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ABSTRACT

Hierarchical abstractions are a methodology for solving large-scale graph prob-
lems in various disciplines. Coarsening is one such approach: it generates a pyra-
mid of graphs whereby the one in the next level is a structural summary of the
prior one. With a long history in scientific computing, many coarsening strategies
were developed based on mathematically driven heuristics. Recently, resurgent
interests exist in deep learning to design hierarchical methods learnable through
differentiable parameterization. These approaches are paired with downstream
tasks for supervised learning. In practice, however, supervised signals (e.g., la-
bels) are scarce and are often laborious and expensive to obtain. In this work,
we propose an unsupervised approach, coined OTCOARSENING, with the use of
optimal transport. Both the coarsening matrix and the transport cost matrix are
parameterized, so that an optimal coarsening strategy can be learned and tailored
for a given set of graphs. We demonstrate that the proposed approach produces
meaningful coarse graphs and yields competitive performance compared with su-
pervised methods for graph classification and regression.

1 INTRODUCTION

A proliferation of graph neural networks emerged as competitive alternatives to graph kernels for
various graph applications; e.g., theorem proving (Wang et al.l 2017)) and chemoinformatics (Jin
et al., [2017; [Fout et al [2017; Schiitt et al.l |2017). These models learn sophisticated feature repre-
sentations of a graph and its constituents (i.e., nodes and edges) through layers of feature transfor-
mation. Among them, a broad array of work is convolutional, extending convolution filters in the
spatial domain to the spectral domain or to local neighborhoods (Bruna et al.| 2014} Henaff et al.,
2015; |[Duvenaud et al., [2015; |Defferrard et al., 2016; Kipf & Welling, 2017; |[Hamilton et al., 2017}
Chen et al.| 2018 [Velickovi€ et al., 2018} |Ying et al.l 2018a} [Liao et al.l |2019; [Xu et al., 2019b));
whereas a few others are recurrent, which treat the representation of a graph node as the state of a
dynamical system, being recurrently updated (Scarselli et al., [2009; |Li et al., [2016} |Gilmer et al.,
2017;Jin et al., |2017). Several convolution architectures (Xu et al., 2019b; Morris et al., [2019) are
connected to the Weisfeiler—Lehman (WL) graph isomorphism test because of the resemblance in it-
erative node (re)labeling. They are stated to be as expressive as WL in isomorphism tests, rendering
strong competitors to WL graph kernels (Shervashidze et al., 201 1)) inspired by the same procedure.

An image analog of graph neural networks is convolutional neural networks, whose key components
are convolution and pooling. The pooling operation reduces the spatial dimensions of an image and
forms a hierarchical abstraction through successive downsampling. For graphs, a similar hierarchical
abstraction is particularly important for maintaining the structural information and deriving a faithful
feature representation. A challenge, however, is that unlike image pixels that are spatially regular,
graph nodes are irregularly connected and hence pooling is less straightforward.

Several graph neural networks perform pooling in a hierarchical manner. |Bruna et al.| (2014) build
a multiresolution hierarchy of the graph with agglomerative clustering, based on e-covering. |Def-
ferrard et al.| (2016) and [Fey et al.| (2018) employ Graclus that successively coarsens a graph based
on the heavy-edge matching heuristic. |Simonovsky & Komodakis| (2017)) construct the hierarchy
through a combined use of spectral polarity and Kron reduction. These neural networks build the
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graph hierarchy in the preprocessing step, which defines in advance how pooling is performed given
a graph. No learnable parameters are attached. In fact, most practical coarsening methods to date
are built on mathematical heuristics; how they affect the structure and properties of the graph is less
understood (Loukas & Vandergheynst, 2018)).

Recently, hierarchical abstractions as a learnable neural network module surfaced in the literature of
graph representation learning. Representative approaches include DIFFPOOL (Ying et al.l 2018b),
GRAPH U-NET (Gao & Ji, 2019), and SAGPoOOL (Lee et al.| 2019). In the first approach, a soft
clustering of nodes is parameterized and learned. The next graph in the hierarchy is thus a com-
plete graph of the clusters. In the second approach, the top nodes according to some parameterized
ordering are selected and the induced subgraph becomes the next graph in the hierarchy. The third
approach is similar to the second one, except that the ordering is computed through self-attention.
All approaches treat the learnable hierarchy as part of the neural network (in conjunction with a
predictive model), which is trained with a downstream task in a (semi-)supervised manner.

