
Under review as a conference paper at ICLR 2020

IMAGINE THAT! LEVERAGING EMERGENT AFFORDANCES
FOR TOOL SYNTHESIS IN REACHING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper we investigate an artificial agent’s ability to perform task-focused tool synthe-
sis via imagination. Our motivation is to explore the richness of information captured by
the latent space of an object-centric generative model - and how to exploit it. In particular,
our approach employs activation maximisation of a task-based performance predictor to
optimise the latent variable of a structured latent-space model in order to generate tool ge-
ometries appropriate for the task at hand. We evaluate our model using a novel dataset of
synthetic reaching tasks inspired by the cognitive sciences and behavioural ecology. In do-
ing so we examine the model’s ability to imagine tools for increasingly complex scenario
types, beyond those seen during training. Our experiments demonstrate that the synthesis
process modifies emergent, task-relevant object affordances in a targeted and deliberate
way: the agents often specifically modify aspects of the tools which relate to meaningful
(yet implicitly learned) concepts such as a tool’s length, width and configuration. Our
results therefore suggest, that task relevant object affordances are implicitly encoded as
directions in a structured latent space shaped by experience.

1 INTRODUCTION

Deep generative models are gaining in popularity for unsupervised representation learning. In particular,
recent models like MONet (Burgess et al., 2019) have been proposed to decompose scenes into object-
centric latent representations (cf. Greff et al., 2019; Engelcke et al., 2019). The notion of such an object-
centric latent representation, trained from examples in an unsupervised way, holds a tantalising prospect:
as generative models naturally capture factors of variation, could they also be used to expose these factors
such that they can be modified in a task-driven way? We posit that a task-driven traversal of a structured
latent space leads to affordances emerging naturally as directions in this space. This is in stark contrast to
more common approaches to affordance learning where it is commonly achieved via direct supervision or
implicitly via imitation (e.g. Tikhanoff et al., 2013; Myers et al., 2015; Liu et al., 2018; Grabner et al., 2011;
Do et al., 2018).

The setting we choose for our investigation is that of tool synthesis for reaching tasks as commonly inves-
tigated in the cognitive sciences. The ability to make and use tools has been a cornerstone of humanity’s
cognitive, technological and cultural development. It has long been hailed as a defining characteristic of
intelligence (Ambrose, 2001). Consequently, the ability of artificial agents to select and use appropriate
tools has received significant attention in, for example, the robotics community (e.g. Sinapov & Stoytchev,
2007; Tikhanoff et al., 2013; Toussaint et al., 2018; Xie et al., 2019). A very limited number of works such
as Wicaksono (2017) also consider tool making and typically deploy strong inductive biases such as simu-
lations in which the agent adjusts numerical parameters given a set of design constraints. However, while
much stands to be gained by endowing robots with an aptitude for tool use, more recent evidence in the cog-
nitive sciences suggests that habitual tool use cannot in and off itself be taken as a sign of intelligence (e.g.
Ambrose, 2001; Emery & Clayton, 2009). Some animals, which are recognised as prodigious users of tools,

1



Under review as a conference paper at ICLR 2020

do not show any sign of understanding either cause or effect or, indeed, the difference between appropriate
and inappropriate tools (e.g. Ambrose, 2001). Instead, relatively recent results suggest that tool selection
and manufacture – especially once demonstrated – is a significantly easier task than tool innovation: the
step, prior to manufacture, of imagining the type of tool suitable for a particular task (Beck et al., 2011).
We posit that it is tool innovation which ultimately unlocks the full potential of tool manufacture and, thus,
creative tool use.

In order to demonstrate that a task-aware, object-centric latent space encodes useful affordance informa-
tion we require a mechanism to train such a model as well as to purposefully explore the space. To this
end we propose an architecture in which a task-based performance predictor (a classifier) operates on the
latent space of an object-centric generative model (see Figure 1). During training the classifier is used to
provide an auxiliary objective, aiding in shaping the latent space. Importantly, however, during test time the
performance predictor is used to guide exploration of the latent space via activation maximisation (Erhan
et al., 2009; Zeiler & Fergus, 2014; Simonyan et al., 2014), thus explicitly exploiting the structure of the
space. While our desire to affect factors of influence is similar in spirit to the notion of disentanglement, it
contrasts significantly with approaches such as β-VAE (Higgins et al., 2017), where the factors if influence
are effectively encouraged to be axis aligned. Our approach instead relies on a high-level auxiliary loss to
discover the direction in latent space to explore.

Our experimental design is inspired by a long history in the cognitive sciences and behavioural ecology of
investigating reaching tasks which require tool use (e.g. Kohler, 1925; van Leeuwen et al., 1994; Chappell
& Kacelnik, 2002; 2004; Emery & Clayton, 2009; Beck et al., 2011). The results demonstrate that artificial
agents are indeed able not only to select – but to imagine – an appropriate tool for a variety of reaching tasks.
The dataset consisting of 52,000 synthetic example reaching tasks will be made available to the community.

To the best of our knowledge, ours is the first work to demonstrate an artificial agent’s ability to imagine,
or synthesise, images of tools appropriate for a given task via optimisation in a structured latent embedding.
Similarly, while activation maximisation has been used to visualise modified input images before (e.g. Mord-
vintsev et al., 2015), we believe ours to be the first to effect deliberate manipulation of factors of influence
by chaining the outcome of a task predictor to the latent space, and then decoding the latent representation
back into an image. Beyond the application of tool synthesis, in demonstrating that object affordances can
be viewed as directions in a structured latent space as well as by providing a novel architecture adept at de-
liberately manipulating interpretable factors of influence we believe our work to provide novel perspectives
on affordance learning and disentanglement.

