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ABSTRACT

Multivariate time series data are integral to numerous real-world applications,
including finance, healthcare, and meteorology, where accurate forecasting is
paramount for informed decision-making and proactive measures. However, the
presence of block missing data poses significant challenges, often undermining
the performance of predictive models. Traditional two-step approaches that first
impute missing values and then perform forecasting tend to accumulate errors,
particularly in complex multivariate settings with high missing ratios and intricate
dependency structures. In this work, we present S4M, an end-to-end time series
forecasting framework that seamlessly integrates missing data handling within the
Structured State Space Sequence (S4) model architecture. Unlike conventional
methods that treat imputation as a separate preprocessing step, S4M leverages the
latent space of S4 models to recognize and represent missing data patterns di-
rectly, thereby capturing the underlying temporal and multivariate dependencies
more effectively. Our approach comprises two key modules: the Adaptive Tempo-
ral Prototype Mapper (ATPM) and the Missing-Aware Dual Stream S4 (MDS-S4).
The ATPM utilizes a prototype bank to derive robust and informative represen-
tations from historical data patterns, while MDS-S4 processes these representa-
tions alongside missingness masks as dual input streams to perform accurate fore-
casting. Extensive empirical evaluations on diverse real-world datasets demon-
strate that S4M consistently achieves state-of-the-art performance, validating the
efficacy of our integrated approach in handling missing data, highlighting its ro-
bustness and superiority over traditional imputation-based methods. These results
highlight the potential of our method for advancing reliable time series forecasting
in practical applications.

1 INTRODUCTION

Multivariate time series are common in real-world applications, including finance (Zhang et al.,
2024), health care (Kaushik et al., 2020), and meteorology (Duchon & Hale, 2012). Time series
forecasting (Box et al., 2015) predicts future values based on historical data. Accurate forecasting
enables informed decision making and helps anticipate trends and take proactive measures, from op-
timizing financial investments to improving patient care and responding to environmental changes.

Time series forecasting has been a long-standing area of research, with numerous methods devel-
oped over the years. Traditional statistical methods typically build on linear assumptions and autore-
gressive models to capture temporal dependency, such as ARIMA (Box & Jenkins, 1968), failing
to forecast well in complex multivariate time series. Recent machine learning advancements have
introduced promising solutions, including RNN-based methods (Salinas et al., 2017; Rangapuram
et al., 2018; Lim et al., 2020; Hewamalage et al., 2021) that capture long-term dependencies and
attention-based models (Qin et al., 2017; Shih et al., 2019; Wu et al., 2021; Liu et al., 2022; Sha-
bani et al., 2023; Nie et al., 2022; Liu et al., 2023) that leverage temporal attention mechanisms. A
more recent and influential technique is the Structured State Space Sequence (S4) model (Gu et al.,
2021), which combines the strengths of state-space models with modern deep learning architec-
tures to efficiently model long sequences. This study highlights the strong suitability of S4 models
for time-series forecasting, driven by their ability to address the growing demand for efficiency in
large-scale applications where computational resources and scalability are critical constraints.
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In addition to the inherent complexities of modeling time series data, effectively handling missing
data poses a significant challenge in accurate forecasting. Missing values frequently arise from sen-
sor failures, data collection issues, or external disruptions, and can severely impact the performance
of predictive models if not properly addressed. For instance, missing data is a common challenge
across numerous fields: in healthcare, patients’ electronic wearable devices records can have gaps
due to inconsistent wearing (Darji et al., 2023); in financial transactions, data might be incom-
plete owing to network outages or system downtimes (Emmanuel et al., 2021); in environmental
monitoring, sensor networks measuring air or water quality frequently face data loss due to device
malfunctions or harsh weather scenarios (Zhang & Thorburn, 2022). In these applications, the data
may exhibit block missing patterns, where missing values occur consecutively rather than randomly,
as illustrated in Figure 4. These gaps not only reduce the amount of available data but can also
introduce biases, leading to inaccurate forecasts.

A typical approach to deal with missing values on the data input space in time series is using a
two-step procedure that first imputes the missing value and then performs standard analysis us-
ing the imputed time series as if there are no missing (Cao et al., 2018; Cini et al., 2021; Marisca
et al., 2022). We provide a more complete review of related work in Appendix A. In multivariate
time series, the complexity of missing data types and the potentially high missing ratios present
significant challenges for direct imputation methods aiming to replicate real data patterns. Conse-
quently, employing the traditional two-step process that separates forecasting from imputation can
lead to accumulated errors, ultimately impeding model performance and resulting in suboptimal so-
lutions. Therefore, a shift towards end-to-end methodologies allows for more robust handling of
missing data. RNN-based methods like GRUD (Che et al., 2018) and BRITS (Cao et al., 2018)
address missing data but often require long training and perform poorly. Graph models like BiT-
Graph (Chen et al., 2023) capture dependencies at high memory cost, while ODE-based methods
like Neural ODE Chen et al. (2018) and CRU (Schirmer et al., 2022) are computationally expensive.
As an end-to-end method for block missing data forecasting, our approach emphasizes recogniz-
ing and representing the patterns of these missing data points in the latent space. By doing so, we
can better capture the underlying structure and dependencies present in the data, leveraging these
patterns to improve the overall model performance.

