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ABSTRACT

Generative models can be used to produce designs that obey hard-to-specify con-
straints while still producing plausible examples. Recent examples of this include
drug design, text with desired sentiment, or images with desired captions. However,
most previous applications of generative models to design are based on bespoke,
ad-hoc procedures. We give a unifying treatment of generative design based on
probabilistic generative models. Some of these models can be trained end-to-end,
can take advantage of both labelled and unlabelled examples, and automatically
trade off between different design goals.

1 INTRODUCTION

The goal of computer-aided design is to automate parts of the creative process. We would like to
be able to specify some desired properties, and have an algorithm produce a diverse set of suitable
candidates. By having an algorithm perform some of the rudimentary design tasks, a human designer
would be freed to take on a more high-level creative role in the design process.

Recently, Variational Autoencoders (VAEs) Kingma & Welling (2014); Rezende et al. (2014),
Generative Adversarial Networks (GANs) Goodfellow et al. (2014), deep autoregressive networks
van den Oord et al. (2016b;a), have achieved impressive performance at simulating highly-structured
real-world data. Other recent work in model architecture and search such as Mueller et al. (2017)
and Engel et al. (2017) has also produced impressive results. However, it remains an active area
of research as to how best approach the problem of learning optimal representations for the task of
automated design of highly structured data.

We propose a general, domain- and algorithm-agnostic formulation of the task of probabilistic
generative design, namely as sampling from a probability distribution conditioned on relevant targets
and constraints. We present a framework for an exhaustive taxonomy of different graphical models
that allow us to perform automated design in a probabilistic setting, contrasting models that explicitly
model latent variables with those that directly optimize a data-generating process.

We empirically investigate the geometric properties of generative design models, showing that the
set of relevant designs (the “design manifold”) can be complex, disconnected, and have low volume
relative to the larger design space. We show that explicitly modeling latent variables and training
using semi-supervision can be used to align the design manifold, thus making the design task easier.

2 AUTOMATED DESIGN THROUGH PROBABILISTIC GENERATIVE MODELS

How can we formulate automated design of structured data as a probabilistic generative modeling and
inference task? Our underpinning assumption is the manifold hypothesis (Cayton, 2005; Narayanan
& Mitter, 2010; Brahma et al., 2016): real-world data forms a distribution p(x) which is concentrated
near a low-dimensional manifold embedded in a larger space. We will refer to this as the data
manifold. For example, in an action-recognition dataset, the manifold hypothesis states that all the
information about the actions could be represented by the lower-dimensional sub-manifold of the
joint locations of the individuals.
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VAEs and GANs have largely solved the problem of producing realistic data from the data manifold,
but not in a targeted manner in the absence of post-hoc methods. Hence, the key criteria for automated
design from a model of data is the ability to impose design constraints or target attributes. Such
constraints allow us to limit generations from the model to sub-regions of the manifold. We denote
such target attributes with a composite target variable t, which specifies the desired attributes.

Conditioning on a target value turns the distribution p(x) into a conditional distribution,
p(x|t) ∝ p(x)p(t|x).

When the conditional distribution is concentrated near a manifold, we call it a design manifold. Note
that sampling from p(x|t) automatically achieves the goals of generative design:

• Plausibility is automatically enforced by p(x), which might be defined implicitly by a VAE
or GAN. This model can be trained from unlabeled data.
• Targeted The term p(t|x) automatically enforces that that samples from p(x|t) necessarily

be a subset of the possible unconditional plausible configurations.
• Diversity A well-calibrated model will automatically put mass on all valid possibilities.

When training a VAE, we can explicitly see that attempting to fit a good model introduces a
term promoting entropy.

Indeed, probabilistic generative models support many of these goals through inference. In particular,
inference gives us: a baked-in measure for quality, since we can assess fidelity to the label distri-
bution through p(t|x); efficient search, since we can use gradient-based optimization on the latent
representation; and automatic model choice, because a Bayesian approach selects model capacity
and regularization parameters during inference.

3 PROBABILISTIC GENERATIVE DESIGN (PGD) MOTIFS

In this section, we preview a comprehensive taxonomy of graphical model motifs. The motifs
presented are four of a large possible number of directed graphs involving x, t, z. They exemplify the
interaction between model choice, implicit or explicit latent representations, and the target functions
being optimized. We leave a full treatment of such motifs, such as considerations of sampling and
inference, to future work. Here, we show how adopting a PGD framework reveals useful insights
into automated design in different practical contexts. We explore one such insight empirically with a
semi-supervised VAE on MNIST to exhibit the strengths of the common cause motif.

3.1 SELECTED NON-LATENT VARIABLE MOTIFS

t x

Direct Generation Conditional on Target The ideal model would be one
that could directly sample x ∼ p(x|t). For example, a neural network could be
trained to directly generate an image given a caption, an approach taken with
mixed results in Mansimov et al. (2015). If t can only take a few values, and
data is plentiful, training such a model is straightforward, as in Dosovitskiy
et al. (2017). However, if t lives in an open-ended space of possible design criteria, such as the set of
all possible captions, then training such a model is difficult, since it requires learning a mapping from
one high-dimensional space to another.

x t

Regression and Search The standard approach to machine-learning based
design without the use of generative models is based on regression and search.
In this pattern, one learns a function mapping f : X → T from labeled exam-
ples, then performs optimization to find an x that approximately maximizes
f(x). If x and t are continuous then gradient-based optimization can be used,
as in Mordvintsev et al. (2015). However, this approach has two major drawbacks:

• Without a generative model p(x) to constrain the design, the samples x might veer wildly
away from typical data. Thus, the search space must be carefully chosen to contain only
valid designs.
• In discrete settings, optimization is difficult due to the lack of gradients to inform the search

direction.
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Figure 1: Effect of increasing proportion of labelled training data for a semi-supervised VAE. Colors
are densities over regions of high-target-value reconstructions: green is highest, blue is lowest. A
high target value reconstruction is one with many active (black, binary-valued) pixels.