2 RELATED WORK

The idea of an affordance, which describes a potential action to be performed on an object (e.g. a doorknob
affords being turned), goes back to Gibson (1977). Together, robotics and computer vision boast a rich lit-
erature on learning task-affordances (e.g. Tikhanoff et al., 2013; Mar et al., 2015; Stoytchev, 2005), which
includes work on learning multiple attention-like affordance masks (provided labelled data) for common
objects such as kitchen utensils (Do et al., 2018; Myers et al., 2015). To learn affordances without supervi-
sion, another research thread has employed simulations in virtual environments. Grabner et al. (2011) is an
example in which a simulated humanoid was re-positioned, via trial-and-error, to find all of the surfaces in a
3D scene in which it is possible to sit. Other studies have successfully learned affordances through imitation
(e.g. Liu et al., 2018).

Closely related to the the affordance literature is a mature body of research dealing with almost all aspects
of robot tool use. Tasks addressed include reaching (Jamone et al., 2015), grasping (Takahashi et al., 2017),
pushing (Stoytchev, 2005) and hammering (Fang et al., 2018). This research commonly depends on a more
traditional pipeline approach, consisting of tool-recognition (Tikhanoff et al., 2013; Fang et al., 2018), tool-
selection (Xie et al., 2019; Saito et al., 2018), planning (Toussaint et al., 2018) and execution (Tikhanoff
et al., 2013; Fang et al., 2018; Stoytchev, 2005; Jamone et al., 2015).

2



Under review as a conference paper at ICLR 2020

latent space model tool synthesis

feasibility
✘ ✘ ✘ ✓…

optimisation steps

success 

✘

task

toolkit

performance predictor

Figure 1: Innovating tools in a simulated reaching task. The model is trained on data triplets comprising
the toolkit, the task environment, and an indicator of success (left). The toolkit is an image of stick-like
tools (here in yellow, light green, and pink). The goal of the task is to determine if any tool can reach the
dark green target whilst touching the red boundary and avoiding any blue obstacles. When no object in the
toolkit satisfies these geometric constraints, our model (TasMON) is able to take a tool from the toolkit and
imagine suitable modifications until it does satisfy these constraints (right). Here we see TasMON imagine
the yellow stick transforming into a hook with a thin enough handle to both pass through the gap between
the blue obstacles and reach the dark green target, all whilst still crossing over the red boundary.

Recently, the advent of deep generative models has led to an active research area using world models (Ha
& Schmidhuber, 2018; Lesort et al., 2018; Nair et al., 2018), in which an artificial agent can train itself on
tasks using a kind of imagination. Our work is directly inspired by this, though we approach imagination
modelling in a different way. In particular, we propose an architecture in which a generative model for
unsupervised scene decomposition (Burgess et al., 2019) is paired with the use of activation maximisation
(e.g. Erhan et al., 2009; Zeiler & Fergus, 2014; Simonyan et al., 2014) of an auxiliary, task-driven loss-signal
back into the generative model’s latent representations to drive the imagination process.

3 DATASET

To investigate tool imagination, we designed a set of simulated reaching tasks with clear and controllable fac-
tors of influence. Each task image is comprised of a green target button, a red line delineating the workspace
area, and, optionally, a set of blue obstacles. We also vary the goal location and the sizes and positions of
the obstacles. For each task image, we provide a second image depicting a set of ‘tools’ – straight sticks,
L-shaped hooks, and J-shaped claws – with varying dimensions, shapes, colours, and poses. Given a pair
of images (i.e. the task image and the toolkit image), the goal is to select a tool for a given task scene that
can reach the target (the green dot) whilst avoiding obstacles (blue areas) and remaining on the exterior of
the workspace (i.e. behind the red line). Depending on the task image, the applicability of a tool is deter-
mined by different subsets of its attributes. For example, if the target button is unobstructed, then any tool
of sufficient length will satisfy the constraints (regardless of its width or shape). However, when the target is
hidden behind a corner, or only accessible through a narrow gap, an appropriate tool also needs to feature a
long-enough hook, or a thin-enough handle, respectively. By design, the colour of a tool does not influence
its applicability and is introduced as a nuisance factor. As depicted in Figure 2, we have designed eight
scenario types to study these factors of influence in isolation and in combination. Importantly, the scenario
types are designed to enable an investigation into our approach’s performance on in-sample tasks, interpola-

3



Under review as a conference paper at ICLR 2020

Figure 2: Illustrative examples of tasks in our dataset. Each task has a green target, a red line indicating
the movement limits of the robot, and potentially some blue obstacles. We train on the first four in-sample
scenario types: A – D. During evaluation, we also include interpolation scenario types: E – G, which can
be solved by the tools seen in training data, as well as an extrapolation scenario type: H, which can only
be solved by claw tools never seen in the training data. We choose these scenarios to set constraints on
the dimensions of an appropriate tool; for example, in scenario C (third column), a tool needs to be thin
enough to reach the goal. Other attributes which affect applicability are tool length and type. In the top
row, we overlay tools in yellow, which can press the buttons without colliding with the obstacles or leaving
the movement space, as indicated by the green tick. The bottom row, marked with red crosses, shows tasks
being attempted by orange tools, which cannot succeed without violating the constraints. Tools are rendered
here for visualisation and are not present in the task images.

tion tasks and an extrapolation task. In-sample scenarios differ from interpolation scenarios in that the tasks
are different but can be solved with tools (sticks or hooks) that were seen during training. The extrapolation
scenario consists of a novel scenario but almost always also requires the use of a new tool: a J-shaped claw.