To achieve this, we have chosen to use S4 models due to their demonstrated empirical success and
high efficiency in time series forecasting (Wang et al., 2024), see Appendix D.1 to cost comparison.
They are also capable to handle multiple inputs concurrently, which facilitates possible solutions to
address missing data differently while simultaneously learning the complex dependency structures
inherent in the forecasting task. Furthermore, existing missing data imputation methods, which treat
missing data handling as an external preprocessing step, often overlook the multivariate dependen-
cies and hierarchical structures essential to the S4 state-space framework. Hence, integrating missing
data handling directly into the S4 modeling process is crucial to fully leverage its capabilities for
multivariate time series forecasting.

In this work, we design an end-to-end time series forecasting method termed S4 with missing values
(S4M) that explicitly considers missing values in the S4 model. Our method consists of two mod-
ules: adaptive temporal prototype mapper (ATPM) and missing-aware dual stream S4 (MDS-S4).
The ATPM module is designed to use rich historical data patterns stored in a prototype bank to
learn robust and informative representations of the time sequence. These representations, along
with a mask that indicates whether a time point is missing, are then modeled as two input streams
for the S4 model termed MDS-S4 to perform forecasting. We conduct extensive empirical exper-
iments comparing with state-of-the-art methods and their variants on commonly used real datasets
to illustrate the effectiveness of our method. Our proposed S4M consistently achieves the best or
second-best performance in most settings, demonstrating its robustness in handling missing data.

2 PRELIMINARY

The S4 model, introduced by Gu et al. (2021), is a pioneering sequence model designed to handle
continuous-time data with long-range dependencies, making it highly effective for tasks like time
series forecasting. For completeness, we provide a brief overview of S4.
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Let u(t),y(t) ∈ RD be two D-variate continuous signals. The continuous state space model (SSM)
maps u(t) to y(t) via the following equations:

d

dt
h(t) = Ah(t) +Bu(t), y(t) = Ch(t) +Du(t), (1)

where h(t) ∈ RH is an unobserved hidden state, and the system is parameterized by matrices A ∈
RH×H , B ∈ RH×D, C ∈ RH×H , and D ∈ RH×D. Since real-world data is typically observed at
discrete time points t = 0, 1, . . . , T , the continuous model in equation 1 can be discretized as:

ht = Aht−1 +But, yt = Cht +Dut (2)

where A = (I −∆A/2)−1(I +∆A/2) and B = (I −∆A/2)−1∆B are based on bilinear trans-
form (Gu et al., 2021) with some parameter ∆. By recursively applying the recurrent representation
of SSM in equation 2 model over discrete time, the output yt at time t is computed as a convolution
of all previous inputs u0:t:

yt =

t∑
i=0

CA
t−i

But−i +Dut.

For an input sequence u = (u0,u1, . . . ,uT ), one can observe that the output sequence y =
(y0,y1, . . . ,yT ) can be computed using a convolution with a skip connection

y = CK ∗ u+Du,

where ∗ is the convolution operation and K = (B,AB, . . . ,A
T−1

B) is called the SSM kernel.
One key challenge of discrete-time SSMs is that computing the output involves repeated matrix mul-
tiplications by A, which can be expensive, with a computational cost of O(H2T ) when implemented
naively. S4 addresses two main challenges compared to basic SSMs. First, it solves the long-range
dependencies modeling challenge by employing the HiPPO matrix (Gu et al., 2020) for A, enabling
continuous-time memorization. Second, S4 solves the computational bottleneck by introducing a
specialized representation and algorithm that significantly reduces the computational cost.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

We denote X(L) and X(H) the look-back and horizon windows for the forecast, respectively, of
corresponding lengths ℓL and ℓH . Given a starting time t0, they are denoted as X(L) = {xt ∈
RD : t ∈ t0 : t0 + ℓL} and X(H) = {xt : t ∈ t0 + ℓL + 1 : t0 + ℓL + ℓH}. We consider the
case where there exist missing values in the observations due to the failure of devices or some other
unexpected errors. We use a mask matrix M (L) ∈ RℓL×D to denote whether the value is missing
or not. Specifically, the (t, d)-th element in the mask matrix is binary and is given by

M
(L)
td =

{
1, if X(L)

td is observed,
0, otherwise.

The goal of forecasting is to predict the horizon window X(H) given the look-back window X(L).
Thus, time series forecasting can be framed as learning a mapping f from X(L) to X(H).

We design an approach to learn f that is parameterized by θ in the presence of missing data. During
training, let f(X(L),M (L);θ) be the predicted values for the horizon window, then the parameter
θ is learned by minimizing the error between the true horizon window X(H) and its predicted value.
Note that the input and output of f have the same length, for the foresting task where ℓH ≤ ℓL, we
slice the last ℓH as the predicted value.

