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Abstract

Despite multi-view learning progressed fast in past decades, it is still challenging
due to the difficulty in modeling complex correlation among different views, espe-
cially under the context of view missing. To address the challenge, we propose a
novel framework termed Cross Partial Multi-View Networks (CPM-Nets). In this
framework, we first give a formal definition of completeness and versatility for
multi-view representation and then theoretically prove the versatility of the latent
representation learned from our algorithm. To achieve the completeness, the task
of learning latent multi-view representation is specifically translated to degradation
process through mimicking data transmitting, such that the optimal tradeoff be-
tween consistence and complementarity across different views could be achieved.
In contrast with methods that either complete missing views or group samples ac-
cording to view-missing patterns, our model fully exploits all samples and all views
to produce structured representation for interpretability. Extensive experimental
results validate the effectiveness of our algorithm over existing state-of-the-arts.

1 Introduction

In the real-word applications, data is usually represented in different views, including multiple modal-
ities or multiple types of features. A lot of existing methods [1, 2, 3] empirically demonstrate that
different views could complete each other, leading ultimate performance improvement. Unfortunately,
the unknown and complex correlation among different views often disrupts the integration of different
modalities in the model. Moreover, data with missing views further aggravates the modeling difficulty.

Conventional multi-view learning usually holds the assumption that each sample is associated with the
unified observed views and all views are available for each sample. However, in practical applications,
there are usually incomplete cases for multi-view data [4, 5, 6, 7, 8]. For example, in medical data,
different types of examinations are usually conducted for different subjects, and in web analysis,
some webs may contain texts, pictures and videos, but others may only contain one or two types,
which produce data with missing views. The view-missing patterns (i.e., combinations of available
views) become even more complex for the data with more views.

Projecting different views into a common space (e.g., CCA: Canonical Correlation Analysis and its
variants [9, 10, 11]) is impeded by view-missing issue. Several methods are proposed to keep on
exploiting the correlation of different views. One straightforward way is completing the missing
views, and then the on-shelf multi-view learning algorithms could be adopted. The missing views
are basically blockwise and thus low-rank based completion [12, 13] is not applicable which has
been widely recognized [5, 14]. Missing modality imputation methods [15, 5] usually require
samples with two paired modalities to train the networks which can predict the missing modality
from the observed one. To explore the complementarity among multiple views, another natural way
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Figure 1: Illustration of Cross Partial Multi-View Networks. Given multi-view data with missing
views (black blocks), the encoding networks degrade the complete latent representation into the
available views (white blocks). Learning multi-view representation according to the distributions of
observations and classes has the promise to encode complementary information, as well as provide
accurate prediction.

is manually grouping samples according to the availability of data sources [16], and subsequently
learning multiple models on these groups for late fusion. Although it is more effective than learning
on each single view, the grouping strategy is not flexible especially for the data with large number of
views. Accordingly, a challenging problem arises - how to effectively and flexibly exploit samples
with arbitrary view-missing patterns?

Our methodology is expected to endow the following merits: complete and structured represen-
tation - comprehensively encoding information from different views into a clustering-structured
representation, and flexible integration - handling arbitrary view-missing patterns. To this end, we
propose a novel algorithm, i.e., Cross Partial Multi-View Networks (CPM-Nets) for classification,
as shown in Fig. 1. Benefiting from the learned common latent representation from the encoding
networks, all samples and all views can be jointly exploited regardless of view-missing patterns. For
the multi-view representation, CPM-Nets jointly considers multi-view complementarity and class
distribution, making them mutually improve each other to obtain the representation reflecting the
underlying patterns. Specifically, the encoded latent representation from observations is complete and
versatile thus promotes the prediction performance, while the clustering-like classification schema in
turn enhances the separability for latent representation. Theoretical analysis and empirical results
validate the effectiveness of the proposed CPM-Nets in exploiting partial multi-view data.