For each task, toolkit images are constructed by scattering tools from a catalogue with randomised colours
and poses in a separate visible workspace. A geometric applicability check, described in Appendix B,
verifies whether or not any of the tools can reach the target, while satisfying the task constraints. We
consider a task–toolkit pair feasible if the toolkit image includes at least one tool that can achieve the task
under the specified constraints.

More formally, our dataset can be written as a set of N triplets: {(InG, InT , ρn)}Nn=1, where each example
features a task image IG, a toolkit image IT , and a binary label ρ indicating the feasibility of reaching the
target with one of the given tools (see Figure 3). We also save instance segmentation masks Mn

k for the
toolkits, as well as the applicability label ρnk for each tool, indexed by k. In all our experiments, we restrict
the training input to the sparse high-level triplets and use the additional ground-truth labels for evaluation
purposes only. For additional details on the dataset, see Appendix B.

4 METHOD

We frame the challenge of tool imagination as an optimisation problem in a structured latent space obtained
using generative models. The optimisation is driven by a high-level, task-specific performance predictor,
which assesses whether a goal position is reachable given a particular tool. To reflect real-world complexity,
the system must choose a tool from a set of potentially unsuitable tools (Figure 1) to prime the optimisation.
In effect, we ask how an unsuitable tool might be improved to succeed on a task. This motivates an object-
centric, generative model with a latent space suited to task success classification as detailed in Figure 3.

4



Under review as a conference paper at ICLR 2020

input latent space encoding tool-task attention success estimation

tool 
innovation

& rendering 
from

latent space

zcat,1..3 α1..3 hcat
zG

zT,1..3

1

0

ℒ./01σ
ϕ

ψ

IG

IT
zim = argmaxσ (zcat,1..3)zT,1..3

ψ’
σ

optimisation steps

ẑ

Figure 3: TasMON model architecture. A convolutional encoder φ represents the task image IG as a latent
vector zG. In parallel, the encoder ψ of a MONet scene decomposition model represents the toolkit image
IT as a set of latent vectors zT,1..3 where each latent vector represents one of the tools. The concatenated
tool-task representations zcat,1..3 are used to compute a soft-attention α1..3 over tools. A weighted sum ẑ
of the tool representations is concatenated to the task representation again forming hcat which is used by
a classifier σ to estimate the success of any of the tools solving the task. The task loss Ltask is computed
over σ’s output. We use the MONet decoder ψ′ to render latent tool representations into images. Given the
gradient signal produced when optimising task success for the classifier σ, a chosen latent tool representation
zim gets updated to render an increasingly suitable tool for the task, as depicted on the bottom right in a
callback to Figure 1. A latent vector z4 for the toolkit background, and a second loss LMONet used to train
the MONet model, are omitted from the figure for clarity of presentation.

4.1 OBJECT-CENTRIC TOOL REPRESENTATION

Given that our tools are presented in toolkit images IT (see Figure 3), it is necessary for all subsequent pro-
cessing to perform a decomposition of IT , from pixels into discrete objects. To achieve this decomposition of
images into their component objects, we employ an unsupervised architecture called MONet (Burgess et al.,
2019). MONet consists of two parts: an attention network and a component VAE (Kingma & Welling, 2014;
Rezende et al., 2014). The attention network recurrently proposes K regions to represent individual parts
of an image. These components hopefully correspond to individual objects (plus the scene background).
Each component is represented as a VAE latent code and used to explain a certain part of the input image
by reconstructing it. MONet therefore serves two purposes at once: its encoder ψ represents an image as a
set of object-centric latent vectors, and its decoder ψ′ can be used to render any such latent vector into an
individual object. We train MONet using the image-reconstruction loss LMONet described in Burgess et al.
(2019). We denote the set of latent variables encoding the toolkit computed by the MONet encoder, ψ, as

ψ(IT ) = {zT,k} | k ∈ {1..K}. (1)

After encoding the toolkit image, we need to represent the task image IG in an abstract latent space. The task
encoder, φ, consists of a stack of convolutional layers followed by two dense layers.1 φ takes a concatenation
of the task image IG and a normalised meshgrid of the image’s (x, y) coordinates as input and maps this
into the task embedding zG. Without loss of generality the (x, y) meshgrid can be generated for any input
and provides φ with a sense of relative scale via coordinate querying (see Appendix D for further details).

1Architecture details are provided in Appendix C.

5



Under review as a conference paper at ICLR 2020

In order to interpret the task success signal, we need to select the component that dominates the feasibility
of the toolkit. This is done via a soft-attention approach which passes each tool representation zT,k con-
catenated with the task embedding zG as zcat,k through a three-layer MLP f to compute an attention logit
(cf. Figure 3). A softmax activation is then applied to the logits to normalise the attention score such that

αk =
ef(zcat,k)

ΣK
j=1e

f(zcat,j)
. (2)

The attention over zcat,k is indicative of the influence of the k-th tool on global task success. We use the
approximated soft attention to compute a toolkit context vector ẑ containing information about all the tools
and their respective contributions to the task solution, where

ẑ =

K∑
k=1

αk · zT,k. (3)