In this work, we propose an unsupervised approach, called OTCOARSENING, that produces a hierar-
chical abstraction of a graph independent of downstream tasks. Therein, node features for the graphs
in the hierarchy are derived simultaneously, so that they can be used for different tasks through train-
ing separate downstream predictive models. OTCOARSENING consists of two ingredients: a param-
eterized graph coarsening strategy in the algebraic multigrid (AMG) style; and an optimal transport
that minimizes the structural transportation between two consecutive graphs in the hierarchy. The
“OT” part of the name comes from Optimal Transport. We show that this unsupervised approach
produces meaningful coarse graphs that are structure preserving; and that the learned representations
perform competitively with supervised approaches in graph classification and regression.

The contribution of this work is threefold. First, for unsupervised learning we introduce a new
technique based on hierarchical abstraction through minimizing discrepancy along the hierarchy.
Second, key to a successful hierarchical abstraction is the coarsening strategy. We develop one
motivated by AMG and empirically show that the resulting coarse graphs qualitatively preserve
the graph structure. Third, we demonstrate that the proposed technique, combining coarsening and
unsupervised learning, performs comparably with supervised approaches but is advantageous in
practice facing label scarcity.

2 RELATED WORK

Hierarchical (a.k.a. multilevel or multiscale) methods are behind the solutions of a variety of prob-
lems, particularly for graphs. Therein, coarsening approaches are being constantly developed and
applied. Two active areas are graph partitioning and clustering. The former is often used in parallel
processing, circuit design, and solutions of linear systems, among many others. The latter appears in
descriptive data analysis. Several representative developments are discussed here. It is not intended
to be a full account of the overwhelming literature and long history.

Many of the graph hierarchical approaches consist of a coarsening and an uncoarsening phase. The
coarsening phase successively reduces the size of a given graph, so that an easy solution can be
obtained for the smallest one. Then, the small solution is lifted back to the original graph through
successive refinement in the reverse coarsening order. For coarsening, a class of approaches applies
heave-edge matching heuristics (Hendrickson & Leland, |1995; |Karypis & Kumar, (1998} |Dhillon
et al.,2007). In the conceptual level, nodes connected by a heavily weighted edge are grouped into a
node in the coarse graph, so that the edge is protected from partitioning. The use of matching heuris-
tics was not much analyzed until recently. Loukas and coauthors show that for certain graphs, the
principal eigenvalues and eigenspaces of the coarsened and the original graph Laplacians are close
under randomized matching (Loukas & Vandergheynst, 2018}, |[Loukas, |2019). On the other hand, in
the uncoarsening phase, refinement can be done in several ways. One approach is Kernighan-Lin
refinement (Kernighan & Lin| [1970), which is commonly applied in spectral partitioning and spec-
tral clustering methods (Shi & Malikl [2000; Luxburg, 2007)), whether or not done in a multilevel
fashion. Another approach uses kernel k-means, as in|Dhillon et al.| (2007)).

Another class of coarsening approaches selects a subset of nodes from the original graph. Call them
coarse nodes; they form the node set of the coarse graph. Other nodes are aggregated with weights
to the coarse nodes in certain ways, which, simultaneously define the edges in the coarse graph.
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Many of these methods were developed akin to algebraic multigrid (AMG) (Ruge & Stiibenl |1987),
as also is this work. In AMG, the set C' of coarse nodes is initialized as empty. Then, each node
in the complement of C' is investigated in some order; if its coupling to the current C' is sufficiently
weak, the node is moved to C. The coupling may be defined based on edge weights (Kushnir
et al., [2006), diffusion distances (Livne & Brandt, |2012), or algebraic distances (Ron et al., 2011}
Chen & Safrol 2011} Safro et all [2014). The aggregation weights are defined accordingly. In this
work, the selection of the coarse nodes and the aggregation weights are parameterized and learned
instead. Besides the AMG style, the dominant eigenvector of the graph Laplacian has also been
used for selecting coarse nodes (Shuman et al.l 2015), who however use a combination of Kron
reduction (Dorfler & Bullo} 2013)) and graph sparsification to define the edges of the coarse graph.

Hierarchical graph representation is emerging in graph deep learning. Representative approaches
include DIFFPOOL (Ying et al.| 2018b), GRAPH U-NET (Gao & Ji, 2019), and SAGPooL (Lee
et al.,|2019). Cast in the above setting, DIFFPOOL is more similar to the first class of coarsening
approaches, whereas GRAPH U-NET and SAGPOOL more similar to the latter. All methods are
supervised, as opposed to ours.