3.2 SELECTED LATENT VARIABLE MOTIFS

z x t

Plug and Play Nguyen et al. (2016a;b) addressed one of the main problems
with the regression-and-search approach. They constrained the search space of
possible images to the subset of natural images by coupling a classifier (map-
ping f : X → T ) with a generative model mapping from an unconstrained
latent space to the low-dimensional manifold of natural images (Z → X ).
However, this approach still has several drawbacks:

• Evaluating the gradient δtδz = δt
δx×

δx
δz requires differentiating through both a high-resolution

generative model, as well as a high-resolution discriminative model.
• For high dimensional x, training such a model can require an excessive amount of labels.

z

x t

Common Cause This approach was explored by Gómez-Bombarelli et al.
(2016). This model has the advantage that it can be used to optimize discrete
designs.

• Training the target function from z → t requires encoding the cor-
responding x values. This is straightforward if the generative model
is a VAE, but might not always be available if using a GAN.

• Joint training with labels can exploit gradient information to organize
the latent space (see fig. 1)

3.3 SEMI-SUPERVISED TRAINING ORGANIZES DESIGN MANIFOLDS

Figure 1 shows that design manifolds are disconnected and nonlinear in the absence of supervision.
Training with semi-supervision organizes regions of the latent space. The data are binarized MNIST
digits, and the labels correspond to the number of active pixels in the data point. The models employ
the “common cause" motif: each subfigure represents a semi-supervised VAE model, trained to
convergence with a fixed amount of labelled data (increasing towards the right). See Appendix A for
details of loss function derivation and training.

4 CONCLUSIONS

Focusing on even a few design motifs exposed useful insights for future work in automated design.
Out of all the motifs we considered, the common cause model stands alone in both allowing semi-
supervised learning, gradient-based inference and search, and requiring learning only low-dimensional
functions. Future research will also consider interactions between approximate inference strategies,
and the form of the models chosen.

We believe the language of design motifs captures essential, model agnostic information relevant
to the use of probabilistic generative models for automatic design. Ongoing work in this area
will expand the lexicon of design motifs to explore strengths and weaknesses of each motif, and
develop knowledge of inference and sampling characteristics to support rapid progress in probabilistic
generative design.
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A SEMI-SUPERVISED VARIATIONAL AUTOENCODER (SSVAE): LOSS AND
TRAINING

The images in figure 1 exhibit three conditional latent density functions superimposed on each trained
SSVAE, where the regions of high and low density are visualized over a grid of reconstructions in
the latent space. In this section, we explain the model and training of these latent densities in detail.
Code for declaring and training the model may be found at www.github.com/geoffroeder/
design-motifs.

A.1 TRAINING

MNIST digits are modelled at the pixel level as i.i.d. Bernoulli random variables. For approximate pos-
terior distributions, we use a diagonal Gaussian. We define a target function t(x) =

∑
j∈|G(z)|G(z)j ,

where x = G(z), e.g., the reconstruction of some point in the latent space. This distribution captures
the number of active pixels of the datapoint. This function correlates well with the thickness of the
digit, as observed in figure 1. To exhibit how simple modelling choices can still yield generative
models useful for design, we model p(t|z) as linear regression, e.g., a Gaussian also. The same latent
space is trained for regeneration of data and labels through a simple semi-supervised VAE (SSVAE).

We train this model by forming a common cause evidence lower bound, noting first that since each
observation from the data distribution is i.i.d. by assumption, we may factorize these observations
into those with an associated label t and those without a label:

log p({xu}, {xL, t}|θx, θt) = log

Nu∏
i=1

p(xi)

Nl∏
j=1

p(xj , tj)


=

Nu∑
i=1

log p(xi) +

Nl∑
j=1

log p(xj , tj),

where Nu is the number of unlabelled datatpoints and Nl the number of labelled datapoints. We
then introduce a latent space Z , and two differentiably reparameterizable variational families q
parameterized by φx and φt to approximate the intractable posterior distributions:

Nu∑
i=1

log

∫
p(xi|z)p(z)dz+

Nl∑
j=1

log

∫
pθx(xj |z)pθt(tj |z)p(z)dz

≥
Nu∑
i=1

Eqφx [log pθx(xi, z)− log qφx(z|xi)]

+

Nl∑
j=1

Eqφt [log pθx(xj , z) + log pθt(tj |z)− log qφt(z|xj , tj)] .

By mapping and regenerating both digits and labels from the same latent space, the common cause
model provides a simple form of scaffolding for this space that encourages it to pack information
about the label along the latent dimensions, as demonstrated in figure 1.

A.2 VISUALIZATION

We model the data using the common cause motif. This allows us to take advantage of factorization
of the joint distribution for visualization purposes. For a particular reconstruction mean z of any
datapoint x, we can use Monte Carlo sampling to approximate the conditional density of p(z|t) at
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point. Specifically,

p(z|t) ∝ p(z, t) =
∫
p(z, t,x)dx

=

∫
p(z)p(x|z)p(t|z)dx

= Ep(x|z) [p(z)I [t(x|z) ∈ V]]

≈ p(z) 1
S

S∑
i=1

I [t(xi|z) ∈ V] .

We divide the empirical output range of true labels t calculated over MNIST into three roughly
equal-sized ordered sets V1:3. The density for the set containing the smallest values is coloured blue,
the middle region of values red, and the greatest region of values green.
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