4.2 TOOL IMAGINATION

Task-driven learning The context vector ẑ contains both task-relevant information (e.g. tool length,
width, and shape), as well as task-irrelevant information such as tool location and colour. In order to perform
tool imagination, the sub-manifold of the latent space that corresponds to the task-relevant features has to
be found. This is achieved by adding a three-layer MLP as a classifier σ. The classifier σ takes a concate-
nation hcat of the task embedding and the context vector as input and predicts the softmax over the binary
task success. The classifier learns to identify the task-relevant sub-manifold of the latent space by using the
sparse success signal ρ and optimising the binary-cross entropy loss, such that

Ltask (σ (hcat) , ρ) = − (ρ log (σ(hcat)) + (1− ρ) log (1− σ(hcat))) , (4)

where ρ ∈ {0, 1} is a binary signal indicating whether or not the toolkit contains a feasible tool to solve the
task. The whole system is trained end-to-end with a loss given by

L (IG, IT , ρ) = LMONet + λLtask. (5)

The hyper-parameter λ denotes a weight factor balancing the task and MONet losses. Note that the gradient
from the task classifier σ propagates through both the task encoder φ and the toolkit encoder ψ, and therefore
helps to shape the latent representations of the toolkit with respect to the requirements for task success.

Tool imagination Once trained, TasMON can synthesise new tools by traversing the latent manifold of
individual tools in directions that maximise classification success given a toolkit image (Figure 3). To do
this, we first concatenate each individual toolkit component zk with the task embedding zG and select the
tool embedding vector zT,k that corresponds to the highest tool utility σ(zcat,k) (i.e. the tool most likely
to succeed). This warm-starts the imagination process. We denote the chosen tool latent as zim and its
concatenation with the task embedding vector as zcat,im. We then use activation maximisation (Erhan et al.,
2009; Zeiler & Fergus, 2014; Simonyan et al., 2014) to optimise the tool encoding zim with regard to the
Ltask of the success estimation σ (zcat,im) and a feasibility target ρs = 1, such that

zim = zim + η
∂Ltask (σ (zcat,im) , ρs)

∂zim
, (6)

where η denotes the learning rate for the update. Finally, we apply this gradient update for S steps or until
the success estimation σ (zcat,im) reaches a threshold γ, and use ψ′(zim) to generate the imagined tool
represented by zim.

6



Under review as a conference paper at ICLR 2020

5 EXPERIMENTS

Our aim in this section is to demonstrate TasMON’s ability to imagine a suitable tool given a task image
and an image of a putative set of tools. Concretely, we examine the model’s performance when imagination
requires interpolating between properties of known tool types as well as when it requires innovating new tool
types that have not previously been seen during training. To provide insight into the key aspects of TasMON’s
operation, our main evaluation in Table 1 focuses on imagination success, while we present performance on
key sub-tasks such as tool utility, decomposition, and selection as supporting work in Appendix A.

Tool Utility (TU) We compute tool utility as the average precision aggregated over classifier scores σ for
all tools when compared to their ground truth feasibilities. Details are provided in Appendix A.

Tool Imagination (TI) We evaluate whether our model can generate tools to achieve tasks. For each
instance, the target signal ρ is set to success such that the latent vector of the tool is then modified via back-
propagation using a learning rate of 0.01 for 5, 000 steps or until σ(zcat,im) reaches 0.997. The imagined
tool is then rendered via the latent space decoder ψ′ and tested using the same geometric applicability test as
described in Appendix B. We report TI as the percentage of imagined tools that successfully pass this test.

5.1 QUANTITATIVE RESULTS

In order to investigate the efficacy of TasMON under different operating conditions, we present models
trained with two different training regimes. TasMON is trained in curriculum learning manner: we first
pre-train the MONet weights on toolkit images and then train the performance predictor with the MONet
backbone jointly, i.e. the gradient from the predictor is allowed to back-propagate into the MONet. This
curriculum allows MONet to learn object-centric decompositions before the performance predictor overfits
the training data. To investigate the impact of jointly training the latent representation with the performance
predictor we report results on an ablation model FroMON in which we keep the pre-trained MONet weights
frozen during predictor training. Both TasMON and FroMON are trained on in-sample scenario types only.
We select trained checkpoints that have the best performance prediction (TU) on a validation split. In addi-
tion to comparing the imagination outcomes for TasMON and FroMON, we also include a simple Random

Table 1: Like-for-like comparison of imagination processes with FroMON and TasMON, when artificially
warmstarting from the same (infeasibile or feasible) tool in both cases. TI-Infeasible are the imagination
results warmstarted with infeasible tools and TI-Feasible are the imagination results initialised with feasible
tools.

TI-Infeasible [%] TI-Feasible [%]
n RW FroMON TasMON n RW FroMON TasMON

Scenario
A 250 65.2% 87.6% 92.0% 250 97.2% 98.8% 99.2%
B 250 25.2% 38.0% 40.0% 250 87.6% 90.4% 84.8%
C 250 14.4% 26.4% 33.2% 250 37.6% 56.4% 58.4%
D 250 8.4% 19.6% 18.0% 250 28.8% 30.0% 37.6%
E 250 8.4% 20.4% 16.40% 250 62.8% 61.2% 58.8%
F 250 6.0% 10.8% 13.2% 250 32.4% 36.8% 30.8%
G 250 2.0% 5.2% 4.4% 250 25.2% 27.6% 24.4%
H 250 0.0% 0.0% 0.0% 250 0.4% 0.4% 0.0%
Overall 2000 16.2% 26.0% 27.2% 2000 46.5% 50.2% 49.3%

7



Under review as a conference paper at ICLR 2020

(a) Increasing tool length (b) Decreasing tool width (c) Morphing between configurations

Figure 4: Qualitative results from our imagination experiments. The figure shows the evolution of tools
during the imagination process (overlayed manually over the corresponding task image). Of these, each
row illustrates how the imagination procedure can succeed at constructing tools that solve a task, by (A)
increasing the tool length, (B) decreasing the tool width, and (C) changing the configuration between a stick
and a hook. The overlapping area is marked in bright yellow. The arrows indicates tool synthesis with
increasing optimisation steps.