Our work is additionally drawn upon optimal transport, a tool recently used for defining similarity of
graphs (Vayer et al.,|2019;|Xu et al.,|2019a). In the referenced work, Gromov—Wasserstein distances
are developed that incorporate both node features and graph structures. Moreover, a transportation
distance from the graph to its subgraph is developed by |Garg & Jaakkolal (2019). Our approach is
based on a relatively simpler Wasserstein distance, whose calculation admits an iterative procedure
more friendly to neural network parameterization.

3 METHOD

In this section, we present the proposed method OTCOARSENING, beginning with the two main
ingredients: coarsening and optimal transport, followed by a summary of the computational steps in
training and the use of the results for downstream tasks.

3.1 AMG-STYLE COARSENING

The first ingredient coarsens a graph G into a smaller one G ... For a differentiable parameterization,
an operator will need be defined that transforms the corresponding graph adjacency matrix A €
R™ "™ into A, € R™*™_ where n and m are the number of nodes of G and G, respectively, with
m < n. We motivate the definition by algebraic multigrid (Ruge & Stiiben, |1987), because of the
hierarchical connection and a graph-theoretic interpretation. AMG also happened to be referenced
as a potential candidate for pooling in some graph neural network architectures (Bruna et al.| [ 2014;
Defterrard et al., 2016).

3.1.1 BACKGROUND ON ALGEBRAIC MULTIGRID

AMBG belongs to the family of multigrid methods (Briggs et al.,|2000) for solving large, sparse linear
systems of the form Az = b, where A is the given sparse matrix, b is the right-hand vector, and z is
the unknown vector to be solved for. For simplicity, we assume throughout that A is symmetric. The
simplest algorithm, two-grid V-cycle, consists of the following steps: (i) Approximately solve the
system with an inexpensive iterative method and obtain an approximate solution z’. Let r = b— Az’
be the residual vector. (ii) Find a tall matrix S € R™ " and solve the smaller residual system
(ST AS)y = STr for the shorter unknown vector y. (iii) Now we have a better approximate solution
2" =’ + Sy to the original system. Repeat the above steps until the residual is sufficiently small.

In practice, it is unlikely that the residual system (ST AS)y = STr in the second step, though
smaller, can be solved exactly, if the original system Ax = b cannot be. Hence, one naturally
appeals to recursion. That is, one solves (ST AS)y = STr only approximately, obtains the residual,
constructs a further smaller residual system, and proceeds recursively, until when a sufficiently small
residual system can be solved exactly and inexpensively.

The matrix of the residual system, ST AS, is called the Galerkin coarse-grid operator. One may
show that step (ii), if solved exactly, minimizes the energy norm of the error x — z’ over all possible
corrections from the range of the matrix S. Decades of efforts on AMG discover practical definitions
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(a) Graph G (b) Coarse nodes (red) and (c) Coarse graph G. (using
fine nodes (blue) only half of the nodes in G)

Figure 1: Example graph and coarsening.

of S that both is economic to construct/apply and encourages fast convergence. We depart from these
efforts and define/parameterize an S that best suites graph representation learning.

3.1.2 COARSENING FRAMEWORK
Following the above motivation, we settle with the coarsening framework
A. = STAS, (D

where S is named the coarsening matrix. For parameterization, we might have treated .S as a pa-
rameter matrix, but it requires a fixed size to be learnable and hence it can only be applied to graphs
of the same size. This restriction both is unnatural in practice and destroys permutation invariance
of the nodes. In what follows, we discuss the properties of S from a graph theoretic view, which
leads to a natural parameterization.

3.1.3 PROPERTIES OF S

Let V be the node set of the graph G. AMG partitions V' into two disjoint subsets C' and F', whose
elements are called coarse nodes and fine nodes, respectively. See Figure [I{b). For coarsening, C'
becomes the node set of the coarse graph and the nodes in F' are eliminated.

The rows of the coarsening matrix S correspond to the nodes in V' and columns to nodes in C'. This
notion is consistent with definition (TJ), because the rows and columns of A, correspond to the coarse
nodes. It also distinguishes from DIFFPOOL (Ying et al.l |2018b)), which although defines the next
graph by the same equation (TJ), does not use the nodes in the original graph as those of the smaller
graph.

