
Learning Operations on a Stack with Neural Turing
Machines

Anonymous Author(s)
Affiliation
Address
email

Abstract

Multiple extensions of Recurrent Neural Networks (RNNs) have been proposed1

recently to address the difficulty of storing information over long time periods. In2

this paper, we experiment with the capacity of Neural Turing Machines (NTMs) to3

deal with these long-term dependencies on well-balanced strings of parentheses.4

We show that not only does the NTM emulate a stack with its heads and learn an5

algorithm to recognize such words, but it is also capable of strongly generalizing6

to much longer sequences.7

1 Introduction8

Although neural networks shine at finding meaningful representations of the data, they are still limited9

in their capacity to plan ahead, reason and store information over long time periods. Keeping track of10

nested parentheses in a language model, for example, is a particularly challenging problem for RNNs11

[9]. It requires the network to somehow memorize the number of unmatched open parentheses. In12

this paper, we analyze the ability of Neural Turing Machines (NTMs) to recognize well-balanced13

strings of parentheses. We show that even though the NTM architecture does not explicitely operate14

on a stack, it is able to emulate this data structure with its heads. Such a behaviour was unobserved15

on other simple algorithmic tasks [4].16

After a brief recall of the Neural Turing Machine architecture in Section 3, we show in Section 4 how17

the NTM is able to learn an algorithm to recognize strings of well-balanced parentheses, called Dyck18

words. We also show how this model is capable to strongly generalize to longer sequences.19

2 Related Work20

Grammar induction Deep learning models are often trained on large datasets, generally extracted21

from real-world data at the cost of an expensive labeling step by some expert. In the context of22

Natural Language Processing, an alternative is to generate data from an artificial language, based on23

a predefined grammar. Historically, these formal languages have been used to evaluate the theoretical24

foundations of RNNs [14].25

Hochreiter and Schmidhuber [7] tested their new Long Short-Term Memory (LSTM) on the embedded26

Reber language, to show how their output gates can be beneficial. This behaviour was later extended27

to a variety of context-free and context-sensitive languages [3]. However, as opposed to these previous28

works focused on character-level language modeling, here our task of interest is the membership29

problem. This is a classification problem, where positive examples are generated by a given grammar,30

and negative examples are randomly generated with the same alphabet.31

Differentiable memory To enhance their capacity to retain information, RNNs can be augmented32

with an explicit and differentiable memory module. Memory Networks and Dynamic Memory33

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Networks [16, 11, 17] use a hierarchical attention mechanism on an associative array to solve text34

QA tasks involving reasoning. Closely related our work, Stack-augmented RNNs [8] are capable of35

inferring algorithmic patterns on some context-free and context-sensitive languages, including anbn,36

anbncn, and anbmcn+m.37

3 Neural Turing Machines38

The Neural Turing Machine (NTM) [4] is an instance of memory-augmented neural networks,39

consisting of a neural network controller which interacts with a large (though bounded, unlike a40

Turing machine) memory tape. The NTM uses soft read and write heads to retrieve information from41

the memory and store information in memory. The dynamics of these heads are governed by one or42

multiple sets of weights wr
t for the read head(s) and ww

t for the write head(s). These are controlled43

by the controller (either a Feed-forward network, or an LSTM), and maintain the overall architecture44

differentiable. The read head returns a read vector rt as a weighted sum over the rows of the memory45

bank Mt:46

rt =
∑
i

wr
t (i)Mt(i) (1)

Similarly, the write head modifies the memory Mt by first erasing a weighted version of some erase47

vector et from each row in the memory (Equation 2), then adding a weighted version of an add vector48

at (Equation 3). Both vectors et and at are generated by the controller.49

M̃t+1(i) ←− Mt(i) · (1−ww
t (i) et) (2)

Mt+1(i) ←− M̃t+1(i) +ww
t (i)at (3)

The weights wr
t and wr

t are produced through a series of differentiable operations, called the address-50

ing mechanisms. These fall into two categories: a content-based addressing comparing each memory51

locations with some key kt, and a location-based addressing responsible for shifting the heads52