Method Overview: The pipeline of our proposed S4 with missing values (S4M) is given in Fig. 1.
It consists of two modules specifically designed to deal with missing values in an end-to-end man-
ner. The first ATPM module focuses on representation learning with missing values, it contains a
prototype bank, which stores a rich set of representations of historical data in the time series, from
which we can query the representation of missing values based on their local features. The second
MDS-S4 module directly models the missing patterns in the SSM. Our design explicitly considers
missing values in the model, and the model also progressively updates the missing patterns.
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Adaptive Temporal Prototype Mapper (ATPM) Missing-aware Dual Stream S4 (MDS-S4)

Bank writing

Bank reading

Local 
statistics 
extraction

Li
ne

ar
 la

ye
r

(no gradient)

(forecasting)

MDS-S4 block

Regular S4 block

Regular S4 block

Figure 1: Illustration of our end-to-end prediction method S4M. Our method consists of two
modules. The first ATPM module uses historical data patterns to learn robust and informative rep-
resentations for the current input time sequence. Specifically, we extract the local statistics zt−s:t

of the time series at time point t based on raw values xt−s:t. These statistics are then fed into the
query encoder Eq to obtain qt, which queries the prototype bank to retrieve the prototype q̂t. Both
qt andq̂t are subsequently fed into a linear layer to produce the final representation ot. Addition-
ally, the prototype encoder Ep generates the prototype pt for bank updating. In the second module
MDS-S4, we model the representation ot and the mask mt using S4 to generate the forecast yt.

3.2 ADAPTIVE TEMPORAL PROTOTYPE MAPPER (ATPM)

3.2.1 OVERVIEW OF ATPM

To address missing values, we leverage a prototype bank that stores a rich set of representative pat-
terns from time series. The goal is to utilize historical data patterns to learn robust and informative
representations for the current input time sequence. Since the raw time series input is multivari-
ate and can be noisy, often containing missing values, rather than querying and storing prototypes
using the raw time series data, we design encoders to extract more robust latent representations,
allowing us to query and store the prototypes in the representation space. As the prototypes in the
bank evolve and are adaptive to the data during training, we call this module the adaptive temporal
prototype mapper (ATPM).

Specifically, recall xt ∈ RD is the value of the look-back window X(L) at time t. ATPM first
extracts local statistics zt at each time point t (such as its first previous non-missing value and the
time difference to the first non-missing time point) based on the look-back window X(L). We denote
this local statistics extraction as zt = flocal(xt), and its details are given in Appendix C.1.

At the t-th time point, our hypothesis is that local statistics zt of a single time point is insufficient
to infer patterns when t corresponds to a missing observation. To mitigate this, we look back over
a short period of length s to assist with inference at the missing time point, constructing a matrix
zt−s:t = {zl : l ∈ t − s : t}. This local statistics sequence zt−s:t is then used to query and update
the prototype bank in the representation space by feeding it into a query encoder Eq with parameter
θq to obtain the query representation, which is used to query the prototype bank, and a prototype
encoder Ep with parameter θp to obtain the prototype representation, which is used to update the
prototype bank. After querying the prototype bank, we combine the retrieved prototype and other
local statistics to obtain the final representation ot, which is detailed below.

3.2.2 DESIGN OF THE PROTOTYPE BANK

The core concept of the prototype bank is to read (query) similar representations from rich historical
data stored in the bank. These representations are then used as input for the subsequent module. At
the same time, the representations are also used to write (update) the bank adaptively. We describe
the structure of the bank and how to read and write the bank below.

Bank Storage. Prototypes are organized in a two-level queue. The first level represents different
clusters, with each element serving as the centroid of a cluster of prototypes. Within each cluster, the
second-level queue stores the corresponding prototypes that belong to that cluster. To ensure efficient
storage, inference, and stability, the first-level queue can hold a maximum of K1 centroids, while
each second-level queue can accommodate up to K2 prototypes per cluster. The prototype bank is
designed as a queue to facilitate updates following the First-In-First-Out (FIFO) principle, allowing
outdated prototypes that no longer align with the updated encoder to be filtered out efficiently. The
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prototype bank is initialized at its first level by applying k-means clustering on the output of the
encoder of the first batch.

Bank Reading. Denote qt = Eq(zt−s:t;θq) be the query encoder that has local temporal and spatial
information. We then use qt to query the prototype bank to retrieve the most similar patterns and
use their weighted average as the prototype vector at the time point t. In cases where t is a missing
value time point, the retrieved prototypes help account for the missing values.

Specifically, let {c1, c2, . . .} represent the cluster centroids stored in the first-level queue, and let
qt be the query feature. We compute their cosine similarity as ρtj = q⊤

t cj/∥qt∥∥cj∥. Let St =
{j1, . . . , jK} where ρt,j1 ≥ ρt,j2 ≥ · · · ≥ ρt,jK ≥ · · · be the index of the top K maximum
similarities and normalize them as wtj = exp(ρtj)/

∑
j′∈St

exp(ρtj′) for j ∈ St. These retrieved
prototypes are then aggregated as:

q̂t =
∑
j∈St

wtjcj .

Chandar et al. (2016)observed that selecting the top K similar centroids, rather than using all cen-
troids, can improve performance. Finally, we combine zt−s:t, qt, and q̂t using a dense layer to form
a single representation ot.

Bank Writing. After querying the prototype bank, we also update it using the output from pt =
Ep(zt−s:t;θp) be the output of Ep. We compute the cosine similarity between this representation
and the prototype centroids to assess their closeness. If the current patterns are very similar to
existing prototypes, we add them to the level two queue; otherwise, we add the prototype to the level
one queue as a new cluster. Specifically, let ωt = maxj p

⊤
t cj/∥pt∥∥cj∥ represent the similarity

value of the current representation to existing prototype centroids. If ωt ≥ τ1 for some predefined
hyper-parameter τ1, then pt is added to the queue of the cluster with which it shares the highest
degree of similarity. If ωt < τ2 for some predefined hyper-parameter τ2, indicating insufficient
similarity with any existing centroid, pt is introduced as a novel pattern to the bank and also serves
as the initialization of its prototypes cluster1. In both cases, the centroids are updated accordingly. In
the case where τ1 ≤ ωt ≤ τ2, the prototype is not used for updating the bank. This process ensures
that the prototype bank remains dynamic and capable of capturing a diverse range of patterns.