Walk (RW) baseline, where in place of taking steps in the direction of the steepest gradient, we move in
a random direction in the latent space for 5000 steps. Specifically, the latent vector of the selected tool is
updated by a sample drawn from an isotropic Gaussian with mean 0 and the absolute value of the ground-
truth gradient derived by back-propagating from the predictor as the variance. For 250 infeasible instances
per scenario type, we warmstart each imagination attempt with the same tool across RW, TasMON and
FroMON to enable a like-for-like comparison. We also test to see how the models modify feasible tools; for
250 instances per scenario type, imagination is warmstarted with a feasible tool to observe how it is modi-
fied. The reader is referred to Table 2 and Appendix A for more quantitative results examining the model’s
performance in related sub-tasks like toolkit decomposition and tool selection.

TasMON successfully imagines applicable tools in 46.0% of in-sample test cases, and in 11.3% of tool inter-
polation test cases (Table 1). A significant drop in TI performance is incurred for the interpolation scenarios
(E,F,G) in which the model encounters distinctly novel scenarios. The model fails in the extrapolation sce-
nario where it needs to imagine a previously unseen tool type. TasMON outperforms FroMON in tool utility
prediction (Table 2) and tool imagination in most tasks, suggesting that, although the predictor is powerful
enough to guide the imagination through an already existing underling structure of toolkit-representations,
a task-aware latent space can still provide benefits. As expected, the random walk fails in most scenarios
except A and B. This is because there are no obstacles in scenario A, so any blob large enough to reach the
target will suffice. We conjecture that a similar situation occurs in scenario B when the obstacle is small,
which imposes only a weak constraint on the required tool. Interestingly, the imagination could also destroy
some of the already feasible tools as showed in the TI-Feasible column in Table 1. Upon examination,
we find that this is due to the combined effect of underconfident behaviour from the performance predic-
tor, reconstruction errors, and rendering choices. We refer readers to Appendix E for further details about
rendering.

8



Under review as a conference paper at ICLR 2020

5.2 QUALITATIVE RESULTS

Qualitative examples of the tool imagination process are provided in Figure 4 as well as in Figure 6 in the
supplementary material. A striking feature of the optimisation process is the fact the performance predictor
often drives the tools to evolve in a deliberate and interpretable way by modifying aspects such as length,
width and configuration. This suggests that these properties are encoded as directions in the structured
latent space learnt by TasMON and deliberately traversed via a high-level task objective in the form of the
performance predictor. Also, since the tools are modified in a smooth manner, we hypothesise that tools
are embedded in a continuous manifold of changing length, width and configuration. Moreover, instead
of always turning a stick to a hook, the model can adjust the tool shape between these two configurations
according to the tasks as depicted in block (c) of Figure 4, which indicates that the model learns a non-biased
interpretation of the tasks.

6 CONCLUSION

In this paper we investigate an agent’s ability to synthesise tools for simulated reaching tasks via task-
driven imagination. Our approach, TasMON, uses a novel architecture in which a high-level performance
predictor drives an optimisation process in a structured latent space. TasMON successfully generates tools
for scenario types beyond its own training regime. Intriguingly, TasMON leads to interpretable modifications
of the tools considered. The system tends to modify aspects such as tool length, width and configuration.
Our results thus suggest that these object affordances are encoded as directions in the latent space learnt by
TasMON and sought out during the optimisation process. We posit that this may help our understanding
of object affordances and offers up novel avenues towards disentangling interpretable factors of variation.
Nevertheless, the TasMON struggles to generalise to significantly different scenarios requiring, for example,
novel tool configurations. We conjecture that this is due to the performance predictor not generalising well
to these novel scenarios as the TU drops drastically in these tasks (see Table 2). Remedying this degradation
in performance prediction – and thereby enabling actual tool innovation – remains an interesting challenge
for future work. To facilitate further advances in this area, we intend to release the reaching dataset and
trained TasMON model to the community.

REFERENCES

Stanley H. Ambrose. Paleolithic technology and human evolution. Science, 291(5509):1748–1753, 2001.

Sarah R. Beck, Ian A. Apperly, Jackie Chappell, Carlie Guthrie, and Nicola Cutting. Making tools isn’t
child’s play. Cognition, 119(2):301–306, 2011.

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. MONet: Unsupervised scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

Jackie Chappell and Alex Kacelnik. Tool selectivity in a non-primate, the New Caledonian crow (Corvus
moneduloides). Animal Cognition, 5(2):71–78, 2002.

Jackie Chappell and Alex Kacelnik. Selection of tool diameter by New Caledonian crows Corvus monedu-
loides. Animal Cognition, 7(2):121–127, 2004.

Thanh-Toan Do, Anh Nguyen, and Ian D. Reid. Affordancenet: An end-to-end deep learning approach for
object affordance detection. In 2018 IEEE International Conference on Robotics and Automation, ICRA
2018, Brisbane, Australia, May 21-25, 2018, pp. 1–5, 2018.

Nathan J. Emery and Nicola S. Clayton. Tool use and physical cognition in birds and mammals. Current
Opinion in Neurobiology, 19(1):27 – 33, 2009.