(similar to a Turing machine). Even though recent works [13, 6] tend to drop the location-addressing,53

we chose to use the original formulation of the NTM and keep both addressing mechanisms.54

Controller Controller3 Controller

Mt−1 Mt Mt+1 Mt+2

xt−1 xt xt+1

rt−1 rt rt+1

4

1
2

Figure 1: A Neural Turing Machine, unrolled in time – (1) The read head first returns a read vector
rt which is (2) concatenated with the input xt. Both vectors are sent to (3) the controller (either a
Feed-forward network, or an LSTM) which is responsible for the computation of the internal state of
the NTM, as well as the read and write heads. (4) This write head is then used to makes changes to
the memory Mt+1.

4 Experiments55

4.1 Dyck words56

A Dyck word is a balanced string of opening and closing parentheses. Besides the important role they57

play in parsing tasks, they have multiple connections with other combinatorial objects [15, 2]. In58

2

particular, one convenient and visual way representation of a Dyck word is a path on the integer line59

(see Figure 2).60

u
(

u
(

d
)

u
(

u
(

d
)

d
)

d
)

u
(

d
)

u
(

u
(

d
)

d
)

Figure 2: Example of a Dyck word – This is an example of a well-balanced string of parentheses
(bottom), along with its representation in A∗ (middle) and graphical representation as a path (top).

To avoid ambiguities, we will consider strings of parentheses as words w ∈ {u, d}∗ = A∗, where61

each character u corresponds to an opening parenthesis and d to a closing parenthesis. The subset of62

A∗ containing the Dyck words of length < 2n is called the Dyck language and is denoted D<2n.63

4.2 Experimental setup64

We are interested here in the membership problem over the Dyck language. We trained a NTM for65

a classification task, where positive examples are uniformly sampled [2] from the Dyck language66

D<12, and negative examples are non-Dyck words w ∈ A∗ of length < 12 with the same number67

of characters u and d. We use the same experimental setup as described in [4], with a 100-hidden68

units feed-forward controller, 1 read head, 1 write head, and a memory bank containing 128 memory69

locations, each of dimension 20. We used a ReLU nonlinearity for the key kt and add vector at and a70

hard sigmoid for the erase vector et. We trained the model using the Adam optimizer [10] with a71

learning rate of 0.001 and batch size 16.72

4.3 Stack emulation73

The Dyck language is a context-free language that can be recognized by a pushdown automaton [1].74

Here, we are interested in the nature of the algorithm the NTM is able to infer only from examples on75

this task. More specifically, we want to know if, and how, the NTM uses its memory to act as a stack,76

without specifying the push and pop operations explicitely [8, 5]. In Figure 3, we show the behaviour77

of the read and write heads on a Dyck word and a non-Dyck word, along with the probability returned78

by the model of each prefix to be a Dyck word.79

We observe that the model is actually emulating a stack with its read head. Each time the NTM reads80

an opening parenthesis u, the read head is moved upward and conversely when reading a closing81

parenthesis d. This behaviour is different from what was previously reported on other algorithmic82

tasks [4], where the content of the memory played a central role. Here, the NTM barely writes83

anything in memory, but uses its read head for computation purposes, following closely the graphical84

representation of the words (on the right).85

In the case of non-Dyck words, the read head is used up until the first time the model reads a86

closing parenthesis with no matching opening parenthesis (illustrated by the red line in the graphical87

representation of the word). Beyond this point, the NTM correctly predicts the word is no longer a88

Dyck word, and stops using its read head by placing equal mass over all the memory locations.89

4.4 Strong generalization90

When testing a model, it is often assumed that the training and test data are sampled from the same91

(unknown) distribution. However, here we are not only interested in the capacity of the NTM to92

recognize Dyck words of similar length, but also its capacity to learn an algorithm and generalize to93

longer sequences. This is called strong generalization [12].94

In Figure 4, we compare the NTM with an LSTM trained on the same task with similar hyperparame-95

ters. While the LSTM shows signs of strong generalization on sequences twice as long as what it was96

3

Input

Prediction

Write Weights

(() (())) (())

Read Weights

Input

Prediction

Write Weights

(() (()))) (()

Read Weights

Figure 3: Read and write heads of the NTM – Examples of the behaviour of the NTM on a Dyck
word (top) and a non-Dyck word (bottom) of length 12. For each example, we show the write (left)
and read (center) weights as the NTM reads the input string.