3.2.3 ENCODER UPDATE

Recall that the prototype pt = Ep(zt−s:t;θp) and the query feature qt = Eq(zt−s:t;θq) are the
outputs of two distinct encoders, Eq and Ep, parameterized by θp and θq , respectively. The archi-
tecture of the encoders are given in Appendix C.2. Although both encoders take the same input,
they serve different purposes: the prototype encoder Ep is designed to store a rich set of time series
representations, while the query encoder Eq aims to obtain a representation that diverges from the
prototypes. Thus, these encoders must not be identical and should be updated differently.

To ensure that the prototypes evolve more stably, we use a momentum update for the prototype
encoder Ep, while the query encoder updates its parameters in a traditional manner. Specifically, the
parameter θq the query encoder is updated using gradient descent based on the final loss, whereas
the parameter θp of the prototype encoder is updated with a momentum-based approach, allowing
for smoother updates as suggested by He et al. (2020). During the prototype bank writing process,
the gradients of θp are disabled, and the parameters are updated via momentum:

θp = γθp + (1− γ)θq (3)

where γ ∈ [0, 1) is the momentum coefficient. The momentum update in equation 3 makes θp
evolves more smoothly than θq .

3.3 MISSING-AWARE DUAL STREAM S4 (MDS-S4)

Drawing inspiration from the GRU-D model in (Che et al., 2018), we explicitly model the missing
values by including the mask M (L) in the SSM. Intuitively, with the presence of missing values,
both the hidden state ht and the output of S4 depend on the mask vector mt. We therefore modify
the SSM so that it has two input streams: the representation and the mask. Specifically, let ot be the

1We set τ1 = 0.9 and τ2 = 0.6 in experiment.
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output from the representation learning module, and mt, yt be the tth row of M (L) and X(H). Our
missing-aware dual stream SSM is:

ht = Aht−1 +Bot +EEm(mt;θm)

yt = Cht +Dot + FEm(mt;θm),
(4)

where A and B are the same as in equation 2 and E = (I−∆A/2)−1∆E. The encoder Em param-
eterized by θm is used to ensure that we also use the latent representation of the mask to fully utilize
its information. Denote o = (ot0 , . . . ,ot0+ℓL), m = (mt0 , . . . ,mt0+ℓL), y = (yt0 , . . . ,yt0+ℓL).
Given the initial hidden state, the dual stream SSM in equation 4 can be recursively unrolled to get
the following explicit convolution operation:

y = CK1 ∗ o+CK2 ∗ Em(m;θm) +Do+ Fm

where K1 = (B,AB, . . . ,A
ℓL−1

B) and K2 = (E,AE, . . . ,A
ℓL−1

E) are two SSM kernels.
Therefore, our modified SSM model for missing data has an additive structure of the SSM model
in equation 2. We can use the same trick in S4 to efficiently calculate the convolution operation
and end with adding two outputs from the convolution operations. The convolution operation, to-
gether with the HiPPO matrix A, enables S4 to effectively model long-term dependencies. Simi-
larly, our dual-stream SSM incorporates a convolution operation and the HiPPO matrix, preserving
S4’s computational efficiency and capacity for modeling long-term dependencies, while simultane-
ously addressing missing information through distinct computational kernels. Given the output from
MDS-S4, we can further feed it into either MDS-S4 or regular S4 blocks to increase the complex-
ity of our model. We describe the specific structure of the encoder Em and multiple S4 blocks in
Appendix C.3. Our full algorithm for training and testing is, respectively, given in Alg. 1 and Alg. 4.

Algorithm 1 Training Pipeline
Input: Batches of look-back window {Xi}Bi=1 and corresponding masks {Mi}Bi=1, initial values
for model parameters
Output: Prediction {Ŷi}Bi=2

1: Initialization: prototype centroids C = {c1, . . . , cK} based on K-means from Ep(X1;θp)
2: for i = 2 to B do
3: Local Feature Extraction: Zi = flocal(Xi)
4: Bank Reading: Oi = Algorithm 2(Zi,C, Eq)
5: (No Gradient) Bank Writing: C = Algorithm 3(Zi,C, Ep)
6: (No Gradient) Momentum Update: θp = γθp + (1− γ)θq
7: Backbone Output: Ŷi =MDS-S4(Oi,Mi)

8: Loss construction & backpropagation: L = ∥Ŷi −Xi∥2F
9: end for

Algorithm 2 Bank Reading

Input: local statistics Z = {zt}ℓLt=1, query encoder Eq , bank prototype centroids {c1, c2, . . . , },
initial values for parameter W and d
Output: target representation O

1: for zt in Z = {z1, z2, ...,zℓL} do
2: Encoding: qt = Eq(zt−s:t)
3: Compute similarity: obtain ρtj = q⊤

t cj/ ∥qt∥ ∥cj∥
4: Normalization for top-K maximum values: wtj = exp(ρtj)/

∑
j∈St exp(ρtj)