9



Under review as a conference paper at ICLR 2020

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS: Generative scene
inference and sampling with object-centric latent representations. arXiv preprint arXiv:1907.13052, 2019.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer features of a
deep network. Technical report, University of Montreal, 2009.

Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta, Li Fei-Fei, and Silvio Savarese.
Learning task-oriented grasping for tool manipulation from simulated self-supervision. arXiv preprint
arXiv:1806.09266, 2018.

James J Gibson. The theory of affordances, volume 1. 1977.

Helmut Grabner, Juergen Gall, and Luc Van Gool. What makes a chair a chair? In The 24th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011,
pp. 1529–1536, 2011.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with
iterative variational inference. In International Conference on Machine Learning (ICML), 2019.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. β-vae: Learning basic visual concepts with a constraied variational
framework. In ICLR, 2017.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–218, 1985.

Lorenzo Jamone, Giovanni Saponaro, Alexandre Antunes, Rodrigo Ventura, Alexandre Bernardino, and
José Santos-Victor. Learning object affordances for tool use and problem solving in cognitive robots. In
Proceedings of the 2nd Italian Workshop on Artificial Intelligence and Robotics, pp. 68–82, 2015.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. International Conference on
Learning Representations, 2014.

Wolfgang. Kohler. The mentality of apes. Vintage Books, 1925.

Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly,
2:83–97, 1955.

Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-Franois Goudou, and David Filliat. State representation
learning for control: An overview. Neural Networks, 2018.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learning
to imitate behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1118–1125. IEEE, 2018.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. In ICML Workshop on Deep Learning for Audio, Speech, and Language Processing
(WDLASL 2013), pp. 1–6, 2013.

Tanis Mar, Vadim Tikhanoff, Giorgio Metta, and Lorenzo Natale. Self-supervised learning of grasp depen-
dent tool affordances on the icub humanoid robot. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3200–3206. IEEE, 2015.

10



Under review as a conference paper at ICLR 2020

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper
into neural networks, 2015. URL https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html.

James Munkres. Algorithms for the assignment and transportation problems. Journal of the society for
industrial and applied mathematics, 5(1):32–38, 1957.

Austin Myers, Ching L. Teo, Cornelia Fermüller, and Yiannis Aloimonos. Affordance detection of tool parts
from geometric features. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pp. 1374–1381. IEEE, 2015.

Ashvin V. Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual re-
inforcement learning with imagined goals. In Advances in Neural Information Processing Systems, pp.
9191–9200, 2018.

William M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical association, 66(336):846–850, 1971.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models. International Conference on Machine Learning, 2014.

Namiko Saito, Kitae Kim, Shingo Murata, Tetsuya Ogata, and Shigeki Sugano. Tool-use model consider-
ing tool selection by a robot using deep learning. In 2018 IEEE-RAS 18th International Conference on
Humanoid Robots (Humanoids), pp. 270–276. IEEE, 2018.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. In Workshop at International Conference on Learning
Representations, 2014.

Jivko Sinapov and Alexander Stoytchev. Learning and generalization of behavior-grounded tool affordances.
In IEEE International Conference on Development and Learning, pp. 19–24, 2007.

Alexander Stoytchev. Behavior-grounded representation of tool affordances. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 3071–3076, 2005.

Kuniyuki Takahashi, Kitae Kim, Tetsuya Ogata, and Shigeki Sugano. Tool-body assimilation model consid-
ering grasping motion through deep learning. Robotics and Autonomous Systems, 91:115–127, 2017.

Vadim Tikhanoff, Ugo Pattacini, Lorenzo Natale, and Giorgio Metta. Exploring affordances and tool use on
the iCub. In IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 130–137, 2013.

Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum. Differentiable physics and stable
modes for tool-use and manipulation planning. In Robotics: Science and Systems XIV. Robotics: Science
and Systems Foundation, 2018.

Lieselotte van Leeuwen, Ad Smitsman, and Cees van Leeuwen. Affordances, perceptual complexity, and
the development of tool use. Journal of Experimental Psychology: Human Perception and Performance,
20(1):174, 1994.

Handy Wicaksono. Towards a relational approach for tool creation by robots. In International Joint Confer-
ence on Artificial Intelligence, Melbourne, Australia, 2017.

Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through physical understanding:
Using novel objects as tools with visual foresight. arXiv preprint arXiv:1904.05538, 2019.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In Proceedings
of the IEEE European Conference on Computer Vision, pp. 818–833, 2014.

11

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Under review as a conference paper at ICLR 2020

A ADDITIONAL QUANTITATIVE RESULTS

In this appendix, we present performance on key sub-tasks useful for understanding model behaviour.

Tool Utility (TU) The performance predictor σ is responsible for estimating the probability of the toolkit
containing an applicable tool for the given task based on the encoding of the task image concatenated with
toolkit context vector. However, a toolkit image need not depict more than a single tool, and so σ can provide
a measure of tool utility of an individual, possibly imagined, tool. We use intersection-over-union (IOU) as a
similarity measure to match tool decompositions to ground truth tool masks according to the Kuhn-Munkres
algorithm (Kuhn, 1955; Munkres, 1957). All matches below the conservative threshold of IOU < 0.8 are
discarded as they correspond to spurious or poor quality decompositions. Matched ground-truth masks are
assigned their corresponding tool decomposition’s tool utility probability from the classifier. We report the
aggregated tool utility as average precision. A tool utility probability of 0 is assigned to any unmatched
ground truth masks. Since we report average precision, this rubric can only deflate our scores by increasing
false negatives at the cost of true positives, leading to conservative estimates of performance.