20 40 60 80 100 120 140 160 180

n

0.0

0.2

0.4

0.6

0.8

1.0

A
U
C

NTM

LSTM

Figure 4: Generalization on D<2n – Strong generalization performance of a NTM (blue) and an
LSTM (red) on sequences in D<2n, for different values of n. The gray area represents the training
regime (D<12) for both models. The performance is reported as the Area Under the Curve (AUC).

given during training, the AUC starts dropping for much longer sequences. On the other hand, the97

NTM generalizes perfectly even for much longer sequences (up to 20 times longer than the training98

regime). Beyond n ≈ 120, the AUC starts to slightly decrease, most likely due to overflow issues:99

the stack emulated by the read head is limited by the number of memory locations, here 128.100

5 Conclusion101

Through an experiment on an artificial language called the Dyck language, we have shown that102

Neural Turing Machines are not only able to use their memory for storage, but can also use their103

heads for computational purposes. This allows the NTM to strongly generalize to inputs much longer,104

effectively learning an algorithm (contrary to only learning patterns in the data). The size of the105

memory allocated for the NTM being the only constraint. An interesting line of research could then106

be to run a similar experiment on a model trained under a memory-restricted regime, like a single107

memory location, and see how the NTM can emulate a stack under this stronger constraint.108

4

References109

[1] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-Free Languages and Push-Down110

Automata. In Handbook of Formal Languages, pages 111–174. Springer, 1997.111

[2] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,112

New York, NY, USA, 1 edition, 2009.113

[3] Felix A Gers and Jürgen Schmidhuber. LSTM recurrent networks learn simple context-free and114

context-sensitive languages. Neural Networks, IEEE Transactions on, 12(6):1333–1340, 2001.115

[4] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. CoRR, abs/1410.5401,116

2014.117

[5] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to118

Transduce with Unbounded Memory. CoRR, abs/1506.02516, 2015.119

[6] Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. Dynamic Neural120

Turing Machine with Soft and Hard Addressing Schemes. CoRR, abs/1607.00036, 2016.121

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,122

9(8):1735–1780, 1997.123

[8] Armand Joulin and Tomas Mikolov. Inferring Algorithmic Patterns with Stack-Augmented124

Recurrent Nets. CoRR, abs/1503.01007, 2015.125

[9] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding recurrent126

networks. arXiv preprint arXiv:1506.02078, 2015.127

[10] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR,128

abs/1412.6980, 2014.129

[11] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and130

Jason Weston. Key-Value Memory Networks for Directly Reading Documents. CoRR,131

abs/1606.03126, 2016.132

[12] Scott E. Reed and Nando de Freitas. Neural Programmer-Interpreters. CoRR, abs/1511.06279,133

2015.134

[13] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy P. Lillicrap.135

One-shot Learning with Memory-Augmented Neural Networks. CoRR, abs/1605.06065, 2016.136

[14] Hava (Eve) Tova Siegelmann. Foundations of recurrent neural networks, 1993.137

[15] Richard P. Stanley. Enumerative combinatorics. Volume 2. Cambridge studies in advanced138

mathematics. Cambridge university press, Cambridge, New York, 1999.139

[16] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly Supervised140

Memory Networks. CoRR, abs/1503.08895, 2015.141

[17] Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual142

and Textual Question Answering. CoRR, abs/1603.01417, 2016.143

5

	Introduction
	Related Work
	Neural Turing Machines
	Experiments
	Dyck words
	Experimental setup
	Stack emulation
	Strong generalization

	Conclusion