5: Aggregating prototypes items: q̂t =
∑

j∈St wtjcj
6: Combination: vt = W [zt, qt, q̂t] + d
7: Output: ot = qt + vt

8: end for
9: Final Output O = {o1,o2, ...,oℓL}

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENT SETUP

6
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Algorithm 3 Bank Writing

Input: local statistics Z = {zt}ℓLt=1, prototype encoder Ep, bank prototype centroids {c1, c2, . . . , }
Output: bank with updated prototypes

1: Random sample n slices {zi}ni=1 from Z
2: for zi in {z1, z2, ...,zn} do
3: Encoding: pi = Ep(zi)
4: Compute similarity: ρij = p⊤

i cj/∥pi∥∥cj∥
5: Get the maximum index: j∗ = argmaxj ρi,j
6: if ρij∗ ≥ τ1 then
7: Add pi to the end of the j∗ second-level queue
8: Update j∗th prototype centriod
9: else if ρij∗ < τ2 then

10: Add pi to the end of the first-level queue
11: elsecontinue
12: end if
13: end for

Algorithm 4 Testing Pipeline

Input: Look-back window X(L), learned prototype bank centroids C = {cj}, query encoder Eq ,
learned MDS-S4 module and local statistics extractor flocal

Output: Forecasted value Ŷ

1: Local Feature Extraction: Z = flocal(X)
2: Bank Reading: O = Algorithm 2(Z,C, Eq)

3: MDS-S4 Output: Ŷ =MDS-S4(O)

We select four commonly used time series datasets for forecasting: Electricity (Wu et al., 2021),
ETTh1 (Zhou et al., 2021), Traffic (Wu et al., 2021), and Weather (Wu et al., 2021). Since these
benchmark datasets are complete, we manually created block missing on the training and test
dataset. These datasets span various domains and encompass diverse characteristics in terms of
magnitude ranges, sampling frequencies, and statistical properties like seasonality. The base statis-
tics of the data set can be found in Tab. 7. To model practical scenarios where sensors cannot
record data for a period due to failure or other reasons, we design block-based missing pattern for
two types of missing data scenarios: time point missing and variable missing with missing rate
r = 0.03, 0.06, 0.12, 0.14. The details of making missing pattern can be found in Appendix D.2.
After obtaining the dataset with missing values, we split it chronologically into training, validation,
and test sets, with a ratio of 0.7/0.1/0.2. The horizon window for all methods is fixed at 96, while
the lookback length is varied across 96, 192, 384, and 768.

4.2 COMPETING METHODS

We compare our proposed method, S4M, with two main groups of baseline methods: S4-based
baselines and other state-of-the-art and classical methods for handling missing data. The S4-based
baseline group includes S4 (Mean), S4 (Ffill), S4 (Decay), and S4 (SAITS). These methods impute
missing data using strategies such as global mean, last observation, a decay mechanism based on
these statistics, and the superior imputation method SAITS (Du et al., 2023). The other methods
include classic RNN-based methods like GRUD (Che et al., 2018), LSTM-based methods such as
BRITS (Cao et al., 2018), the top-performing Transformer-based methods Transformer (Vaswani
et al., 2017) and Autoformer (Wu et al., 2021), and the end-to-end method BiaTGraph (Chen et al.,
2023), which is specifically designed for missing data prediction.

4.3 COMPARISON WITH BASELINES AND S4-BASED VARIANTS ON TIME POINT MISSING

Varying Input Length. The results in Table 1 illustrate the forecasting performance of various
methods under time point missing scenarios r = 0.06 across the four datasets. Our proposed S4M
consistently achieves the best or second-best performance across most settings, demonstrating its

7
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robustness in handling missing data. For the Weather dataset, our method exhibits outstanding per-
formance, achieving the best MSE in nearly all configurations, particularly at the 192-step length
with 0.225, which is significantly better than the closest competitor. For the other datasets, S4M
maintains strong performance, as no competing methods can consistently outperform it across vari-
ous datasets and settings.

Table 1: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.06.
Entries with ‘–’ indicate the experiment can not be done due to out-of-memory issue.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.633 0.431 0.399 0.375 0.397 0.408 0.418 0.402 0.432 0.372
MSE 0.623 0.363 0.400 0.272 0.309 0.337 0.345 0.323 0.372 0.287

192 MAE 0.636 0.437 0.402 0.366 0.388 0.387 0.384 0.381 0.394 0.367
MSE 0.628 0.366 0.314 0.257 0.290 0.303 0.292 0.289 0.309 0.274

384 MAE 0.653 0.434 0.419 0.369 0.384 0.383 0.367 0.379 0.394 0.370
MSE 0.659 0.363 0.339 0.272 0.295 0.298 0.272 0.285 0.307 0.277

768 MAE 0.644 0.437 0.416 0.379 0.387 0.378 0.384 0.379 0.393 0.373
MSE 0.656 0.365 0.333 0.285 0.290 0.291 0.288 0.285 0.306 0.282

E
T

T
h1

96 MAE 0.705 0.644 0.905 0.866 0.571 0.629 0.625 0.614 0.851 0.571
MSE 0.937 0.793 0.942 0.923 0.613 0.747 0.759 0.716 0.914 0.624

