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Abstract

The knockoff filter introduced by Barber and Candès 2016 is an elegant framework
for controlling the false discovery rate in variable selection. While empirical
results indicate that this methodology is not too conservative, there is no conclusive
theoretical result on its power. When the predictors are i.i.d. Gaussian, it is known
that as the signal to noise ratio tend to infinity, the knockoff filter is consistent in
the sense that one can make FDR go to 0 and power go to 1 simultaneously. In this
work we study the case where the predictors have a general covariance matrix ⌃.
We introduce a simple functional called effective signal deficiency (ESD) of the
covariance matrix of the predictors that predicts consistency of various variable
selection methods. In particular, ESD reveals that the structure of the precision
matrix plays a central role in consistency and therefore, so does the conditional
independence structure of the predictors. To leverage this connection, we introduce
Conditional Independence knockoff, a simple procedure that is able to compete
with the more sophisticated knockoff filters and that is defined when the predictors
obey a Gaussian tree graphical models (or when the graph is sufficiently sparse).
Our theoretical results are supported by numerical evidence on synthetic data.

1 Introduction

Variable selection is a cornerstone of modern high-dimensional statistics and, more generally, of
data-driven scientific discovery. Examples include selecting a few genes correlated to the incidence
of a certain disease, or discovering a number of demographic attributes correlated to crime rates.

A fruitful theoretical framework to study this question is the linear regression model in which we
observe n independent copies of the pair (X,Y ) 2 p

⇥ such that

Y = X
>
✓ + ⇠ ,

where ✓ 2 p is an unknown vector of coefficients, and ⇠ ⇠ N (0, n�2) is a noise random variable.
Throughout this work we assume that X ⇠ N (0,⌃) for some known covariance matrix ⌃. Note
that for notational simplicity our linear regression model is multiplied by

p
n compared to standard

scaling in high-dimensional linear regression [BRT09]. Clearly, this scaling, also employed in [JM14]
has no effect on our results. In this work, we consider asymptotics where n/p ! � is fixed.

In this model, a variable selection procedure is a sequence of test statistics  1, . . . , p 2 {0, 1} for
each of the hypothesis testing problem

H
(j)
0 : ✓j = 0 , vs. H

(j)
1 : ✓j 6= 0 , j = 1 . . . , p (1)

When p is large, a simultaneous control of all the type I errors leads to overly conservative procedures
that impedes statistical significant variables, and ultimately, scientific discovery. The False Discovery
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Rate (FDR) is a less conservative alternative to global type I error. The FDR of a procedure
( 1, . . . , p) is the expected proportion of erroneoulsy rejected tests. Formally

FDR :=
h#{j :  j = 1, ✓j = 0}

#{j :  j = 1} _ 1

i

Since its introduction more than two decades ago, various procedures have been developed to provably
control this quantity under various assumptions. Central among these is the Benjamini-Hochberg
procedure which is guaranteed to lead to a desired FDR control under the assumption that the
design matrix X = (X1, . . . , Xn)> 2

n⇥p formed by the concatenation of the n column vectors
X1, . . . , Xn is deterministic and orthogonal [BH95, STS04].

In the presence of correlation between the variables, that is when the design matrix fails to be
orthogonal, the problem becomes much more difficult. Indeed, if the variables Xj and Xk are highly
correlated, any standard procedure will tend to output a similar coefficient for both, or in the case of
Lasso for example, simply chose one of the two variables rather than both.

Recently, the knockoff filter of Barber and Candès [BC15, CFJL18] has emerged as a competitive
alternative to the Benjamini-Hochberg procedure for FDR control in the presence of correlated
variables, and has demonstrated great empirical success [KS19, SKB+]. The terminology “knockoffs"
refers to a vector X̃ 2

p that is easy to mistake for the original vector X but is crucially independent
of Y given X . Formally, X̃ is a knockoff of X if (i) X̃ is independent of Y given X and (ii) for any
S ⇢ {1, . . . , p}, it holds

