is used individually for prediction. In GloVe (Pennington
et al., 2014), a bilinear regression model is trained on the log of the word co-occurrence matrix.
In these models, the weights associated with each word are used as the embedding. For obtaining
document embeddings, the para2vec model (Le & Mikolov, 2014) adds per-paragraph vectors to
train word2vec-type models, so that the vectors can be used as embeddings for each paragraph. A
simpler approach by taking the average of the embeddings of each word in a document and output
the document embedding is exhibited in Socher et al. (2013).

3 Models and Algorithms

Suppose we have a number of different corpora C1, . . . , CM , which for example can be based
on different categories or sentiments of text documents. We suppose that Cm = {dm1 , . . . , dmnm

},
m = 1, . . . ,M , where each dmi represents a document. The words in all corpora are collected in a

2



Under review as a conference paper at ICLR 2020

dictionary, and indexed from 1 to V . We name the GAN model to train cross-corpus word embeddings
as “weGAN,” where “we” stands for “word embeddings,” and the GAN model to generate document
embeddings for multiple corpora as “deGAN,” where “de” stands for “document embeddings.”

3.1 weGAN: Training cross-corpus word embeddings

We assume that for each corpora Cm, we are given word embeddings for each word vm1 , . . . , v
m
V ∈ Rd,

where d is the dimension of each word embedding. We are also given a classification task on
documents that is represented by a parametric model C taking document embeddings as feature vectors.
We construct a GAN model which combines different sets of word embeddings Vm := {vmi }Vi=1,
m = 1, . . . ,M , into a single set of word embeddings G := {v0i }Vi=1. Note that V1, . . . ,VM are
given but G is trained. Here we consider G as the generator, and the goal of the discriminator is to
distinguish documents represented by the original embeddings V1, . . . ,VM and the same documents
represented by the new embeddings G.

Next we describe how the documents are represented by a set of embeddings V1, . . . ,VM and G.
For each document dmi , we define its document embedding with Vm as gmi := f(dmi ,Vm), where
f(·) can be any mapping. Similarly, we define the document embedding of dmi with G as follows,
with G = {v0j }Vj=1 trainable fG(dmi ) := f(dmi ,G). In a typical example, word embeddings would
be based on word2vec or GLoVe. Function f can be based on tf-idf, i.e. f(dmi ,V) =

∑V
j=1 t

m
ij v

m
j

where vmj is the word embedding of the j-th word in the m-th corpus Cm and tmi = (tmi1, . . . , t
m
iV ) is

the tf-idf representation of the i-th document dmi in the m-th corpus Cm.

To train the GAN model, we consider the following minimax problem

min
C,G

max
D

{
M∑

m=1

nm∑
i=1

[log(D(gmi )) + log(1− D(fG(dmi )))− log(eTkm
i
C(fG(dmi )))]

}
, (1)

where D is a discriminator of whether a document is original or artificial. Here kmi is the label of
document dmi with respect to classifier C, and ekm

i
is a unit vector with only the kmi -th component

being one and all other components being zeros. Note that log(eTkm
i
C(fG(dmi ))) is equivalent to

KL(ekm
i
‖C(fG(dmi ))), but we use the former notation due to its brevity.

The intuition of problem (3) is explained as follows. First we consider a discriminator D which is a
feedforward neural network (FFNN) with binary outcomes, and classifies the document embeddings
{fG(dmi )}nm

i=1
M
m=1 against the original document embeddings {gmi }

nm
i=1

M
m=1. Discriminator D mini-

mizes this classification error, i.e. it maximizes the log-likelihood of {fG(dmi )}nm
i=1

M
m=1 having label

0 and {gmi }
nm
i=1

M
m=1 having label 1. This corresponds to

M∑
m=1

nm∑
i=1

[log(D(gmi )) + log(1−D(fG(dmi )))] . (2)

For the generator G, we wish to minimize (3) against G so that we can apply the minimax strategy,
and the combined word embeddings G would resemble each set of word embeddings V1, . . . ,VM .
Meanwhile, we also consider classifier C with K outcomes, and associates dmi with label kmi , so that
the generator G can learn from the document labeling in a semi-supervised way.