If S is dense, so is A.. Then, the graphs in the coarsening hierarchy are all complete graphs, which
are less desirable. Hence, we would like S to be sparse. Assuming so, one sees that each column
of S plays the role of aggregation. Consider the matrix vector product y = S”x. The value of the
j-th node in the coarse graph, y;, is an aggregation of the values of the original nodes x1, ..., zy,
where the aggregation weights come from the j-th column of .S. For convenience, we define x(j)
to be the set of nonzero locations of this column and call it the aggregation set of the coarse node j.
The following result characterizes the existence of an edge in the coarse graph. Its proof is a simple
exercise; see the appendix.

Theorem 1. There is an edge connecting two nodes j and j' in the coarse graph if and only if there
is an edge connecting the two aggregation sets x(j) and x(j') in the original graph.

Hence, in order to encourage sparsity of the coarse graph, many of the aggregation set pairs should
not be connected by an edge. One principled approach to ensuring so, is to restrict the aggregation
set to contain at most direct neighbors and the node itself. The following corollary is straightforward.
We say that the distance of two nodes is the number of edges in the shortest path connecting them.
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Corollary 2. If each aggregation set contains at most direct neighbors and the node itself, then
there is an edge connecting two nodes in the coarse graph only if the distance between them in the
original graph is at most 3.

Consequently, in what follows we will let S have the same sparsity structure as the corresponding
part of A + I. The identity matrix is used to introduce self loops. An illustration of the resulting
coarse graph is given in Figure[I[c), with self loops omitted.

3.1.4 PARAMETERIZATION OF S

With the graph-theoretic interpretation of S, we now parameterize it. The strategy consists of the
following computational steps. First, select coarse nodes in a differentiable manner, so that the
sparsity structure of S is determined. Then, compute the nonzero elements of S.

The selection of coarse nodes may be done in several ways, such as the top-k approach that or-
ders nodes by projecting their feature vectors along a learnable direction (see, e.g., (Cangea et al.
(2018); |Gao & Ji| (2019)). This approach, however, leverages only node features but not the graph
information. To leverage both, we apply one graph convolution

o = sigmoid(AXW,,) 2)

to compute a vector o € R™* ! that weighs all nodes (Lee et al.,[2019). Here, A € R™*™ is the nor-
malized graph adjacency matrix defined in graph convolutional networks (Kipf & Welling} |2017),
X € R™? is the node feature matrix, and W, € R?*! is a parameter vector. The weighting ne-
cessitates using sigmoid (or other invertible functions) rather than ReLLU as the activation function.
Naturally, one may explore using more than one graph convolution layer to enrich model expres-
siveness. See implementation details in the appendix.

For a coarsening into m nodes, we pick the top m values of « and list them in the sorted order.
Denote by o, € R™*! such a vector, where the subscript s means sorted and picked. We similarly

denote by /Als € R™*™ the column-sorted and picked version of A.

We let S be an overlay of the graph adjacency matrix with the node weights as. Specifically, define
S = fl-row-normalize[gs o (1a1))], 3)
where 1 means a column vector of all ones.

There are several reasons why S is so defined. First, S carries the nonzero structure of ES, which,
following Corollary [2| renders more likely a sparse coarse graph. Second, the use of the normalized
adjacency matrix introduces self loops, which ensure that an edge in the coarse graph exists if the
distance is no more than three, rather than exactly three (which is too restrictive). Third, because
both A and a; are nonnegative, the row normalization ensures that the total edge weight of the
graph is preserved after coarsening. To see this, note that 17 4.1 = 1787 A51 = 17 A1.

3.2 OPTIMAL TRANSPORT

The second ingredient of the proposed OTCOARSENING uses optimal transport for unsupervised
learning. Optimal transport (Peyré & Cuturi, |2019) is a framework that defines the distance of
two probability measures through optimizing over all possible joint distributions of them. If the
two measures lie on the same metric space and if the infinitesimal mass transportation cost is a
distance metric, then optimal transport is the same as the Wasserstein-1 distance. In our setting, we
extend this framework for defining the distance of the original graph G and its coarsened version
G.. Then, the distance constitutes the coarsening loss, from which model parameters are learned in
an unsupervised manner.

3.2.1 OPTIMAL TRANSPORT DISTANCE

To extend the definition of optimal transport of two probability measures to that of two graphs G and
G, we treat the node features from each graph as atoms of an empirical measure. The coarse node
features result from graph neural network mappings, carrying information of both the initial node
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features and the graph structure. Hence, the empirical measure based on node features characterizes
the graph and leads to a natural definition of graph distance.