(X, X̃)swap(S)
d
=(X, X̃) (2)

where d
= denotes equality in distribution and (X, X̃)swap(S) is the vector Z 2

2p with jth coordinate
given by

Zj =

⇢
Xj if j 2 ({1, . . . , p} \ S) [ (S + {p})
X̃j if j 2 S [ ({p+ 1, . . . , 2p} \ (S + {p})

In words, for any vector 2p, the operator (·)swap(S) swaps each coordinate in j 2 S with the
coordinate j + p and leaves the other coordinates unchanged. We call a knockoff mechanism any
probability family of probability distributions (Px, x 2

p) over p such that X̃ ⇠ PX is a knockoff
of X . Since the knockoff is constructed independently of Y , it serves as a benchmark to evaluate
how much of the coefficient of a certain variable is due to its correlation with Y and how much of it
is due to its correlation with the other variables.

With this idea in mind, the knockoff filter is then constructed from the following four steps:

1. Generate knockoffs. For i = 1, . . . , n, given Xi 2
p, generate knockoff X̃i ⇠ PXi and

form the n⇥ 2p design matrix [X, X̃] where X̃ = (X̃1, . . . , X̃n)> 2
n⇥p is obtained by

concatenating the knockoff vectors.

2. Collect scores for each variable. Define the 2p dimensional vector 1
✓̂ as the Lasso

estimator
✓̂ = argmin

✓2 2p

1

2n
kY � [X, X̃]✓k22 + �k✓k1 , (3)

where Y = (Y1, . . . , Yn)> is the response vector and, collect the differences of absolute
coefficients between variables and knockoffs into a set D = {|�j | , j = 1, . . . , p} \ {0}
where�j’s are any constructed statistics satisfying certain symmetry conditions [BC15]. A
frequent choice is

�j := |✓̂j |� |✓̂j+p| , j = 1, . . . , p.

In this work we replace ✓̂ by the debiased version ✓̂u (see (7) ahead) in the above definition.
3. Threshold. Given a desired FDR bound q 2 (0, 1), define the threshold

T := min

⇢
t 2 D :

#{j : �j  �t}

#{j : �j � t} _ 1
 q

�
.

1Regression problems with knockoffs are 2p dimensional rather than p dimensional. To keep track of this
fact, we use · to denote a 2p dimensional vector.
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4. Test. For all j = 1, . . . , p, answer the hypothesis testing problem (1) with test

 j = {�j � T} .

This procedure is guaranteed to satisfy FDR  q [BC15, Theorem 1] no matter the choice of
knockoffs. Clearly, X̃ = X is a valid choice for knockoffs but it will inevitably lead to no discoveries.
The ability of a variable selection procedure ( 1, . . . , p) to discover true positive is captured its
power (or true positive proportion) defined as

PWR =
h#{j :  j = 1, ✓j 6= 0}

#{j : ✓j 6= 0}

i

Intuitively, to maximize power, knockoffs should be as uncorrelated with X as possible while
satisfying the exchangeability property (2). Following this principle, various knockoff mechanisms
have been proposed in different settings, which typically involves solving an optimization to minimize
a heuristic notion of correlation [BC15, CFJL18, RSC18]. Because of this optimization problem,
knockoff mechanisms with analytical expressions are rare, with the exception of the equi-knockoff
[BC15] and metropolized knockoff sampling [BCJW19]). Partly due to this, the theoretical analysis
of the power of the knockoff filter has been very limited, even in the Gaussian setting. In the special
case where X ⇠ N (0, D) for some diagonal matrix, i.e. when the variables are independent, one
can simply take X̃ ⇠ N (0, D) independent of X . In this case, the power of the knockoff filter tends
to 1 as the signal-to-noise ratio tends to infinity [WBC17].

When predictors are correlated, [FDLL19] proved a lower bound on the power, where the limiting
power as n ! 1 is bounded below in terms of the number p of predictors and extremal eigenvalues
of the covariance matrix of the true and knockoff variables. While this lower bound provides a
sufficient condition for situations when the power tends to 1, it is loose in certain scenarios. For
example, if all predictors are independent except that two of them are almost surely equal, then the
minimum eigenvalue of the covariance matrix is zero and yet, experimental results indicate that the
FDR and the power of the knockoff filter are almost unchanged.