If the classifier C outputs a K-dimensional softmax probability vector, we minimize the following
against G, which corresponds to (3) given D and C:

M∑
m=1

nm∑
i=1

[log(1−D(fG(dmi )))− log(eTkm
i
C(fG(dmi )))

]
. (3)

For the classifier C, we also minimize its negative log-likelihood

−
M∑

m=1

nm∑
i=1

log(eTkm
i
C(fG(dmi ))). (4)

Assembling (4-6) together, we retrieve the original minimax problem (3).
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We train the discriminator and the classifier, {D, C}, and the combined embeddings G according to
(4-6) iteratively for a fixed number of epochs with the stochastic gradient descent algorithm, until the
discrimination and classification errors become stable.

Figure 1 illustrates the weGAN model. The algorithm for weGAN is summarized in Algorithm 1 in
the appendix.
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Figure 1: Model structure of weGAN.
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Figure 2: Model structure of deGAN.

3.2 deGAN: Generating document embeddings for multi-corpus text data

In this section, our goal is to generate document embeddings which would resemble real document
embeddings in each corpus Cm, m = 1, . . . ,M . We construct M generators, G1, . . . ,GM so that Gm
generate artificial examples in corpus Cm. As in Section 3.1, there is a certain document embedding
such as tf-idf, bag-of-words, or para2vec. Let G = {G1, . . . ,GM}. We initialize a noise vector
n = (n1, . . . , ndn

) ∈ Rdn , where n1, . . . , ndn

iid∼ N , and N is any noise distribution.

For a generator Gm = {Wm
h ,W

0
h ,W

m
o ,W

0
o } represented by its parameters, we first map the noise

vector n to the hidden layer, which represents different topics. We consider two hidden vectors, h0
for general topics and hm for specific topics per corpus, hm = a1(W

m
h n), h

0 = a1(W
0
hn). Here

a1(·) represents a nonlinear activation function. In this model, the bias term can be ignored in order
to prevent the “mode collapse” problem of the generator. Having the hidden vectors, we then map
them to the generated document embedding with another activation function a2(·),

om = a2(W
m
o h

m + w0
oh

0). (5)

To summarize, we may represent the process from noise to the document embedding as Gm(n) =
a2(W

m
o a1(W

m
h n) + w0

oa1(W
0
hn)). Given the generated document embeddings G1(n), . . . ,GM (n),

we consider the following minimax problem to train the generator G and the discriminator D:

min
G

M∑
m=1

En log
{
eTM+mD∗G(Gm(n))/ [eTM+mD∗G(Gm(n)) + eTmD∗G(Gm(n))]

}
, (6)

where

D∗G ∈ argmax
D

M∑
m=1

Edm∼pm

[
log(eTmD(dm))

]
+

M∑
m=1

En[log(e
T
M+mD(Gm(n)))]. (7)

Here we assume that any document embedding dm in corpus Cm is a sample with respect to the
probability density pm. Note that when M = 1, the discriminator part of our model is equivalent to
the original GAN model.

To explain (10), first we consider the discriminator D. Because there are multiple corpora of text
documents, here we consider 2M categories as output ofD, from which categories 1, . . . ,M represent
the original corpora C1, . . . , CM , and categories M + 1, . . . , 2M represent the generated document
embeddings (e.g. bag-of-words) from G1, . . . ,GM . Assume the discriminator D, a feedforward
neural network, outputs the distribution of a text document being in each category. We maximize the
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log-likelihood of each document being in the correct category against D
M∑

m=1

Epm

[
log(eTmD(dm))

]
+

M∑
m=1

En[log(e
T
M+mD(Gm(n)))]. (8)

Such a classifier does not only classifies text documents into different categories, but also considers
M “fake” categories from the generators. When training the generators G1, . . . ,GM , we minimize
the following which makes a comparison between the m-th and (M +m)-th categories

M∑
m=1

En log
eTM+mD(Gm(n))

eTM+mD(Gm(n)) + eTmD(Gm(n))
. (9)

The intuition of (13) is that for each generated document embedding Gm(n), we need to decrease
eTM+mD(Gm(n)), which is the probability of the generated embedding being correctly classified,
and increase eTmD(Gm(n)), which is the probability of the generated embedding being classified into
the target corpus Cm. The ratio in (13) reflects these two properties.

We iteratively train (12) and (13) until the classification error ofD becomes stable. Figure 2 illustrates
the deGAN model. The algorithm for deGAN is summarized in Algorithm 2 in the appendix.