1.1 Related Work

Multi-View Learning (MVL) aims to jointly utilize information from different views. Multi-view
clustering algorithms [17, 18, 19, 20, 21] usually search for the consistent clustering hypotheses across
different views, where the representative methods include co-regularized based [17], co-training based
[18] and high-order multi-view clustering [19]. Under the metric learning framework, multi-view
classification methods [22, 23] jointly learn multiple metrics for multiple views. The representative
multi-view representation learning methods are CCA based, including kernelized CCA [10], deep
neural networks based CCA [11, 24], and semi-paired and semi-supervised generalized correlation
analysis (S2GCA) [25]. Cross-View Learning (CVL) basically searches mappings between two
views, and has been widely applied in real applications [26, 27, 28, 29, 30]. With adversarial training,
the embedding spaces of two individual views are learned and aligned simultaneously [27]. The
cross-modal convolutional neural networks are regularized to obtain a shared representation which
is agnostic of the modality for cross-modal scene images [28]. The cross-view learning can be
also utilized for missing view imputation [31, 14]. For Partial Multi-View Learning (PMVL),
existing strategies usually transform the incomplete case into complete multi-view learning task. The
imputation methods [5, 31] complete the missing views by leveraging the strength of deep neural
networks. The grouping strategy [16] divides all samples according to the availability of data sources,
and then multiple classifiers are learned for late fusion. Although effective, this strategy cannot
scale well for data with large number of views or small-sample-size case. Though the KCCA based
algorithm [8] can model incomplete data, it needs one complete (primary) view.
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2 Cross Partial Multi-View Networks

Recently, there is an increasing interest in learning on data with multiple views, including multi-view
learning and cross-view learning. Differently, we focus on classification based on data with missing
views, which is termed Partial Multi-View Classification (see definition 2.1) where samples with
different view-missing patterns are involved. The proposed cross partial multi-view networks enable
the comparability for samples with different combinations of views instead of samples in two different
views, which generalizes the concept of cross-view learning. There are three main challenges for
partial multi-view classification: (1) how to project samples with arbitrary view-missing patterns
(flexibility) into a common latent space (completeness) for comparability (in section 2.1)? (2) how to
make the learned representation to reflect class distribution (structured representation) for separability
(in section 2.2)? (3) how to reduce the gap between representation obtained in test stage and training
stage for consistency (in section 2.3)? For clarification, we first give the formal definition of partial
multi-view classification as follows:

Definition 2.1 (Partial Multi-View Classification (PMVC)) Given the training set {Sn, yn}Nn=1,
where Sn is a subset of the complete observations Xn = {x(v)

n }Vv=1 (i.e., S ⊆ X ) and yn is the class
label with N and V being the number of samples and views, respectively, PMVC trains a classifier
by using training data containing view-missing samples, to classify a new instance S with arbitrary
possible view-missing pattern.

2.1 Multi-View Complete Representation

Considering the first challenge - we aim to design a flexible algorithm to project samples with
arbitrary view-missing patterns into a common space, where the desired latent representation should
encode the information from observed views. Inspired by the reconstruction point of view [32], we
provide the definition of completeness for multi-view representation as follows:

Definition 2.2 (Completeness for Multi-View Representation) A multi-view representation h is
complete if each observation, i.e., x(v) from {x(1), ...,x(V )}, can be reconstructed from a mapping
fv(·), i.e., x(v) = fv(h).

Intuitively, we can reconstruct each view from a complete representation in a numerically stable way.
Furthermore, we show that the completeness is achieved under the assumption [33] that each view is
conditionally independent given the shared multi-view representation. Similar to each view from X ,
the class label y can also be considered as one (semantic) view, then we have

p(y,S|h) = p(y|h)p(S|h), (1)

where p(S|h) = p(x(1)|h)p(x(2)|h)...p(x(V )|h). We can obtain the common representation by
maximizing p(y,S|h).

Based on different views in S , we model the likelihood with respect to h given observations S as

p(S|h) ∝ e−∆(S,f(h;Θr)), (2)

where Θr are parameters governing the reconstruction mapping f(·) from common representation h
to partial observations S with ∆(S, f(h; Θr)) being the reconstruction loss. From the view of class
label, we model the likelihood with respect to h given class label y as

p(y|h) ∝ e−∆(y,g(h;Θc)), (3)

where Θc are parameters governing the classification function g(·) based on common representation
h, and ∆(y, g(h; Θc)) defines the classification loss. Accordingly, assuming the data are independent
and identically distributed (IID), the log-likelihood function is induced as

L({hn}Nn=1,Θr,Θc) =

N∑
n=1

ln p(yn,Sn|hn) ∝ −
( N∑
n=1

∆(Sn, f(hn; Θr)) + ∆(yn, g(hn; Θc))
)
,

(4)
where Sn denotes the available views for the nth sample. On one hand, we encode the infor-
mation from available views into a latent representation hn and denote the encoding loss as
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∆(Sn, f(hn; Θr)). On the other hand, the learned representation should be consistent with class
distribution, which is implemented by minimizing the loss ∆(yn, g(hn; Θc)) to penalize the dis-
agreement with class label.