Our contribution. In this paper, we revisit the statistical performance of the knockoff filter X ⇠

N (0,⌃) and characterize the situation the knockoff filter is consistent, that is when its FDR tends to
0 and its power tends to 1 simultaneously. More specifically, under suitable limit assumptions, we
show that the knockoff filter is consistent if and only if the empirical distribution of the diagonal
elements of the precision matrix of P := ⌃�1 converges to 0, where ⌃ denotes the covariance matrix
of [X, X̃] 2 2p converges to a point mass at 0. In turn, we propose an explicit criterion, called
effective signal deficiency defined formally in (8) to practically evaluate consistency or lack thereof.
Here the term “signal" refers to the covariance structure ⌃ of X and the effective signal deficiency
essentially how much weak such a signal should be for a knockoff mechanism to be consistent.

A second contribution is to propose a new knockoffs mechanism, called Conditionally Independent
Knockoffs (CIK), which possesses both simple analytic expressions and excellent experimental
performance. CIK does not exist for all ⌃, but we show its existence for tree graphical models or
other sufficiently sparse graphs. Note that in practice, the so-called model-X knockoff filter requires
the knowledge of ⌃, an estimation of which is often prohibitive except when the graph has sparse or
tree structures. CIK has simple explicit expressions of the effective signal deficiency for tree models,
since the empirical distribution of the diagonals of ⌃�1 is the same as that of (P2

jj⌃jj)
p
j=1. We

remark that CIK is different than metropolized knockoff sampling studied in [BCJW19] (originally
appeared in [CFJL18, Section 3.4.1]), even in the case of Gaussian Markov chains. The latter exists
for generic distributions and is computationally efficient for Markov chains.

Notation. We write [n] := {1, . . . , n} and 1 to denote the all-ones vector. For any vector ✓, let k✓k0
and k✓k1 denote its `0 and `1 norms. Given a vector x, we denote by diag(x) the diagonal matrix
whose diagonal elements are given by the entries of x and for a matrix M, we denote by diag(M) the
vector whose entries are given by the diagonal entries of M. For a standard Gaussian random variable
⇠ ⇠ N (0, 1) and any real number r, we denote by Q(r) = [⇠ > r], the Gaussian tail probability.
Finally we use the notation A � B to indicate the loewner order: B�A is positive semidefinite.
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2 Existing work

We focus this discussion on the case of Gaussian design X . In this case, the exchangeability
condition (2) implies that [X, X̃] has a covariance matrix of the form

⌃ =


⌃ ⌃� diag(s)

⌃� diag(s) ⌃

�
. (4)

As observed in [BC15], positive semi-definiteness of this matrix is equivalent to
0 � diag(s) � 2⌃ (5)

For some s 2 p. As a result, finding a knockoff mechanism consists in finding s.

The seminal work [BC15][CFJL18] introduce the following knockoff mechanisms:

EQUI-KNOCKOFFS: The vector s is chosen of the form s = s1 for some s � 0. In light of (5) the
smallest value possible for s is 2�min(⌃). Assuming the normalization diag(⌃) = 1, [CFJL18]
recommend choosing

s = 2�min(⌃) ^ 1, (6)

with the goal of minimizing the correlation between Xj and X̃j .

SDP-KNOCKOFFS: The vector s is chosen to solve the following semidefinite program:
min k diag(⌃)� sk1 s.t. 0 � diag(s) � diag(⌃)

diag(s) � 2⌃.

ASDP-KNOCKOFFS: Assume the normalization diag(⌃) = 1. Choose an approximation ⌃a of ⌃
(see [CFJL18]) and solve:

minimize k1� ŝk1
subject to ŝ � 0, diag(̂s) � 2⌃a

and then solve:
minimize �
subject to diag(�ŝ) � 2⌃

and put s = �ŝ.