192 MAE 0.707 0.653 0.898 0.797 0.609 0.600 0.605 0.595 0.788 0.574
MSE 0.721 0.805 0.938 0.885 0.745 0.670 0.681 0.666 0.881 0.593

384 MAE 0.755 0.649 0.968 0.791 0.601 0.595 0.605 0.605 0.719 0.571
MSE 1.029 0.798 0.973 0.882 0.721 0.662 0.689 0.683 0.840 0.624

768 MAE 0.788 0.668 1.110 0.797 0.599 0.614 0.614 0.619 0.733 0.588
MSE 1.072 0.841 1.041 0.885 0.684 0.697 0.710 0.706 0.848 0.647

W
ea

th
er

96 MAE 0.419 0.363 0.421 0.465 0.516 0.371 0.361 0.399 0.440 0.313
MSE 0.372 0.293 0.350 0.395 0.510 0.312 0.296 0.344 0.407 0.237

192 MAE 0.427 0.346 0.308 0.471 0.419 0.332 0.318 0.347 0.384 0.305
MSE 0.385 0.268 0.238 0.408 0.385 0.255 0.235 0.274 0.320 0.225

384 MAE 0.434 0.342 0.391 0.479 0.587 0.329 0.345 0.339 0.378 0.306
MSE 0.375 0.271 0.310 0.430 0.596 0.249 0.269 0.264 0.311 0.220

768 MAE 0.489 0.354 0.374 0.489 0.467 0.330 0.349 0.340 0.368 0.316
MSE 0.445 0.280 0.297 0.459 0.445 0.250 0.272 0.263 0.287 0.232

Tr
af

fic

96 MAE 0.667 0.467 0.421 0.430 0.516 0.455 0.459 0.451 0.498 0.428
MSE 1.158 0.871 0.726 0.812 0.919 0.808 0.844 0.794 0.917 0.809

192 MAE 0.667 0.473 0.419 0.410 0.496 0.401 0.398 0.386 0.415 0.385
MSE 1.170 0.893 0.728 0.721 0.836 0.709 0.692 0.711 0.734 0.687

384 MAE 0.675 0.483 0.452 0.496 0.527 0.400 0.398 0.381 0.412 0.385
MSE 1.193 0.918 0.746 0.817 0.913 0.690 0.682 0.702 0.711 0.702

768 MAE 0.697 0.490 0.410 0.465 – 0.394 0.392 0.381 0.407 0.388
MSE 1.236 0.947 0.706 0.774 – 0.687 0.678 0.692 0.716 0.699

Varying Missing Ratio. Fig. 2 illustrates the performance of various methods under time point
missing scenarios across four datasets: Electricity, ETTh1, Weather, and Traffic. The methods are

Figure 2: The performance of different methods on four datasets under time point missing scenario
when the missing ratio r varies from 0.03 to 0.24.

evaluated using MAR as the missing ratio (r) increases. Across all datasets, our proposed S4M (de-
noted by the red line), consistently maintains lower MAE compared to other methods, particularly
as the missing ratio increases. For the Electricity and Weather datasets, S4M outperforms competing
methods at all missing ratios, showing a clear advantage in handling missing data. In the ETTh1
and Traffic datasets, while some other methods like GRU-D or BRITS perform well at lower miss-
ing ratios, S4M still demonstrates robust performance, particularly as r increases, showing strong
resilience to higher levels of missing data.
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4.4 COMPARISON WITH BASELINES AND S4-BASED VARIANTS ON VARIABLE MISSING

Varying Input Length. Tab. 2 presents the forecasting performance of different methods under
variable missing scenarios (r = 0.06) across four datasets. Our method, S4M, consistently achieves
either the best or second-best results across the majority of configurations, demonstrating its robust-
ness in handling feature-missing data. On the ETTh1 dataset, S4M shows particularly strong results,
securing the lowest MAE and MSE values in several settings. Similarly, for the Weather dataset,
S4M excels, delivering the best MAE and MSE in all configurations. Across the remaining datasets,
S4M continues to perform competitively, consistently matching or surpassing other methods, high-
lighting its general effectiveness in feature-missing scenarios.

Table 2: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.06.
Entries with ‘–’ indicate the experiment can not be done due to out-of-memory issue.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.439 0.426 0.400 0.373 0.383 0.387 0.387 0.396 0.432 0.369
MSE 0.369 0.354 0.312 0.271 0.292 0.305 0.304 0.311 0.354 0.282

192 MAE 0.457 0.477 0.400 0.366 0.376 0.366 0.365 0.378 0.405 0.357
MSE 0.390 0.408 0.308 0.257 0.277 0.273 0.272 0.282 0.310 0.261

384 MAE 0.625 0.470 0.412 0.361 0.389 0.366 0.367 0.377 0.411 0.359
MSE 0.619 0.408 0.317 0.255 0.290 0.270 0.272 0.279 0.317 0.264

768 MAE 0.635 0.487 0.411 0.363 0.387 0.367 0.376 0.374 0.402 0.362
MSE 0.637 0.434 0.326 0.261 0.287 0.272 0.286 0.279 0.309 0.269