We next show that from (10), the distributions of the document embeddings from the optimal
G1, . . . ,GM are equal to the data distributions of C1, . . . , CM , which is a generalization of Goodfellow
et al. (2014) to the multi-corpus scenario. The proof of Proposition 1 is in the appendix.

Proposition 1. Let us assume that the random variables d1, . . . , dM are continuous with probability
density p1, . . . , pM which have bounded support X ; n is a continuous random variable with bounded
support and activations a1 and a2 are continuous; and that G1∗, . . . ,GM∗ are solutions to (10). Then
q∗1 , . . . , q

∗
M , the probability density of the document embeddings from G1∗, . . ., GM∗, are equal to

p1, . . . , pM . �

4 Experiments

In the experiments, we consider four data sets, two of them newly created and the remaining two
already public: CNN, TIME, 20 Newsgroups (in the appendix), and Reuters-21578 (in the appendix).
The code and the two new data sets are available at github.com/deeplearning2018/emgan. For the
pre-processing of all the documents, we transformed all characters to lower case, stemmed the
documents, and ran the word2vec model on each corpora to obtain word embeddings with a size of
300. In all subsequent models, we only consider the most frequent 5,000 words across all corpora in
a data set.

The document embedding in weGAN is the tf-idf weighted word embedding transformed by the tanh
activation, i.e. f(dmi ,Vm) = tanh

(∑V
j=1 t

m
ij v

m
j

)
. For deGAN, we use L1-normalized tf-idf as the

document embedding because it is easier to interpret than the transformed embedding in (20).

For weGAN, the cross-corpus word embeddings are initialized with the word2vec model trained from
all documents. For training our models, we apply a learning rate which increases linearly from 0.01
to 1.0 and train the models for 100 epochs with a batch size of 50 per corpus. The classifier C has a
single hidden layer with 50 hidden nodes, and the discriminator with a single hidden layer D has 10
hidden nodes. All these parameters have been optimized. For the labels kmi in (8), we apply corpus
membership of each document.

For the noise distribution N for deGAN, we apply the uniform distribution U(−1, 1). In (14) for
deGAN, a1 = tanh and a2 = softmax so that the model outputs document embedding vectors
which are comparable to L1-normalized tf-idf vectors for each document. For the discriminator D of
deGAN, we apply the word2vec embeddings based on all corpora to initialize its first layer, followed
by another hidden layer of 50 nodes. For the discriminator D, we apply a learning rate of 0.1, and
for the generator G, we apply a learning rate of 0.001, because the initial training phase of deGAN
can be unstable. We also apply a batch size of 50 per corpus. For the softmax layers of deGAN, we
initialize them with the log of the topic-word matrix in latent Dirichlet allocation (LDA) (Blei et al.,
2003) in order to provide intuitive estimates.
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w2v-RI weGAN-RI
mean 67.88% 68.45%

sd. 0.02% 0.01%
w2v-accuracy weGAN-accuracy

mean 92.05% 92.36%
sd. 0.06% 0.03%

Table 1: A comparison between word2vec
and weGAN in terms of the Rand index and
the classification accuracy for the CNN data
set.

Obama w2v Bush Trump Kerry Abe Ne-
tanyahu Rouhani Erdogan he Karzai Tillerson

Obama weGAN Trump Bush Kerry Abe Ne-
tanyahu Erdogan Tillerson he Carter Rouhani

Trump w2v Obama Pence Erdogan Bush
Duterte he Sanders Macron Christie Tillerson

Trump weGAN Obama Pence Bush Christie
Sanders Clinton Erdogan Tillerson Macron

Duterte
U.S. w2v US Pentagon United Iranian

NATO Turkish Qatar Iran British UAE
U.S. weGAN US Pentagon United Iranian

NATO Turkish Iran Qatar American UAE

Table 2: Synonyms of “Obama,” “Trump,”
and “U.S.” before and after weGAN training
for the CNN data set.

For weGAN, we consider two metrics for comparing the embeddings trained from weGAN and those
trained from all documents: (1) applying the document embeddings to cluster the documents into
M clusters with the K-means algorithm, and calculating the Rand index (RI) (Rand, 1971) against
the original corpus membership; (2) finetuning the classifier C and comparing the classification error
against an FFNN of the same structure initialized with word2vec (w2v). For deGAN, we compare
the performance of finetuning the discriminator of deGAN for document classification, and the
performance of the same FFNN. Each supervised model is trained for 500 epochs and the validation
data set is used to choose the best epoch.