We do not discuss other knockoff constructions, such as the exact construction [CFJL18, Section 3.4.1]
and deep knockoff [RSC18], which mostly target at general non-Gaussian distributions.

As alluded, previously, [WBC17] performed power analysis in the linear (fixed n/p) regime for
⌃ = Ip, in which case all the above knockoff mechanisms give the same answer of s = 1. For a
general ⌃, [FDLL19] derived lower bounds on the power in terms of the minimum eigenvalue of the
extended covariance matrix ⌃ (no specific knockoff mechanism is assumed).

3 Overview of the main results

In the paper, we focus on the so-called linear regime where the sampling n/p converges to a constant
�. We allow for general ⌃ and for simplicity, rather than using the Lasso estimator ✓̂ defined in (3),
we employ a debiased version [ZZ14, vdGBRD14, JM14]

✓̂
u := ✓̂ +

d

n
⌃�1X>(Y �X✓̂), (7)

where 1/d = 1� ✓̂/n. To allow for asymptotic results, we consider a sequence {(⌃(p)
, ✓

(p))}p�1

where ⌃(p) are covariance matrices of size m
(p)

⇥m
(p) and ✓(p) 2

(p)

are vectors of coefficients.
Note that we will only consider the cases where m

(p) = p or m(p) = 2p, depending on whether we
consider predictors with or without knockoffs.

At first glance, it is unclear that for such general sequences, any meaningful result can be said about
the debiased Lasso estimator ✓̂u defined in (7). To overcome this obvious limitation, we consider the
asymptotic setting where a standard distributional limit exists in the sense [JM14, Definition 4.1].
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Definition 1 (Standard distributional limit). Assume constant sampling rate n
(p) = �m

(p). A
sequence {(⌃(p)

, ✓
(p))}p�1 is said to have a standard distributional limit with sparsity (↵,�), if

(i) there exist ⌧ 6= 0 deterministic and d, possibly random, such that the empirical measure

1

m(p)

m(p)X

j=1

��
✓j ,

✓̂uj �✓j
⌧ ,(⌃�1)jj

�(p)

converges almost surely weakly to a probability measure ⌫ on R3 as p ! 1. Here, ⌫ is the
probability distribution of (⇥,⌥1/2

Z,⌥), where Z ⇠ N (0, 1), and ⇥ and ⌥ are some random
variables independent of Z. Moreover, we ask that
(ii) as p ! 1, it holds almost surely that

1

p
k✓

(p)
k0 ! ↵ := P[|⇥| > 0] , and

1

p
k✓

(p)
k1 ! � := E[|⇥|] .

Note that (i) implies that lim infp!1 k✓
(p)

k1/p � E[|⇥|], and lim infp!1 k✓
(p)

k0/p � P[|⇥| > 0],
almost surely. We further impose that equalities are achieved in (ii).

As mentioned in [JM14], characterizing instances having a standard distributional limit is highly
nontrivial. Yet, at least, the definition is non-empty since it contains the case of standard Gaussian
design. Moreover, a non-rigorous replica argument indicates that the standard distributional limit
exists as long as a certain functional defined on R2 has a differentiable limit [JM14, Replica Method
Claim 4.6], which is always satisfied for block diagonal ⌃ where the empirical distribution of the
blocks converges.

We remark that in the sparse regime where k✓k0 = o(p), rigorous results, that do not appeal to the
replica method, show that the weak convergence of the distribution of {(✓j , Pjj)}

p
j=1is essentially

sufficient for the existence of a standard distributional limit ([JM14, Theorem 4.5]), although the
present paper does not concern that regime.

We now introduce the key criterion to characterize consistency of a knockoff mechanism and more
generally of a variable selection procedure.

Definition 2 (Effective signal deficiency). For a given variable selection procedure, ESD(p)
� 0 is a

function of ⌃(p) with the following property: for the class of sequences (✓(p),⌃(p))p�1 satisfying
suitable distributional limit conditions, vanishing ESD is equivalent to consistency of the test:

ESD := lim sup
p!1

ESD(p)
! 0 () lim sup

p!1

�
FDR(p) + (1� PWR(p))

 
! 0 .