Specifically, let M be a matrix whose element M;; denotes the transport cost from a node ¢ in G' to
anode j in G.. We define the distance of two graphs as

W, (G,G.) = Pergi(g b)(P, M) —yE(P), 4)

where P, a matrix of the same size as M, denotes the joint probability distribution constrained to
the space U(a, b) := {P € R*™ | P1 = a, P"1 = b} characterized by marginals a and b; E
is the entropic regularization E(P) := — >, ; P;j(log P;; — 1); and v > 0 is the regularization
magnitude. The first term (P, M) is the usual definition of the transportation cost between two
discrete measures. Because we treat them as empirical measures, each of a and b has constant
elements that sum to unity, respectively. As is well known, the optimum of (P, M) is unstable
and the cost of obtaining it through linear programming is high. A popular remedy is the entropic
regularization (Wilson, [1969), E(P), which brings in an additional benefit that the optimization @[)
admits a computational procedure that is friendly to parameterizations inside M.

Through a simple argument of Lagrange multipliers, it is known that the optimal P, that solves ()
exists and is unique, in the form

P, = diag(u)K diag(v),

where « and v are certain positive vectors of matching dimensions and K = exp(—M/~) with
the exponential being element-wise. The solution P, may be computationally obtained by using
Sinkhorn’s algorithm (Sinkhorn, [1964): Starting with any positive vector v°, iterate

fori =0, 1,2,...until convergence, u't! = ¢ @ (Kv') and v'*t = b (KTu!th).  (5)
Because the solution P, is part of the loss function to be optimized, we cannot iterate indefinitely.
Hence, we instead define a computational solution Pf by iterating only a finite number £ times:
kE._ g k : k
Py = diag(u”) K diag(v"). (6)
Accordingly, we arrive at the k-step optimal transport distance
k — (pk k
W3I(G,G.) == (P}, M) — yE(Py). 7

The distance (7)) is the sample loss for training.

3.2.2 PARAMETERIZATION OF M

With the distance defined, it remains to specify the transport cost matrix M. As discussed earlier, we
model M;; as the distance between the feature vector of node 7 from G and that of node j from G...
This approach on the one hand is consistent with the Wasserstein distance and on the other hand,
carries both node feature and graph structure information.

Denote by GNN(A, X) a generic graph neural network architecture that takes the graph adjacency
matrix A and node feature matrix X as input and produces as output a transformed feature matrix.
We produce the feature matrix X, of the coarse graph through the following encoder-decoder-like
architecture:

7 =GNN(A,X), Z.=8TZ, X.=GNN(A.,Z.). (8)

The encoder produces an embedding matrix Z. of the coarse graph through a combination of GNN
transformation and aggregation ST, whereas the decoder maps Z.. to the original feature space so
that the resulting X, lies in the same metric space as X. Then, the transport cost, or the metric
distance, M;; is the p-th power of the Euclidean distance of the two feature vectors:

M;j = || X (4,:) — Xc(4, )5 ©)

In this case, the optimal transport distance is the p-th root of the Wasserstein-p distance. The power
p is normally set as one or two.
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Algorithm 1 Unsupervised training: forward pass

1: for each coarsening level do

2: Compute coarsening matrix S according to () and (3)

Perform coarsening and obtain A. and X, according to (I)) and (8)

Obtain also node embeddings Z,. from the computation ()

Compute transport cost matrix M according to (O)

Compute k-step joint probability estimate P$ according to (3) and (6)

Compute current-level loss (k-step optimal transport distance) Wff (G, G.) according to
8: SetG + G., A<+ A.,and X + X,
9: end for

10: Sum the loss for all coarsening levels as the sample loss

NN AEw

3.3 TRAINING AND DOWNSTREAM USE

With the technical ingredients developed in the preceding subsections, we summarize the computa-
tional steps into Algorithm[I] which is self explanatory.

After training, for each graph G' we obtain a coarsening sequence and the corresponding node em-
bedding matrices Z. for each graph in the sequence. These node embeddings may be used for a
downstream task. Take graph classification as an example. For each node embedding matrix, we
perform a global pooling (e.g., a concatenation of max pooling and mean pooling) across the nodes
and obtain a summary vector. We then concatenate the summary vectors for all coarsening levels to
form the feature vector of the graph. A multilayer perceptron is then built to predict the graph label.

4 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments to evaluate the performance of the
proposed method OTCOARSENING. Through experimentation, we aim at answering the following
questions. (i) As an unsupervised hierarchical method, how well does it perform on a downstream
task, compared with supervised approaches and unsupervised non-hierarchical approaches? (ii)
How does the choice of hyperparamters specific to this method affect the performance? (iii) In a
multi-task setting, how well does it perform compared with supervised models trained separately
for each task? (iv) Do the coarse graphs carry the structural information of the original graphs (i.e.,
are they meaningful)?