Effectively encoding information from different views is the key requirement for multi-view represen-
tation, thus we seek a common representation which could recover the partial (available) observations.
Accordingly, the following loss is induced

∆(Sn, f(hn; Θr)) = `r(Sn,hn) =

V∑
v=1

snv||fv(hn; Θ(v)
r )− x(v)

n ||2, (5)

where ∆(Sn, f(hn; Θr)) is specialized with the reconstruction loss `r(Sn,hn). snv is an indicator
of the availability for the nth sample in the vth view, i.e., snv = 1 and 0 indicating available
and unavailable views, respectively. fv(·; Θ(v)

r ) is the reconstruction network for the vth view
parameterized by Θ(v)

r . In this way, hn encodes comprehensive information from different available
views, and different samples (regardless of their missing patterns) are associated with representations
in a common space, making them comparable.

Ideally, minimizing Eq. (5) will induce a complete representation. Since the complete representation
encodes information from different views, it should be versatile compared with each single view. We
give the definition of versatility for multi-view representation as follows:

Definition 2.3 (Versatility for Multi-View Representation) Given the observations x(1), ...,x(V )

from V views, the multi-view representation h is of versatility if ∀ v and ∀ mapping ϕ(·) with
y(v) = ϕ(x(v)), there exists a mapping ψ(·) satisfying y(v) = ψ(h), where h is the corresponding
multi-view representation for sample S = {x(1), ...,x(V )}.

Accordingly, we have the following theoretical result:

Proposition 2.1 (Versatility for the Multi-View Representation from Eq. (5)) There exists a solu-
tion (with respect to latent representation h) to Eq. (5) which holds the versatility.

Proof 2.1 The proof for proposition 2.1 is as follow. Ideally, according to Eq. (5), there exists
x(v) = fv(h; Θ(v)

r ), where fv(·) is the mapping from h to x(v). Hence, ∀ ϕ(·) with y(v) = ϕ(x(v)),
there exists a mapping ψ(·) satisfying y(v) = ψ(h) by defining ψ(·) = ϕ(fv(·)). This proves the
versatility of the latent representation h based on multi-view observations {x(1), ...,x(V )}.
In practical case, it is usually difficult to guarantee the exact versatility for latent representation, then
the goal is to minimize the error ey =

∑V
v=1 ||ψ(h) − ϕ(x(v))||2 (i.e.,

∑V
v=1 ||ϕ(fv(h; Θ(v))) −

ϕ(x(v))||2) which is inversely proportional to the degree of versatility. Fortunately, it is easy to show
that Ker with er =

∑V
v=1 ||fv(h; Θ(v)

r ) − x(v)||2 from Eq. (5) is the upper bound of ey if ϕ(·) is
Lipschitz continuous with K being the Lipschitz constant. �

Although the proof is inferred under the condition that all views are available, it is intuitive and easy
to generalize the results for view-missing case.

2.2 Classification on Structured Latent Representation

Multiclass classification remains challenging due to possible confusing classes [34]. For the second
challenge - we target to ensure the learned representation to be structured for separability by a
clustering-like loss. Specifically, we should minimize the following classification loss

∆(yn, y) = ∆(yn, g(hn; Θc)), (6)

where g(hn; Θc) = arg maxy∈YEh∼T (y)F (h,hn) and F (h,hn) = φ(h; Θc)
Tφ(hn; Θc), with

φ(·; Θc) being the feature mapping function for h, and T (y) being the set of latent representation
from class y. In our implementation, we set φ(h; Θc) = h for simplicity and effectiveness. By
jointly considering classification and representation learning, the misclassification loss is specified as

`c(yn, y,hn) = max
y∈Y

(
0,∆(yn, y) + Eh∼T (y)F (h,hn)− Eh∼T (yn)F (h,hn)