When we consider knockoff filters, ESD is frequently expressed in terms of the extended covariance
matrix ⌃, which is in turn a function of ⌃ for a given knockoff mechanism. In that setting, the
“suitable distributional limit conditions” in the above definition requires that the sequence of extended
instances (✓(p),⌃(p))p�1 has a standard distributional limit.

Note that by definition, ESD is not unique, and our goal is to find simple representations of its
equivalence class. ESD is a potentially useful concept in comparing or evaluating different ways
of generating knockoff matrices. As an analogy, think of the various notions of convergences of
probability measures. A sequence of probability measures may converge in one topology but not
in another. Similarly, one may cook up different functionals of the covariance matrix, such as
limp!1 pTr�1(⌃) and limp!1 pTr(⌃�1), which both intuitively characterize some sort of signal
deficiency since they tend to be small when the signal gets stronger. However, they are not equivalent,
and the second convergence to 0 is stronger in the sense that the first must vanish when the second
vanishes. ESD is intended to be the correct notion of “convergence” that characterizes FDR tending
to 0 and power tending to 1.

Of course, by definition it is not obvious that a succinct expression of such an effective signal
deficiency exists. Remarkably, we find that the effective signal deficiency can be characterized by
the convergence of certain empirical distribution derived from ⌃. The effective signal deficiency for
various (old and new) variable selection procedures is as follows:
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LASSO: The debiased Lasso [JM14] is a popular method for high-dimensional statistical inference.
It is implemented by first computing a Lasso estimator

✓̂ = argmin
t2 p

⇢
1

2
kY �X✓k2 + �k✓k1

�

where � > 0 can be chosen as any fixed positive number independent of p. Instead of a direct
threshold test on ✓̂, we first compute an “unbiased version” ✓̂u defined in (7), as in [JM14], and pass
a threshold to select non-nulls. We show in Theorem 3 and Proposition 4 that we may chose

ESD = lim
p!1

dLP

�1
p

pX

j=1

�
P(p)

jj
, �0) ,

where dLP denotes the Lévy-Prokhorov distance between defined for any two measures µ and ⌫
defined over a metric space as

dLP(µ, ⌫) := inf{✏ > 0 : µ(A)  ⌫(A✏) + ✏, ⌫(A)  µ(A✏) + ✏, 8A} ,

where A
✏ denotes the ✏-neighborhood of A. In particular, we have

dLP

�1
p

pX

j=1

�
P(p)

jj
, �0) := inf

(
✏ > 0 :

#{j : P(p)
jj � ✏}

p
 ✏

)
. (8)

The assumption of the standard distributional limit ensures the weak convergence of the empirical
distribution of (P(p)

jj )pj=1, and hence the convergence of (8). Hereafter, for any vector x 2
m, we

use the shorthand (abusive) notation

k(xj)jkLP := dLP

� 1
m

mX

j=1

�xj , �0) .

This characterization if ESD is, in fact tight: ESD ! 0 is a necessary and sufficient condition for
consistency of thresholded Lasso as a variable selection procedure (see Proposition 4)

GENERAL KNOCKOFF: for a general knockoff construction, including variational formulations such
as SDP-knockoffs, it seems hopeless to find simple expressions of ESD in terms of ⌃. Nevertheless,
if (✓(p),⌃(p)) has a standard distributional limit, we can choose ESD = limp!1 k(P(p)

jj )jkLP where
we recall that P is the extended precision matrix of [X, X̃].

EQUI-KNOCKOFF: Specializing the above result to the equi-knockoff case, we see that we can choose
ESD = limp!1 �max(P(p)), achieved when s = a�min(⌃) for any a 2 (0, 2). Note that this is
slightly different from the choice (6) prescribed in [BC15, CFJL18] where s := min{1, 2�min(⌃)}.