4.1 The CNN data set

In the CNN data set, we collected all news links on www.cnn.com in the GDELT 1.0 Event Database
from April 1st, 2013 to July 7, 2017. We then collected the news articles from the links, and kept
those belonging to the three largest categories: “politics,” “world,” and “US.” We then divided these
documents into 21,674 training documents, from which 2,708 validation documents are held out, and
5,420 testing documents.

We hypothesize that because weGAN takes into account document labels in a semi-supervised way,
the embeddings trained from weGAN can better incorporate the labeling information and therefore,
produce document embeddings which are better separated. The results are shown in Table 1 and
averaged over 5 randomized runs. Performing the Welch’s t-test, both changes after weGAN training
are statistically significant at a 0.05 significance level. Because the Rand index captures matching
accuracy, we observe from Table 1 that weGAN tends to improve both metrics.

Meanwhile, we also wish to observe the spatial structure of the trained embeddings, which can be
explored by the synonyms of each word measured by the cosine similarity. On average, the top 10
synonyms of each word differ by 0.22 word after weGAN training, and 20.7% of all words have
different top 10 synonyms after training. Therefore, weGAN tends to provide small adjustments
rather than structural changes. Table 2 lists the 10 most similar terms of three terms, “Obama,”
“Trump,” and “U.S.,” before and after weGAN training, ordered by cosine similarity.

We observe from Table 2 that for “Obama,” ”Trump” and “Tillerson” are more similar after weGAN
training, which means that the structure of the weGAN embeddings can be more up-to-date. For
“Trump,” we observe that “Clinton” is not among the synonyms before, but is after, which shows that
the synonyms after are more relevant. For “U.S.,” we observe that after training, “American” replaces
“British” in the list of synonyms, which is also more relevant.

We next discuss deGAN. In Table 3, we compare the performance of finetuning the discriminator of
deGAN for document classification, and the performance of the FFNN initialized with word2vec.
The change is also statistically significant at the 0.05 level. From Table 3, we observe that deGAN
improves the accuracy of supervised learning.
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w2v-accuracy deGAN-accuracy
mean 92.05% 92.29%

sd. 0.06% 0.09%

Table 3: A comparison between word2vec
and deGAN in terms of the accuracy for the
CNN data set.

politics original India US Carter defense
Indian relationship China said military two

politics deGAN year US meeting used read
security along building worth foreign

world original Turkey Turkish Attack ISIS
said Kurdish Erdogan group bomb report

world deGAN cut company get lot made
code could Steve items may road block phone

US original climate change year study
according says country temperatures average
US deGAN area efforts volunteers town

weapons shot local nearly department also

Table 4: Bag-of-words representations of orig-
inal and artificial text in the CNN data set.

To compare the generated samples from deGAN with the original bag-of-words, we randomly select
one record in each original and artificial corpus. The records are represented by the most frequent
words sorted by frequency in descending order where the stop words are removed. The bag-of-words
embeddings are shown in Table 4.

From Table 4, we observe that the bag-of-words embeddings of the original documents tend to contain
more name entities, while those of the artificial deGAN documents tend to be more general. There are
many additional examples not shown here with observed artificial bag-of-words embeddings having
many name entities such as “Turkey,” “ISIS,” etc. from generated documents, e.g. “Syria eventually
ISIS U.S. details jet aircraft October video extremist...”

10 5 0 5 10
10

5

0

5

10

Figure 3: 2-d representation of original (red)
and artificial (blue) examples in the CNN data
set.
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15

10

5

0

5

10

15

Figure 4: 2-d representation of original (red)
and artificial (blue) examples in the TIME
data set.

We also perform dimensional reduction using t-SNE (van der Maaten & Hinton, 2008), and plot 100
random samples from each original or artificial category. The original samples are shown in red and
the generated ones are shown in blue in Figure 3. We do not further distinguish the categories because
there is no clear distinction between the three original corpora, “politics,” “world,” and “US.”

We observe that the original and artificial examples are generally mixed together and not well
separable, which means that the artificial examples are similar to the original ones. However, we also
observe that the artificial samples tend to be more centered and have no outliers (represented by the
outermost red oval).