)
. (7)
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Algorithm 1: Algorithm for CPM-Nets
/*Training*/
Input: Partial multi-view dataset: D = {Sn, yn}Nn=1, hyperparameter λ.
Initialize: Initialize {hn}Nn=1 and {Θ(v)

r }Vv=1 with random values.
while not converged do

for v = 1 : V do
Update the network parameters Θ

(v)
r with gradient descent:

Θ(v)
r ← Θ(v)

r − α∂ 1
N

∑N
n=1 `r(Sn,hn; Θr)/∂Θ(v)

r ;
end
for n = 1 : N do

Update the latent representation hn with gradient descent:
hn ← hn − α∂ 1

N

∑N
n=1(`r(Sn,hn; Θr) + λ`c(yn, y,hn))/∂hn;

end
end
Output: networks parameters {Θ(v)

r }Vv=1 and latent representation {hn}Nn=1.
/*Test*/
Train the retuned networks ({Θ(v)

rt }Vv=1) for test;
Calculate the latent representation with the retuned networks for test instance;
Classify the test instance with y = arg maxy∈YEh∼T (y)F (h,htest).

Compared with mostly used parametric classification equipped with cross entropy loss, the clustering-
like loss not only penalizes the misclassification but also ensures structured representation. Specifi-
cally, for correctly classified sample, i.e., y = yn, there is no loss. For incorrectly classified sample,
i.e., y 6= yn, it will enforce the similarity between hn and the center corresponding to class yn larger
than that between hn and the center corresponding to class y (wrong label) with a margin ∆(yn, y).
Hence, the proposed nonparametric loss naturally leads to a representation with clustering structure.

Based on above considerations, the overall objective function is induced as

min{hn}Nn=1,Θr

1

N

N∑
n=1

`r(Sn,hn; Θr) + λ`c(yn, y,hn), (8)

where λ > 0 balances the belief degree of information from multiple views and class labels.

2.3 Test: Towards Consistency with Training Stage

The last challenge lies in the gap between training and test stages in representation learning. To
classify a test sample with incomplete views S, we need to obtain its common representation
h. A straightforward way is to optimize the objective, minh `r(S, f(h; Θr)), to encode the in-
formation from S into h. This way raises a new issue - how to ensure the representations ob-
tained in test stage consistent with training stage? The gap originates from the difference between
the objectives corresponding to training and test stages. Specifically, in test, we can obtain the
unified representation with h = arg minh`r(S, f(h; Θr)) and then conduct classification with
y = arg maxy∈YEhn∼T (y)F (h,hn). However, it is different from representation learning in training
stage which simultaneously considers reconstruction and classification error. To address this issue, we
introduce the fine-tuning strategy based on {Sn,hn}Nn=1 obtained after training to update the network-
s {fv(h; Θ(v)

r )}Vv=1 for consistent mapping from observations to latent representation. Accordingly,
in test stage we obtain the retuned encoding networks {f ′

v(h; Θ
(v)
rt )}Vv=1 by fine-tuning the networks

{fv(h; Θ(v)
r )}Vv=1. Subsequently, we can solve the following objective - minh `r(S, f ′

(h; Θrt)) to
obtain the latent representation which is consistent with that in training. The optimization of the
proposed CPM-Nets and the test procedure are summarized in Algorithm 1.

2.4 Discussion on key components

The CPM-Nets are composed of two key components, i.e., encoding networks and clustering-like
classification, which are different from conventional ways thus detailed explanations are provided.
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Encoding schema. To encode the information from multiple views into a common representation,
there is an alternative route, i.e., `r(Sn,hn) =

∑V
v=1 snv||f(x

(v)
n ; Θ(v))− hn||2. This is different

from the schema used in our model shown in Eq. (5), i.e., `r(Sn,hn) =
∑V

v=1 snv||f(hn; Θ(v))−
x

(v)
n ||2. The underlying assumption in our model is that information from different views are

originated from a latent representation h, and hence it can be mapped to each individual view.
Whereas for the alternative, it indicates that the latent representation could be obtained from (mapping)
each single view, which is basically not the case in real applications. For the alternative, ideally,
minimizing the loss will enforce the representations of different views to be the same, which is
not reasonable especially for the views highly independent. From the view of information theory,
the encoding network for the vth view could be considered as communication channel with fixed
property, i.e., p(x(v)|h) and p(h|x(v)) for our model and the alternative, respectively, where the
degradation process could be mimicked as data transmitting. Therefore, it is more reasonable to
send comprehensive information and receive partial information, i.e., p(x(v)|h) compared with its
counterpart - sending partial data and receiving comprehensive data, i.e., p(h|x(v)). The theoretical
results in subsection 2.1 also advocates above analysis.