4.1 SETUP

We perform experiments with the following data sets: PROTEINS, MUTAG, NCI109, IMDB-
BINARY (IMDB-B for short), IMDB-MULTI (IMDB-M for short), and DD. They are popularly
used benchmarks publicly available from Kersting et al.| (2016). Except IMDB-B and IMDB-M
which are derived from social networks, the rest of the data sets all come from the bioinformatics
domain. Information of the data sets is summarized in Table [3|in the appendix. The downstream
task is graph classification.

We gauge the performance of OTCOARSENING with several supervised approaches. They in-
clude the plain GCN (Kipf & Welling| 2017) followed by a gloabl mean pooling, as well as five
more sophisticated pooling methods: SORTPOOL (Zhang et al. 2018)), which retains the top-k
nodes for fixed-size convolution; DIFFPOOL (Ying et al. [2018b), which applies soft clustering;
SET2SET (Vinyals et al., 2015), which is used together with GRAPHSAGE (Hamilton et al., 2017)
as a pooling baseline in |Ying et al.|(2018b); GPoOL (Cangea et al., 2018} |Gao & Ji,|2019), which
retains the top-k nodes for graph coarsening, as is used by GRAPH U-NET; and SAGPOOL (Lee
et al.|, 2019), which applies self-attention to compute the top-k nodes. Among them, DIFFPOOL,
GPooOL, and SAGPOOL are hierarchical methods, similar to ours.

Additionally, we employ a simple unsupervised baseline. Named GRAPHAE-UNSUPV, this base-
line is a graph autoencoder that does not perform coarsening, but rather, applies GCN twice to
respectively encode the node features and decode for reconstruction. The encoder serves the same
purpose as that of the plain GCN and the decoder is needed for training without supervised signals.
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We implement the proposed method and the graph autoencoder by using the PyTorch Geometric
library, which is shipped with off-the-shelf implementation of all other compared methods. We refer
the readers to the appendix for implementation and experimentation details. The code is available at
https://github.com/anonymousOPT/OTCoarsening.

4.2 GRAPH CLASSIFICATION

Graph classification accuracies are reported in Table [ OTCOARSENING outperforms the com-
pared methods in five out of six data sets: PROTEINS, MUTAG, IMDB-B, IMDB-M, and DD.
Moreover, it improves significantly the accuracy on DD. Interestingly, on these data sets the su-
pervised runner up is always DIFFPOOL, outperforming the subsequently proposed GPOOL and
SAGPOOL. On the other hand, these two methods perform the best on the other data set NCI109,
with SAGPoOL taking the first place. On NCI109, OTCOARSENING performs on par with the
lower end of the compared methods. It appears low-performing, possibly because of the lack of
useful node features that play an important role in the optimal transport distance. Based on these
observations, we may conclude that hierarchical methods indeed are promising for handling graph
structured data. Moreover, as an unsupervised method, the proposed OTCOARSENING performs
competitively with strong supervised approaches. In fact, even for the simple unsupervised baseline
GRAPHAE-UNSUPV, it outperforms DIFFPOOL on PROTEINS, MUTAG, and DD. This observa-
tion indicates that unsupervised approaches are quite competitive, paving the way for possible uses
in other applications and tasks.

Table 1: Graph classification accuracy.

Method PROTEINS MUTAG NCI109 IMDB-B IMDB-M DD
GCN 0.723 0.734 0.696 0.713 0.505 0.718
SET2SET 0.734 0.746 0.703 0.729 0.497 0.708
SorRTPOOL 0.735 0.801 0.691 0.716 0.499 0.737
DIrrFPoOOL 0.742 0.845 0.717 0.743 0.503 0.739
GPooL 0.722 0.762 0.724 0.730 0.495 0.715
SAGPooOL 0.733 0.786 0.731 0.722 0.504 0.720
GRAPHAE-UNSUPV 0.743 0.846 0.664 0.724 0.499 0.765
OTCOARSENING 0.749 0.856 0.685 0.746 0.509 0.772
0.9 0.9
0.85 0.85
0.8 0.8
0.75 0.75 i
0.7 0.7
0.65 0.65
0.6 0.6
0.001 0.01 0.1 1 10 1 10 25 50 100
~——PROTEINS ——MUTAG —NCI109 ——IMDB-B —DD ——PROTEINS —MUTAG ——NCI109 ——IMDB-B ——DD
(a) Entropic regularization, ~y (b) Sinkhorn steps, k

Figure 2: Classification accuracy as parameters vary.