4.2 The TIME data set

In the TIME data set, we collected all news links on time.com in the GDELT 1.0 Event Database
from April 1st, 2013 to July 7, 2017. We then collected the news articles from the links, and kept

7

http://time.com/
https://www.gdeltproject.org/


Under review as a conference paper at ICLR 2020

those belonging to the five largest categories: “Entertainment,” “Ideas,” “Politics,” “US,” and “World.”
We divided these documents into 12,286 training documents, from which 1,535 validation documents
are held out, and 3,075 testing documents.

Table 5 compares the clustering results of word2vec and weGAN, and the classification accuracy of
an FFNN initialized with word2vec, finetuned weGAN, and finetuned deGAN. The results in Table 5
are the counterparts of Table 1 and Table 3 for the TIME data set. The differences are also significant
at the 0.05 level.

w2v-RI weGAN-RI
mean 70.96% 71.14%

sd. 0.02% 0.02%
w2v-accur. weGAN-accur. deGAN-accur.

83.79% 84.76% 85.38%
0.17% 0.08% 0.11%

Table 5: A comparison between word2vec,
weGAN, and deGAN in terms of the Rand
index and the classification accuracy for the
TIME data set.

Obama w2v Trump Bush Xi Erdogan
Rouhani Reagan Hollande Duterte Abe Jokowi

Obama weGAN Trump Bush Xi Erdogan
Reagan Rouhani Hollande Abe Jokowi Duterte

Trump w2v Obama Erdogan Rubio Duter-
te Bush Putin Sanders Xi Macron Pence

Trump weGAN Obama Erdogan Rubio Bush
Sanders Putin Duterte Xi Macron Pence

U.S. w2v NATO Iran Japan Pentagon
Russia Pakistan Tehran EU Ukrainian Moscow
U.S. weGAN NATO Pentagon Iran Japan
Russia Tehran Pakistan EU Ukrainian Moscow

Table 6: Synonyms of “Obama,” “Trump,”
and “U.S.” before and after weGAN training
for the TIME data set.

From Table 5, we observe that both GAN models yield improved performance of supervised learning.
For weGAN, on an average, the top 10 synonyms of each word differ by 0.27 word after weGAN
training, and 24.8% of all words have different top 10 synonyms after training. We also compare the
synonyms of the same common words, “Obama,” “Trump,” and “U.S.,” which are listed in Table 6.
In the TIME data set, for “Obama,” “Reagan” is ranked slightly higher as an American president. For
“Trump,” “Bush” and “Sanders” are ranked higher as American presidents or candidates. For “U.S.,”
we note that “Pentagon” is ranked higher after weGAN training, which we think is also reasonable
because the term is closely related to the U.S. government.

For deGAN, we also compare the original and artificial samples in terms of the highest probability
words, which is shown in Table 7. We also perform dimensional reduction using t-SNE for 100
examples per corpus and plot them in Figure 4. All these figures and tables show results similar to
Section 4.1.

Entertainment original show London attack
people proud open going right according way

home
Entertainment deGAN music actor Michael

John song going meeting James produced pop
vocal

Ideas original American would
service national young country year serve

security world
Ideas deGAN city project part

development grand bear often west new status
high agents

Politics original Assange embassy BBC
Swedish charges told authorities officials

Sweden

Politics deGAN members present
national committee party Paul sign Trump

removed brief
US original Charleston many

Carolina South funeral hand wrote political
words

US deGAN Davis head board
man relationship recent Sunday stone fire wrote

gay well
world original Erdogan Turkey

political power government two leaders
minister AKP

world deGAN suffering like know old
violence local daily young interest three first

man

Table 7: Bag-of-words representations of original and artificial text in the TIME data set.
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A Algorithms for weGAN and deGAN
Algorithm 1 (for weGAN).

1. Train G based on f from all corpora C1, . . . , CM .
2. Randomly initialize the weights and biases of the classifier C and discriminator D.
3. Until maximum number of iterations reached

(a) Update C and D according to (4) and (6) given a mini-batch S1 of training examples
{dmi }i,m.

(b) Update G according to (5) given a mini-batch S2 of training examples {dmi }i,m.
4. Output G as the cross-corpus word embeddings.

Algorithm 2 (for deGAN).

1. Randomly initialize the weights of G1, . . . ,GM .
2. Initialize the discriminator D with the weights of the first layer (which takes document

embeddings as the input) initialized by word embeddings, and other parameters randomly
initialized.