CI-KNOCKOFF: We introduce a new method for generating the knockoff matrix, called conditional
independence knockoff or CI-knockoff in short. If the Gaussian graphical model associated to X

is a tree, i.e. if the sparsity pattern of ⌃�1 corresponds to the adjacency matrix of a tree, then
the conditional independence knockoff always exists and ESD = limp!1 k(P(p)

jj ⌃jj)jkLP . For
example, in the independent case where ⌃ is diagonal, we get ESD = 1 which readily yields
consistency.

The last knockoff construction, conditional independence knockoff, appears to be new. It is both
analytically simple and empirically competitive. Comparing equi- and CI- knockoffs: the latter is
more robust, since having a small fraction of j with large P2

jj⌃jj does not increase its ESD much.
For example, two predictors are identical, then the ESD for conditional independence knockoff almost
does not change, but equi-knockoff completely fails. Compared to other previous knockoffs, we find
that CI-knockoff usually shows similar or improved performance empirically, while being easier to
compute and to manipulate.
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4 Baseline: Lasso with oracle threshold

Consider a variable selection algorithm in which the Lasso parameters with absolute values above a
threshold are selected, and suppose that the threshold which controls the FDR is given by an oracle.
Note that the knockoff filter is based on the Lasso estimator but it must choose threshold in a data
driven fashion. As a result, the Lasso with oracle threshold presents a strong baseline against which
the performance of a given knockoff filter should be compared. Not surprisingly, and also as noted in
[FDLL19], although the knockoff filter has the advantage of controlling FDR, it usually has a lower
power than Lasso with oracle threshold. This fact will become more transparent as we determine
their ESD.
Theorem 3. Let � > 0 be arbitrary and let {(⌃(p)

, ✓
(p))}p�1 admit a standard distributional limit,

and denote the distributional limit by (⇥,⌥1/2
Z,⌥), where Z ⇠ N (0, 1), and ⇥ and ⌥ are some

random variables independent of Z. Assume further that L := limp!1 k(P(p)
jj )jkLP where the limit

exists almost surely by the standard distributional limit assumption. Consider the algorithm which
selects j for which |✓̂

u
j | � t, where ✓̂u is defined in (7). Then with the choice of t = L

1/4,

lim sup
p!1

{FDR(p) + (1� PWR(p))}  CL,µ⇥,⌧

where limL!0 CL,µ⇥,⌧ = 0 for any µ⇥ with P[|⇥| > 0] > 0 and ⌧ as in the definition of the standard
distributional limit. In particular, if � > 1, then ⌧ can be bounded in terms of �, �, � and µ⇥ only
(independent of µ⌥), and hence CL,µ⇥,⌧ in the above inequality can be replaced by CL,µ⇥,�,�,�

where limL!0 CL,µ⇥,�,�,� = 0.

The above theorem implies that L ! 0 is a sufficient condition for consistency; this is in fact also
necessary, as indicated by the following complementary lower bound.
Proposition 4. (Lower bound). In the previous theorem, assume further that ⌥ is independent of ⇥.
Then for any t > 0,

lim inf
p!1

{FDR(p) + (1� PWR(p))} � cL,�,µ⇥ .

where cL,�,µ⇥ is increasing in L, strictly positive as long as L > 0.

Combining the above two results, we get the following interpretation. Suppose that the distribution
of ⇥ and the values of � are fixed, and suppose that the parameters � and t in the algorithm optimally
tuned (i.e. minimizing lim supp!1{FDR(p) + (1� PWR(p))} for any given distributions). If � > 1,
then, remarkably, the variable selection procedure is consistent if and only if L being small – as
long as ⌥ is independent of ⇥, while other characteristics of the law of ⌥ are not necessary to know.
In other words, we proved that ESD = L := limp!1 k(P(p)

jj )jkLP. If �  1, small L may not be
sufficient for consistency since CL,µ⇥,�,�,� also depends on µ⌥ through ⌧ .