4.3 SENSITIVITY ANALYSIS

OTCOARSENING introduces a few parameters owing to the computational nature of optimal trans-
port: (a) the entropic regularization strength «y; and (b) the number of Sinkhorn steps, k. In Figure[2]
we perform a sensitivity analysis and investigate the change of classification accuracy as these pa-
rameters vary. One sees that most of the curves are relatively flat, except the case of v on NCI109.
This observation indicates that the proposed method is relatively robust to the parameters of optimal
transport. The curious case of NCI109 inherits the weak performance observed in the preceding
subsection, possibly caused by the lack of informative input features.
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4.4 MULTI-TASK LEARNING

We further investigate the value of unsupervised graph representation through the lens of multi-task
learning. We compare three scenarios: (A) a single representation trained without knowledge of the
downstream tasks (method: OTCOARSENING); (B) a single representation trained jointly with all
downstream tasks (methods: GCN, SET2SET, SORTPOOL, DIFFPOOL, GPOOL, and SAGPOOL, all
suffixed with “-joint”); and (C) different representations trained separately with each task (method:
DIFFPOOL-sep).

The data set is QM7b (Wu et al., 2018)), which consists of 14 regression targets. Following |Gilmer,
et al.|(2017), we standardize each target to mean 0 and standard deviation 1; we also use MSE as the
training loss but test with MAE. Table[2]reports the MAE and timing results.

Table 2: Multi-task regression error and training time (in seconds).

Method MAE Time Method MAE Time
(A) OTCOARSENING 0.6609 2622 (B) SoORTPOOL-joint 2.4408 2652
© Di1FrFPOOL-sep 0.1714 15520 (B) DIFFPOOL-joint 2.4231 1100
B) GCN-joint 24225 2122 (B) GPOOL-joint 24200 2117
B) SET2SET-joint  2.4256 2657 (B) SAGPoOOL-joint 2.4221 1874

One sees from Table [2] that in terms of regression error, single unsupervised representation (A)
significantly outperforms single supervised representations (B), whilist being inferior to separate
supervised representations (C). Each scenario outperforms another at the cost of longer training
time. It is expected that (C) is much slower than other scenarios, because it trains 14 models whereas
others only 1. The timings for (B) are comparable with that of (A). The timing variation is caused
by several factors, including the architecture difference and dense-versus-sparse implementation.
DI1FFPOOL is implemented with dense matrices, which may be faster compared with other methods
that treat the graph adjacency matrix sparse, when the graphs are small.

4.5 QUALITATIVE STUDY

As discussed in Section |2} coarsening approaches may be categorized in two classes: clustering
based and node-selection based. Methods in the former class (e.g., DIFFPOOL) coarsen a graph
through clustering similar nodes. In graph representation learning, similarity of nodes is measured
by not only their graph distance but also the closeness of their feature vectors. Hence, two distant
nodes bear a risk of being clustered together if their input features are similar. In this case, the graph
structure is destroyed.

On the other hand, methods in the latter class (e.g., GRAPH U-NET and SAGPOOL) use nodes in
the original graph as coarse nodes. If the coarse nodes are connected based on only their graph
distance but not feature vectors, the graph structure is more likely to be preserved. Such is the case
for OTCOARSENING, where only nodes within a 3-hop neighborhood are connected. Such is also
the case for GRAPH U-NET and SAGPOOL, where the neighborhood is even more restricted (e.g.,
only 1-hop neighborhood). However, if two coarse nodes are connected only when there is an edge
in the original graph, these approaches bear another risk of resulting in disconnected coarse graphs.

Theoretical analysis is beyond scope. Hence, we conduct a qualitative study and visually inspect
the coarsening results. In Figure |3] we show a few graphs from the data set MUTAG, placing
the coarsening sequence of OTCOARSENING on the left and that of SAGPOOL on the right for
comparison. The hollow nodes are selected as coarse nodes.