3. Until maximum number of iterations reached
(a) Update D according to (12) given a mini-batch of training examples dmi and samples

from noise n.
(b) Update G1, . . . ,GM according to (13) given a mini-batch of training examples dmi and

samples form noise n.
4. Output G1, . . . ,GM as generators of document embeddings and D as a corpus classifier.

B Proof of Proposition 1
Since X is bounded, all of the integrals exhibited next are well-defined and finite. Since n, a1, and
a2 are continuous, it follows that for any parameters, Gm(n) is a continuous random variable with
probability density qm with finite support. From (11),

D∗G = argmax
D

{
M∑

m=1

∫
pm(x) log(eTmD(x))dx

+

M∑
m=1

∫
qm(x) log(eTM+mD(x))dx

}

= argmax
D

{∫ M∑
m=1

pm(x) log(eTmD(x))

+

M∑
m=1

qm(x) log(eTM+mD(x))dx

}
. (10)

This problem reduces to

max
b1,...,bm

M∑
m=1

am log bm subject to
M∑

m=1

bm = 1, (11)

the solution of which is b∗m = am/
∑M

m=1 am, m = 1, . . . ,M . Therefore, the solution to (15) is

D∗G(x) =
(p1(x), . . . , pM (x), q1(x), . . . , qM (x))∑M

m=1 pm(x) +
∑M

m=1 qm(x)
. (12)
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We then obtain from (10) that

q∗1 , . . . , q
∗
M ∈ arg min

q1,...,qM

M∑
m=1

∫
qm(x) · log

[
qm(x)

qm(x) + pm(x)

]
dx

= arg min
q1,...,qM

−M log 2 +

M∑
m=1

∫
qm(x) log

[
qm(x)

(qm(x) + pm(x))/2

]
dx

= arg min
q1,...,qM

−M log 2 +

M∑
m=1

KL(qm‖(qm + pm)/2).

From non-negativity of the Kullback-Leibler divergence, we conclude that

(q∗1 , . . . , q
∗
M ) = (p1, . . . , pM ). �

C The 20 Newsgroups data set

The 20 Newsgroups data set is a collection of news documents with 20 categories. To reduce the
number of categories so that the GAN models are more compact and have more samples per corpus,
we grouped the documents into 6 super-categories: “religion,” “computer,” “cars,” “sport,” “science,”
and “politics” (“misc” is ignored because of its noisiness). We considered each super-category as
a different corpora. We then divided these documents into 10,708 training documents, from which
1,335 validation documents are held out, and 7,134 testing documents. We train weGAN and deGAN
in the the beginning of Section 4, except that we use a learning rate of 0.01 for the discriminator
in deGAN to stabilize the cost function. Table 8 compares the clustering results of word2vec and
weGAN, and the classification accuracy of the FFNN initialized with word2vec, finetuned weGAN,
and finetuned deGAN. All comparisons are statistically significant at the 0.05 level. The other results
are similar to the previous two data sets and are thereby omitted here.

w2v-RI weGAN-RI
mean 76.14% 76.74%

sd. 0.02% 0.08%
w2v-accur. weGAN-accur. deGAN-accur.

87.34% 89.90% 89.32%
0.04% 0.02% 0.15%

Table 8: A comparison between word2vec, weGAN, and deGAN in terms of the Rand index and the
classification accuracy for the 20 Newsgroups data set.

D The Reuters-21578 data set

The Reuters-21578 data set is a collection of newswire articles. Because the data set is highly skewed,
we considered the eight categories with more than 100 training documents: “earn,” “acq,” “crude,”
“trade,” “money-fx,” “interest,” “money-supply,” and “ship.” We then divided these documents into
5,497 training documents, from which 692 validation documents are held out, and 2,207 testing
documents. We train weGAN and deGAN in the same way as in the 20 Newsgroups data set. Table
9 compares the clustering results of word2vec and weGAN, and the classification accuracy of the
FFNN initialized with word2vec, finetuned weGAN, and finetuned deGAN. All comparisons are
statistically significant at the 0.05 level except the Rand index. The other results are similar to the
CNN and TIME data sets and are thereby omitted here.
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w2v-RI weGAN-RI
mean 71.28% 71.43%

sd. 0.26% 0.07%
w2v-accur. weGAN-accur. deGAN-accur.

92.86% 95.10% 94.86%
0.09% 0.10% 0.10%

Table 9: A comparison between word2vec, weGAN, and deGAN in terms of the Rand index and the
classification accuracy for the Reuters-21578 data set.
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