Classification model. For classification, the widely used strategy is to learn a classification function
based on h, i.e., y = f(h; Θ) parameterized with Θ. Compared with this manner, the reasons of using
the clustering-like classifier in our model are as follows. First, jointly learning the latent representation
and parameterized classifier is likely an under-constrained problem which may find representation
that can well fit the training data but not well reflect the underlying patterns, thus the generalization
ability may be affected [35]. Second, the clustering-like classification produces the compactness
within the same class and separability between different classes for the learned representation, making
the classifier interpretable. Third, the nonparametric way reduces the load of parameter tuning and
reflects a simpler inductive bias which is especially beneficial to small-sample-size regime [36].

3 Experiments

3.1 Experiment Setting

We conduct experiments on the following datasets: � ORL 2 The dataset contains 10 facial images
for each of 40 subjects. � PIE 3 A subset containing 680 facial images of 68 subjects are used. �
YaleB Similar to previous work [37], we use a subset which contains 650 images of 10 subjects.
For ORL, PIE and YaleB, three types of features: intensity, LBP and Gabor are extracted. � CUB
[38] The dataset contains different categories of birds, where the first 10 categories are used and
deep visual features from GoogLeNet and text features using doc2vec [39] are used as two views.
� Handwritten 4 The dataset contains 10 categories from digits ‘0’ to ‘9’, and 200 images in each
category with 6 types of image features are used. � Animal The dataset consists of 10158 images
from 50 classes with two types of deep features extracted with DECAF [40] and VGG19 [41].

We compared the proposed CPM-Nets with the following methods: (1) FeatConcate simply con-
catenates multiple types of features from different views. (2) CCA [9] maps multiple types of
features into one common space, and subsequently concatenates the low-dimensional features of
different views. (3) DCCA (Deep Canonical Correlation Analysis) [11] learns low-dimensional
features with neural networks and concatenates them. (4) DCCAE (Deep Canonical Correlated
AutoEncoders) [24] employs autoencoders for common representations, and then combines these
projected low-dimensional features together. (5) KCCA (Kernelized CCA) [10] employs feature
mappings induced by positive-definite kernels. (6) MDcR (Multi-view Dimensionality co-Reduction)
[42] applies the kernel matching to regularize the dependence across multiple views and projects each
view onto a low-dimensional space. (7) DMF-MVC (Deep Semi-NMF for Multi-View Clustering)
[43] utilizes a deep structure through semi-nonnegative matrix factorization to seek a common feature
representation. (8) ITML (Information-Theoretic Metric Learning) [44] characterizes the metric
using a Mahalanobis distance function and solves the problem as a particular Bregman optimiza-
tion. (9) LMNN (Large Margin Nearest Neighbors) [45] searches a Mahalanobis distance metric
to optimize the k-nearest neighbours classifier. For metric learning methods, the original features

2https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
4https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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of multiple views are concatenated, and then the new representation could be obtained with the
projection induced by the learned metric matrix.

For all methods, we tune the parameters with 5-fold cross validation. For CCA-based methods, we
select two views for the best performance. For our CPM-Nets, we set the dimensionality (K) of the
latent representation from {64, 128, 256} and tune the parameter λ from the set {0.1, 1, 10} for all
datasets. We run 10 times for each method to report the mean values and standard deviations. Please
refer to the supplementary material for the details of network architectures and parameter settings.