For the graph on the top row, OTCOARSENING selects nodes across the consecutive rings in the
first-level coarsening, whereas SAGPOOL selects the ring in the middle. For the graph in the middle
row, both OTCOARSENING and SAGPOOL select the periphery of the honeycomb for the first-
level coarsening, but differ in the second level in that one selects again the periphery but the other
selects the heart. For the graph at the bottom row, OTCOARSENING preserves the butterfly topol-
ogy through coarsening but the result of SAGPOOL is hard to comprehend. This qualitative study
corroborates that the coarse graphs produced by OTCOARSENING are meaningful.
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Figure 3: Coarsening sequence for graphs from MUTAG. Left (magenta): OTCOARSENING. Right
(orange): SAGPOOL. Hollow nodes are coarse nodes.

5 CONCLUDING REMARKS

Coarsening is a common approach for solving large-scale graph problems in various scientific disci-
plines. It generates a sequence of successively smaller graphs, each one being a structural summary
of the prior one, so that the challenging solution with the original graph may be obtained through
interpolation, starting from the easy solution with the coarsest graph and interpolating back with
refinement, following the reverse order of coarsening. This idea is adopted in the AMG method for
solving large, sparse linear systems of equations. When applied to machine learning, the same idea
may be explored for learning a hierarchical abstraction of graphs, which are a challenging analog
of images that are comprised of regularly connected pixels, because node connections in graphs are
generally irregular. How one effectively aggregates nearby nodes and coarsens the graph motivates
the present work.

Whereas a plethora of coarsening methods were proposed in the past and are used today, these
methods either do not have a learning component, or have parameters that need be learned with a
downstream task. In this work, we present OTCOARSENING, which is an unsupervised approach. It
follows the concepts of AMG but learns the selection of the coarse nodes and the coarsening matrix
through the use of optimal transport. We demonstrate its successful use in graph classification
and regression tasks and show that the coarse graphs preserve the structure of the original one.
We envision that the proposed idea and architecture may be adopted in many other graph learning
scenarios and downstream tasks, such as graph autoencoders, structure learning, and generative
modeling.
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A PROOFS

Proof of Theorem[I] We say that the sum of two numbers is structurally nonzero if at least one of the
numbers is nonzero, even if they sum algebraically to zero (e.g., when one number is the opposite
number of the other). Structural nonzero of an element in the adjacency matrix is the necessary and
sufficient condition for the existence of the corresponding edge in the graph.

Recall that A. = STAS. For two coarse nodes j and j’, one sees that the element A.(j,j’) is
structurally nonzero if and only if the submatrix A(x(j), x(j’)) is nonempty. In other words, j and
j' are connected by an edge in the coarse graph G. if and only if there exists an edge connecting
X(7) and x(j') in the original graph G. Note that such an edge may be a self loop. O

Proof of Corollary[2] If there is an edge connecting j and j in the coarse graph, then according to
Theorem (1} there is an edge connecting ¢ € x(j) and i’ € x(j') in the original graph, for some
nodes 7 and 7’. Then by the assumption that the elements of x(j) are either j or j’s direct neighbors
and similarly for x(j’), we know that j and j’ are connected by the path {j, 4,4, j'}, which means
that the distance between j and j' is at most 3. O

B DATA SET DETAILS

See Table [3|for a summary of the classification data sets used in this paper.

Table 3: Data sets.

PROTEINS MUTAG NCI109 IMDB-B IMDB-M DD

# Graphs 1,113 188 4,127 1,000 1,500 1,178
# Classes 2 2 2 2 3 2
Average # nodes 39.06 17.93 29.68 19.77 13.00 284.32
Average node degree 3.73 2.21 2.17 9.76 10.14 5.03

C IMPLEMENTATION DETAILS

The weighting vector « (cf. (Z)) used for coarse node selection is computed by using 1-layer GCN
with activation function sigmoid o square. That is, o = sigmoid((AX W,)?).

The GNNs in (8) for computing the coarse node embeddings Z,. and coarse node features X, are
1-layer GCNs.

The power p in Wasserstein-p (cf. (9)) is fixed as 2.
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D EXPERIMENTATION DETAILS

We evaluate all methods using 10-fold cross validation.

For training, we use the Adam optimizer (Kingma & Bal, 2014)) with a tuned initial learning rate and
a fixed decay rate 0.5 for every 50 epochs.

We perform unsupervised training for a maximum of 200 epochs and choose the model at the best
validation loss. Afterward, we feed the learned representations into a 2-layer MLP and evaluate the
graph classification performance.

We use grid search to tune hyperparameters: the learning rate is from {0.01,0.001}; and the num-
ber of coarsening levels is from {1, 2,3} for the propoed method and {2, 3,4} for the compared
methods. The coarsening ratio is set to 0.5 for all methods.
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