Toolkit Decomposition (TD) We use the Adjusted Rand Index (ARI) (Rand, 1971; Hubert & Arabie, 1985)
to evaluate the quality of the instance segmentation, as in Greff et al. (2019). An ARI score treats the pixel-
to-instance-assignment as a clustering problem and computes the similarity between the predicted clustering
and ground truth. ARI scores range from 0 (complete misalignment) to 1 (identical clustering).

Tool Selection (TS) The TasMON model performs tool selection as described in Section 4.2. In feasible
scenarios, we select the tool decomposition with the highest tool utility, and compare it with the ground truth
mask of the applicable tool. We consider tool selection to be successful if the predicted mask has an IOU
overlap with the ground-truth mask of at least 0.8, which we take to be a conservative threshold.

Table 2: Results table, comparing TasMON with a frozen MONet+Task ablation, i.e. FroMON, across all
tasks. Other abbreviations: TU = tool utility, aggregated as the average-precision score over all ground truth
tools; TD = toolkit decomposition, measured by the Adjusted Rand Index (Rand, 1971; Hubert & Arabie,
1985); TS = tool-selection success in feasible scenarios, % of times pixel-wise IOU of most-likely tool
and the ground-truth feasible tool was 0.8 or more; TI = unconditional tool-imagination success for each
model, % of all test scenarios; The best model for a task and metric are shown in bold, except for TD where
ARI scores were similar for different models. All metric scores are shown as percentages for consistency.
Like-for-like tool-imagination results are shown in Table 1. Please refer to Figure 2 for illustrative tasks by
scenario.

TU [%] TD [%] TS [%] TI [%]
FroMON TasMON FroMON TasMON FroMON TasMON FroMON TasMON

Scenario
A 95.4% 97.6% 97.7% 97.7% 95.2% 96.2% 83.9% 87.4%
B 88.9% 91.3% 97.8% 97.8% 82.8% 79.8% 48.6% 48.9%
C 83.2% 85.8% 97.7% 97.9% 88.0% 88.2% 38.2% 40.8%
D 77.2% 79.4% 97.8% 97.8% 78.6% 75.8% 20.2% 20.2%
E 76.3% 77.3% 97.7% 97.8% 72.0% 71.4% 29.1% 24.9%
F 37.9% 36.5% 97.7% 97.9% 62.4% 65.2% 15.8% 16.0%
G 48.6% 48.4% 97.8% 97.8% 76.6% 73.6% 14.2% 12.4%
H 37.8% 38.4% 96.9% 97.1% 69.6% 70.0% 0.1% 0.0%
Overall 68.2% 69.3% 97.6% 97.7% 78.2% 77.5% 31.3% 31.3%

12



Under review as a conference paper at ICLR 2020

Table 2 presents model performance across all four metrics. Note that the tool-imagination (TI) results here
differ from Table 1 because in this table, we do not warmstart imagination with the same tool for each model,
instead letting each model select a tool with highest TU. As a result, models might select different tools to
bootstrap imagination, leading to a comparison that is not exactly like-for-like.

We see that both models demonstrate a strong ability to gauge tool utility (Table 2, TU column) in in-sample
scenarios. However, prediction performance decreases as scenario types grow more distinct from the training
data. Table 2 suggest a strong correlation between successful tool imagination (TI) and effective and robust
tool utility prediction (TU). This is unsurprising as the performance predictor constitutes the main driver
for the optimisation. Finally, we note that task decomposition (TD) is commensurate across all models and
scenario types. This is an intuitive result as both models are trained with an explicit decomposition objective,
which is independent of scenario type.

B DATASET CONSTRUCTION

Figure 5: More illustrative examples of tasks (cf. Figure 2). We procedurally generated 196,390 unique
instances across eight scenario types for our reaching experiments.

Our synthetic dataset consists of pairs of tasks and toolkits rendered from top-down views as 64× 64 pixel
RGB images. We create the dataset in multiple sampling steps ensuring a balance between scenarios and
tool configurations. For each scenario, we generate 5,000 tasks. Each is paired with 50 tools from a tool
catalogue containing 1 million unique tool geometries, evenly balanced between sticks, hooks and claw
tools. Then we perform the tool applicability check for each of the task-tool pairs and reject tasks which
had fewer than five or more than 40 applicable tools. The applicability of a tool to a task is determined by
sampling 200 interior points of the tool polygon, overlaying the sampled point with the target and rotating
the tool polygon and a vertically mirrored copy of it by 360 degrees. If any such pose of the tool satisfies all
constraints (i.e. touching the space behind the red line while not colliding with any obstacle), we consider
the tool applicable for the given task. In this way, we construct up to five feasible and five infeasible toolkits
for each task, by sampling one to three tools per toolkit and rendering them with randomised poses and
colours. We constrain the feasible toolkits to contain exactly one applicable tool. All toolkits are constrained
to have only sticks and hooks as tools, with the exception of the H tasks, which require claws in order to be
feasible.

The dataset contains a total of 52,000 scenarios. Table 3 shows a breakdown of each by scenario type and
split. Each split has an equal number of feasible and infeasible instances, for each scenario type.

13



Under review as a conference paper at ICLR 2020

Table 3: Number of instances by scenario type.

Type Training Validation Test
A 10,000 1,000 1,000
B 10,000 1,000 1,000
C 10,000 1,000 1,000
D 10,000 1,000 1,000
E - - 1,000
F - - 1,000
G - - 1,000
H - - 1,000
Total 40,000 4,000 8,000

C ARCHITECTURE AND TRAINING DETAILS

C.1 MODEL ARCHITECTURE

As described in the main text, our model (TasMON) comprises two main parts (as depicted in Figure 3).
On the one hand, we used a task-based classifier (Tas), while on the other we used a MONet as a scene
decomposition model (MON). We briefly describe each component in turn.