Missing Rate (2)
0 0.1 0.2 0.3 0.4 0.5

Ac
cu

ra
cy

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

DMF
CCA
FeatCon
KCCA
DCCA
DCCAE
MDcR
ITML
LMNN
Ours

(a) ORL

Missing Rate (2)
0 0.1 0.2 0.3 0.4 0.5

Ac
cu

ra
cy

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

DMF
CCA
FeatCon
KCCA
DCCA
DCCAE
MDcR
ITML
LMNN
Ours

(b) PIE

Missing Rate (2)
0 0.1 0.2 0.3 0.4 0.5

Ac
cu

ra
cy

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

DMF
CCA
FeatCon
KCCA
DCCA
DCCAE
MDcR
ITML
LMNN
Ours

(c) YaleB

Missing Rate (2)
0 0.1 0.2 0.3 0.4 0.5

Ac
cu

ra
cy

 30%

 40%

 50%

 60%

 70%

 80%

 90%

DMF
CCA
FeatCon
KCCA
DCCA
DCCAE
MDcR
ITML
LMNN
Ours

(d) CUB

Missing Rate (2)
0 0.1 0.2 0.3 0.4 0.5

Ac
cu

ra
cy

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

DMF
CCA
FeatCon
KCCA
DCCA
DCCAE
MDcR
ITML
LMNN
Ours

(e) Animal

Missing Rate (2)
0 0.1 0.2 0.3 0.4 0.5

Ac
cu

ra
cy

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

DMF
CCA
FeatCon
KCCA
DCCA
DCCAE
MDcR
ITML
LMNN
Ours

(f) Handwritten

Figure 2: Performance comparison under different missing rate (η).

3.2 Experimental Results

Firstly, we evaluate our algorithm by comparing it with state-of-the-art multi-view representation
learning methods, investigating the performance with respect to varying missing rate. The missing
rate is defined as η =

∑
v Mv

V×N , where Mv indicates the number of samples without the vth view.
Since datasets may be associated with different number of views, samples are randomly selected as
missing multi-view ones, and the missing views are randomly selected by guaranteeing at least one
of them is available. As a result, partial multi-view data are obtained with diverse missing patterns.
For compared methods, the missing views are filled with mean values according to available samples
within the same class. From the results in Fig. 2, we have the following observations: (1) without
missing, our algorithm achieves very competitive performance on all datasets which validates the
stability of our algorithm for complete multi-view data; (2) with increasing the missing rate, the
performance degradations of the compared methods are much larger than that of ours. Taking the
results on ORL for example, ours and LMNN obtain the accuracy of 98.4% and 98.0%, respectively,
while with increasing the missing rate, the performance gap becomes much larger; (3) our model
is rather robust to view-missing data, since our algorithm usually performs relatively promising
with heavily missing cases. For example, the performance decline (on ORL) is less than 5% with
increasing the missing rate from η = 0.0 to η = 0.3.

Furthermore, we also fill the missing views with recently proposed imputation method - Cascaded
Residual Autoencoder (CRA) [5]. Since CRA needs a subset of samples with complete views in
training, we set 50% data as complete-view samples and the left are samples with missing views
(missing rate η = 0.5). The comparison results are shown in Fig. 3. It is observed that filling with
CRA is generally better than that of using mean values due to capturing the correlation of different
views. Although the missing views are filled with CRA by using part of samples with complete views,
our proposed algorithm still demonstrates the clear superiority. The proposed CPM-Nets performs as
the best on all the six datasets.
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Figure 3: Performance comparison with view completion by using mean value and cascaded residual
autoencoder (CRA) [5] (with missing rate η = 0.5).
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Figure 4: Visualization of representations with missing rate η = 0.5, where ‘U’ and ‘S’ indicate
‘unsupervised’ and ‘supervised’ manner in representation learning. (Zoom in for best view).

We visualize the representations from different methods on Handwritten to investigate the improve-
ment of CPM-Nets. As shown in Fig. 4, the subfigures (a)-(c) obtain representations in unsupervised
manner. It is observed that the latent representation from our algorithm reveals the underlying class
distribution much better. With introducing label information, the representation from CPM-Nets are
further improved, where the clusters are more compact and the margins between different classes
becomes more clear, which validates the effectiveness of using clustering-like loss. It is noteworthy
that we jointly exploit all samples, all views for random view-missing patterns in experiments,
demonstrating the flexility in handling partial multi-view data, while Fig. 4 supports the claim of
structured representation.

4 Conclusions

We proposed a novel algorithm for partial multi-view data classification named CPM-Nets, which can
jointly exploit all samples, all views and is flexible for arbitrary view-missing patterns. Our algorithm
focuses on learning a complete thus versatile representation to handling the complex correlation
among multiple views. The common representation also endows the flexibility for handling the data
with arbitrary number of views and complex view-missing patterns, which is different from existing
ad hoc methods. Equipped with a clustering-like classification loss, the learned representation is well
structured making the classifier interpretable. We empirically validated that the proposed algorithm is
relatively robust to heavy and complex view-missing data.
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