E
T

T
h1

96 MAE 0.696 0.618 0.589 0.583 0.571 0.641 0.642 0.620 0.682 0.571
MSE 0.905 0.727 0.658 0.648 0.653 0.761 0.763 0.717 0.851 0.624

192 MAE 0.820 0.617 0.647 0.583 0.599 0.619 0.619 0.598 0.658 0.568
MSE 1.165 0.725 0.817 0.640 0.719 0.687 1.619 0.665 0.788 0.598

384 MAE 0.821 0.607 0.614 0.585 0.602 0.607 0.606 0.607 0.633 0.584
MSE 1.166 0.708 0.683 0.635 0.719 0.665 0.673 0.683 0.719 0.613

768 MAE 0.820 0.625 0.749 0.641 0.636 0.616 0.623 0.624 0.641 0.599
MSE 1.163 0.734 1.029 0.733 0.811 0.676 0.706 0.721 0.733 0.649

W
ea

th
er

96 MAE 0.408 0.409 0.427 0.498 0.543 0.413 0.394 0.388 0.439 0.336
MSE 0.336 0.348 0.357 0.440 0.545 0.364 0.337 0.332 0.392 0.267

192 MAE 0.417 0.383 0.426 0.507 0.444 0.363 0.352 0.347 0.403 0.320
MSE 0.357 0.311 0.351 0.454 0.418 0.296 0.275 0.275 0.335 0.261

384 MAE 0.452 0.381 0.405 0.517 0.654 0.359 0.345 0.338 0.405 0.334
MSE 0.401 0.314 0.329 0.477 0.698 0.292 0.269 0.265 0.333 0.256

768 MAE 0.470 0.392 0.401 0.529 0.623 0.349 0.349 0.340 0.395 0.341
MSE 0.427 0.323 0.337 0.508 0.663 0.272 0.272 0.263 0.321 0.266

Tr
af

fic

96 MAE 0.676 0.483 0.428 0.439 0.516 0.443 0.438 0.440 0.504 0.442
MSE 1.240 0.905 0.759 0.708 0.907 0.821 0.819 0.812 0.874 0.786

192 MAE 0.679 0.500 0.411 0.390 0.521 0.383 0.398 0.391 0.447 0.381
MSE 1.208 0.927 0.705 0.632 0.886 0.707 0.692 0.726 0.776 0.685

384 MAE 0.678 0.503 0.399 0.393 0.486 0.379 0.420 0.385 0.444 0.383
MSE 1.197 0.953 0.696 0.648 0.795 0.702 0.755 0.716 0.772 0.700

768 MAE 0.679 0.512 0.441 0.407 – 0.381 0.375 0.383 0.442 0.383
MSE 1.207 0.967 0.758 0.666 – 0.704 0.692 0.708 0.775 0.697

Varying Missing Ratio. Fig. 3 displays the performance of various methods under variable miss-
ing scenarios across the four datasets. As with time point missing, MAE is used as the evaluation
metric, plotted against different missing ratios (r). Our method, S4M (indicated by the red line), con-
sistently demonstrates competitive or superior performance across all datasets and missing ratios. In
the Electricity dataset, S4M maintains one of the lowest MAEs, showing more stability compared to
methods like GRUD, which shows a sharp increase in error as the missing ratio grows. Similarly,
in the ETTh1 and Weather datasets, S4M continues to outperform or match the best methods, par-
ticularly at higher missing ratios. For the Traffic dataset, while some methods perform comparably
at lower missing ratios, S4M demonstrates robust resilience, with relatively low error even as the
proportion of missing features increases. Overall, S4M shows strong generalization and consistent
performance, effectively handling variable missing data scenarios across multiple datasets.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: The performance of different methods on four datasets under variable missing scenario
when the missing ratio r varies from 0.03 to 0.24.

4.5 ABLATION STUDY ON MASKING INPUT

In the previous experiment, we investigated the effects of replacing the data inputs to the S4 back-
bone (blue columns in Tab. 1 and Tab. 2). To deepen the analysis, we conducted additional ablations
on ATPM and the input stream of mask indications as shown in Tab. 4.5.

The results demonstrate the importance of incorporating the mask as the inputs to S4 backbone, as
removing it consistently increases both MAE and MSE across various prediction horizons. Notably,
even when the error increases after removing masks appear numerically small in some entries, the
overall predominantly positive red values reflect the model’s enhanced stability and accuracy when
handling missing data. This is particularly evident in the ETT and Weather datasets, where the pres-
ence of the mask significantly reduces errors, affirming the effectiveness of dual-inputs in MDS-S4
to capture the complex dependencies inherent in multivariate time series with missing values.

The results also highlight the significance of ATPM. The model’s performance improved signifi-
cantly after incorporating ATPM, as both MSE and MAE increased across various settings when
ATPM was removed, particularly on the Traffic and ETTh1 datasets. Additionally, ATPM demon-
strated substantial improvements, especially with shorter lookback windows on the Electricity and
Weather datasets, further emphasizing the improvements brought by ATPM.

Table 3: Results of ablation study for the mask and ATPM with blue values indicating a decrease in
errors, while red values representing increase in errors.