C.1.1 MONET

As a scene decomposition model, we faithfully re-implement MONet (Burgess et al., 2019) with the minor
modification of using leaky ReLUs (Maas et al., 2013) as activation functions in place of ReLUs.

C.1.2 TASK-BASED CLASSIFIER

The task-based classifier consists of three sub-parts: a task encoder, an attention module, and a classifier.

The task encoder stacks three convolutional blocks followed by a single convolutional layer and a two-layer
MLP. First, the three consecutive convolutional blocks make use of 16, 32, 64 output channels respectively.
Each convolutional block contains two consecutive sub-convolutional blocks, each with a kernel size of 3 and
padding of 1 (and with stride of 2 and stride of 1, respectively). Second, the additional convolutional layer
has stride 2, padding 1, and 128 output channels. All convolutional layers use a leaky ReLU nonlinearity.
Finally, the MLP takes a flattend output of the convolutional layers of dimension 2048 (4 × 4 × 128) and
passes it to a hidden layer with 128 neurons using a leaky ReLU as the activation function. This is then
passed through another layer, giving a 16 dimensional output for the task-based classifier.

The attention module is a three layer MLP with input dimension 32, and successive hidden layers of 128
and 16 neurons respectively. Each of these layers use leaky ReLU activation functions. To predict the logit
of the attention probability, the attention module has an output dimension of 1.

The structure of the classifier part of the task-classifier model mirrors the attention module. In place of the
output layer, it consists of a three layer MLP with the same dimensions. Given that the classifier outputs
logits for a binary classifier, the output dimension is 2.

C.2 TRAINING DETAILS

All experiments are performed in PyTorch, using the ADAM optimiser with a learning rate of 0.0001 and
a batch size of 32. We vary the weight factor λ between 0.1 to 4, and we select TasMON to be the best
performing model, at λ = 1. MONet’s hyperparameters tuned to our dataset are given in Table 4.

14



Under review as a conference paper at ICLR 2020

Table 4: Hyperaparmeters used for pretrained MONet.

MONet Hyperparameters
Attention Blocks 5
Attention Channels 8
Beta 0.1
Gamma 0.3
Pixel variance background 0.18
Pixel variance foreground 0.2
VAE Channels 32
VAE Latents 16

D COORDINATE QUERYING

The CNN is local and its parameters are shared across spatial locations; however, the location of an object
in an image is global information. In order to infer the global location of an object, the CNN must work
together with the permutation-variant dense-layers. Assume that in a CNN-Dense network structure the
output shape of the feature tensor just before the flatten operation is 3 × 3 and we only take the middle
anchor point feature, i.e. the one located at(1, 1), whose receptive field does not touch the boundaries of
the task image. Based only on that feature vector the network will not be capable to predict the global
coordinates of the object observed within that receptive filed. The global coordinates of an object can only
be inferred by analysing the information of a subset of all the anchor point features that have a joint receptive
field larger than or equal to the whole image. This will also utilise some capacity of the dense layers. But
given the x-y meshgrid attached to the task image, even the kernel in the input layer with a receptive field
of 3 (assuming a kernel size of 3 × 3) can know where it is, which allows the network to query the global
coordinate information of an object locally. In conclusion, the x-y meshgrid is free additional information
that can help the task module to capture the relative scale of the scene.

E RENDERING METHOD

Although the MONet aims to decompose a scene into object-centric representations, the imagined compo-
nent cannot be rendered independently from the rest parts of the image. This is because the reconstruction
outputs of the decoder are the unnormalised logits and directly using softmax to normalise the mask of the
imagined component together with the rest parts will constrain the growth of the tool. Imagine that the imag-
ination process that tries to enlarge a tool is assigning higher logits to the area where it thinks the tool should
grow towards, while the logits of that area of the background component are still high since the imagination
process is not applied to it. During normalisation the imagined component must beat the background to pos-
sess the pixels it wants to grow towards and thus the growth is constrained implicitly. We tackle this problem
by rather comparing the logits of the imagined tool with the rest components but comparing with itself. We
use the minimum logit of the area where the attention mask has a (normalised) probability higher than 0.2
as a threshold before the imagination starts. Any imagined pixel that has a logit higher than that threshold
is treated as belonging to the imagined tool. It’s common that when people develop a scene decomposition
model they normalise the component masks altogether in the end since ”sum up to one” is an important in-
ductive bias by design. Nevertheless, our work indicates that this might constrain the down-streaming tasks
such as optimising the object-centric representation independently for planning purpose.

15



Under review as a conference paper at ICLR 2020

F ADDITIONAL IMAGINATION EXAMPLES

Figure 6

16



Under review as a conference paper at ICLR 2020

Figure 6: More examples of imagined tools for all tasks. The first two columns are the task and toolkit
inputs, and the next four columns are imagination reconstructions for the selected tool overlaid on the task
image. The overlapping area is marked in bright yellow.

17


	Introduction
	Related Work
	Dataset
	Method
	Object-Centric Tool Representation
	Tool Imagination

	Experiments
	Quantitative Results
	Qualitative Results

	Conclusion
	Additional Quantitative Results
	Dataset Construction
	Architecture and Training Details
	Model Architecture
	MONet
	Task-Based Classifier

	Training Details

	Coordinate Querying
	Rendering Method
	Additional Imagination Examples