5 Results for general knockoff mechanisms

Given ⌃, let ⌃ be the extended 2p⇥ 2p covariance matrix for the true predictors and their knockoffs.
Let ✓ = [✓,0] 2 2p. Consider the procedure of the knockoff filter described in Section 2, with a
slight tweak: define �j := |✓̂

u

j |� |✓̂
u

j+p|, where

✓̂
u
= ✓̂ +

d

n
⌃�1[X, X̃]

>
(Y � [X, X̃]✓̂)

and ✓̂ is defined in (3). This modification still fulfills the sufficiency and antisymmetry condition
in [BC15, Section 2.2], so its FDR can still be controlled. This change allows us to perform
analysis using results in [JM14]. We also assume that the Lasso parameter � is an arbitrary number
independent of p.

Theorem 5. Let {(⌃(p)
, ✓

(p))}p�1 admit a standard distributional limit for a given � � 0, and
denote the distributional limit by (⇥,⌥1/2

Z,⌥), where Z ⇠ N (0, 1), and⇥ and⌥ are some random
variables independent of Z. Assume further that L := limp!1 k(P(p)

jj )jkLP where the limit exists
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almost surely under the standard distributional limit assumption. Then the knockoff filter with FDR
budget q 2 (0, 1) satisfies:

lim inf
p!1

PWR(p)
� 1� CL,q,⌧,µ⇥ ,

where limL!0 CL,q,⌧,µ⇥ = 0 for any given q, ⌧ , µ⇥. Further if � > 2, then CL,q,⌧,µ⇥ in the above
inequality can be replaced by CL,q,�,�,�,µ⇥ .

Taking q ! 0 in the above theorem implies that L ! 0 is sufficient for consistency; the following
result shows the necessity in a representative setting:

Proposition 6. In the previous theorem, further assume that ✓j = {j 2 H1} where |H1| = ↵p

(↵ > 0) is selected uniformly at random. Then, under a suitable distributional limit assumption, the
knockoff filter with FDR budget q 2 (0,↵LQ2( 1

�
p
L
)) satisfies:

lim sup
p!1

PWR(p)
 3/4.

The “suitable distributional limit assumption” in Proposition 6 postulates a Gaussian limit for the
empirical distribution of the pair (✓̂

u

j � ✓j , ✓̂
u

j+p � ✓j+p)
p
j=1, which is stronger than the marginal

Gaussian limit assumption in Definition 1, but nevertheless supported by the replica heuristics.
Moreover, this condition can be rigorously shown for the case of � > 2, � = 0 (least squares) and
block diagonal ⌃. The assumption that ✓j = 1 under H1 in Proposition 6 facilitates the proof but we
expect that a similar inconsistency result holds for general µ⇥. The assumption that H1 is selected
uniformly at random is a counterpart of the independence of ⇥ and ⌥ in Proposition 4.

Together, Theorem 5 and Proposition 6 show that for the knockoff filer, ESD = limp!1 k(P(p)
jj )jkLP

in the regime of � > 1. This suggests that one should construct the knockoff variables so that the
empirical distribution of (Pjj)

2p
j=1 converges to 0 weakly.

6 Conditional independence knockoff and ESD

We introduce the conditional independence knockoff, where Xj and X̃j are independent conditionally
on X¬j := {Xk, k 2 [p] \ {j}}, for each j = 1, . . . , p. This condition implies that

[XjX̃j ] =
⇥

[XjX̃j |X¬j ]
⇤
=

⇥
( [Xj |X¬j ])

2
⇤

Therefore recalling that s1, . . . , sp are as defined in (4), we get

sj = ⌃jj � [XjX̃j ]

=
⇥

[X2
j |X¬j ]

⇤
�

⇥
( [Xj |X¬j ])

2
⇤

= [Var(Xj |X¬j)] = P
�1
jj . (9)

However such an s may violate the positive semidefinite assumption for the joint covariance matrix
(examples exist already in the case p = 3). Yet, interestingly, we find that in the case of tree graphical
models, this construction always exists. In many practical scenarios, the predictors Xp comes from a
tree graphical model, and we can estimate the underlying graph sing the Chow-Liu algorithm [CL68].

Theorem 7. The covariance matrix ⌃ defined in (4) is positive semidefinite with s defined in (9), if
either 1) ⌃ is the covariance matrix of a tree graphical model; or 2) P is diagonally dominant.

Either condition in the theorem intuitive imposes that the graph is sparse. In practice, ⌃ needs to be
estimated, which is generally only feasible with some sparse structure (e.g. via graphical lasso).

Assuming the existence of a standard distributional limit and � > 1, we have the following results:

Theorem 8. For tree graphical models, ESD = limp!1 k(P(p)
jj ⌃jj)jkLP for CI-KNOCKOFF.

Theorem 9. ESD = �max(⌃) for EQUI-KNOCKOFF if sj = a�min(⌃), a 2 (0, 2), j = 1, . . . , p.
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Figure 1: Comparisons of EQUI-KNOCKOFF, ASDP-KNOCKOFF, and CI-KNOCKOFF. Left: Binary
tree, equal correlations. Right: Markov chain, randomly chosen correlation strengths.

7 Experimental results

First consider the setting where X1, . . . , Xp ⇠ N (0, 1) and the conditional independence graph
forms a binary tree. The correlations between adjacent nodes are all equal to 0.5. Choose k = 100
out of p = 1000 indices uniformly at random as the support of ✓, and set ✓j = 4.5 for j in the support.
Generate n = 1000 independent copies of (X,Y ) in Y = X

>
✓ + ⇠ where ⇠ ⇠ N (0, n).

Figure 1, left shows the box plots of the power and FDR for EQUI-KNOCKOFF, ASDP-KNOCKOFF,
and CI-KNOCKOFF, where s is defined as in (6) for CI-KNOCKOFF. The FDR is controlled at the
target q = 0.1 in all three cases. The powers are not statistically significantly different, but the rough
trend is PWRe < PWRa < PWRc. We then compare the effective signal deficiency. Note that in the
current setting, Var(Xj |X¬j)  1, and hence Pjj � 1, for each j = 1, . . . , 2p, and we always have
k(Pjj)

2p
j=1kLP = 1 by definition (8), which cannot reveal any useful information for comparison. To

resolve this, we can scale down Pjj by a common factor before computing the LP distances, noting
that it yields a valid effective signal deficiency. Lacking a systematic way of choosing such a scaling
factor, heuristically we choose it as 2000 so that the LP distances for the three algorithms are all
“bounded away from 0 and 1”. We find that dLP,e ' 0.501, dLP,a ' 0.048 and dLP,c ' 0.002 and
their ordering matches the ordering of the powers.

In the previous example, the simplest EQUI-KNOCKOFF has a highly competitive performance.
However, this is an artifact of the fact that the data covariance is highly structured (i.e., correlations
are all the same). If the correlations have high fluctuations, and in particular, a small number of
node pairs are highly correlated, then the equi-knockoff has a much worse performance. This
is demonstrated in the next example. Consider the setting where X1, . . . , Xp forms a Markov
chain, in which X1, . . . , Xp ⇠ N (0, 1). In other words, the Gaussian graphical model is a path
graph. The correlation between Xj and Xj+1 is ⇢j := Gj {|Gj |  1}, where Gj ⇠ N (0, 0.25),
j = 1, . . . , p� 1 are chosen independently. Choose k = 100 out of p = 1000 indices uniformly at
random as the support of ✓, and set ✓j = 4.5 for j in the support. Generate n = 1200 independent
copies of (X,Y ) in Y = X

>
✓ + ⇠ where ⇠ ⇠ N (0, 0.49n).

Figure 1 Right shows the box plots of the power and FDR for the knockoff filter with three different
knockoff constructions. The target FDR is q = 0.1. Since the correlations are now chosen randomly,
with high probability there exist highly correlated nodes, and hence �min(⌃) can be very small, in
which case the equi-knockoff performs poorly. However PWRc is similar to PWRa, with the median
of the former slightly higher. To compare the ESD, first scale down Pjj by a heuristically chosen
factor 100. We find dLP,e ' 0.9995, dLP,a ' 0.8660, and dLP,c ' 0.1075 and their ordering matches
the ordering of the powers of the three knockoff constructions.
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