Electricity ETTh1 Weather Traffic

ℓL Metric ↓ S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

Variable missing

MAE 0.369 +0.012 +0.011 0.571 -0.008 +0.044 0.336 +0.106 +0.020 0.442 +0.001 +0.02496 MSE 0.282 +0.010 +0.010 0.624 -0.008 +0.091 0.267 +0.520 +0.206 0.786 +0.039 +0.125
MAE 0.357 +0.004 +0.010 0.568 -0.013 +0.045 0.320 +0.061 +0.600 0.381 +0.003 +0.030192 MSE 0.261 +0.006 +0.009 0.598 -0.014 +0.090 0.261 +0.424 +0.002 0.685 +0.036 +0.092
MAE 0.359 +0.001 +0.009 0.584 +0.003 +0.029 0.334 +0.049 +0.006 0.383 +0.062 +0.026384 MSE 0.264 +0.002 +0.009 0.613 +0.008 +0.064 0.256 +0.444 +0.008 0.700 +0.092 +0.065
MAE 0.362 +0.004 +0.020 0.599 +0.012 +0.028 0.341 +0.043 +0.016 0.383 +0.000 +0.026768 MSE 0.269 +0.003 +0.002 0.649 +0.027 +0.058 0.266 +0.431 +0.011 0.697 +0.020 +0.074

Time point missing

MAE 0.372 +0.014 +0.025 0.571 +0.003 +0.049 0.313 +0.035 +0.021 0.428 +0.003 +0.04596 MSE 0.287 +0.016 +0.030 0.624 +0.006 +0.110 0.237 +0.033 +0.017 0.809 +0.010 +0.116
MAE 0.367 +0.013 +0.004 0.574 -0.009 +0.039 0.305 +0.040 +0.006 0.385 +0.006 +0.005192 MSE 0.274 +0.012 +0.004 0.593 +0.022 +0.110 0.225 +0.041 +0.001 0.687 +0.034 +0.023
MAE 0.370 +0.002 +0.014 0.571 +0.012 +0.057 0.306 +0.040 +0.012 0.385 +0.000 +0.013384 MSE 0.277 +0.003 +0.004 0.624 +0.008 +0.112 0.220 +0.047 +0.015 0.702 -0.015 +0.047
MAE 0.373 -0.005 +0.013 0.588 +0.006 +0.048 0.316 +0.029 +0.005 0.388 -0.004 +0.000768 MSE 0.282 -0.003 +0.016 0.647 -0.001 +0.079 0.232 +0.037 +0.004 0.699 +0.011 +0.024

5 CONCLUSION

In this paper, we present S4M for time series forecasting with missing values. S4M is an end-to-end
framework that first uses a ATPM module to learn robust latent representation to account for missing
values using rich historical data from a prototype bank, and then uses a missing-aware dual stream
S4, MDS-S4, to directly model the mask of missing and the representation. The experimental results
on four real-world benchmark datasets verify its superiority under various missing value scenarios.
The ablation studies also show the importance of the masking mechanism in improving the model’s
robustness and accuracy. In the future, we would like to explore other S4-based architectures and
missing types to make our proposed method more versatile.
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Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. GP-VAE: Deep proba-
bilistic time series imputation. In International conference on artificial intelligence and statistics,
pp. 1651–1661. PMLR, 2020.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388–427, 2021.

Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron, Nataraj Dasgupta, Sayee Natarajan,
Larry A Pickett, and Varun Dutt. Ai in healthcare: time-series forecasting using statistical, neural,
and ensemble architectures. Frontiers in big data, 3:4, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benjamin Lim, Simon Zohren, and Stephen Roberts. Recurrent neural filters: Learning independent
bayesian filtering steps for time series prediction. In International Joint Conference on Neural
Networks. IEEE, 2020.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International Conference on Learning Representations, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to reconstruct missing data from spatiotem-
poral graphs with sparse observations. Advances in Neural Information Processing Systems, 35:
32069–32082, 2022.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A dual-
stage attention-based recurrent neural network for time series prediction. In International Joint
Conference on Artificial Intelligence, 2017.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. In Advances in Neural
Information Processing Systems, 2018.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. In Advances in Neural Information Processing Systems, 2019.

David Salinas, Valentin Flunkert, and Jan Gasthaus. DeepAR: Probabilistic forecasting with autore-
gressive recurrent networks. arXiv e-prints, 2017.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
series with continuous recurrent units. In International conference on machine learning, pp.
19388–19405. PMLR, 2022.

Mohammad Amin Shabani, Amir Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: Iterative
multi-scale refining transformers for time series forecasting. In International Conference on
Learning Representations, 2023.

Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. Temporal pattern attention for multivariate time
series forecasting. Machine Learning, 2019.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and Suhang Wang. Joint
modeling of local and global temporal dynamics for multivariate time series forecasting with
missing values. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
5956–5963, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Han Zhao, Daling Wang, and Yifei Zhang. Is
mamba effective for time series forecasting? arXiv preprint arXiv:2403.11144, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Vijaya Krishna Yalavarthi, Kiran Madhusudhanan, Randolf Scholz, Nourhan Ahmed, Johannes
Burchert, Shayan Jawed, Stefan Born, and Lars Schmidt-Thieme. Grafiti: Graphs for forecasting
irregularly sampled time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16255–16263, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in temporal
data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical
Engineering, 66(5):1477–1490, 2018.

Cheng Zhang, Nilam Nur Amir Sjarif, and Roslina Ibrahim. Deep learning models for price forecast-
ing of financial time series: A review of recent advancements: 2020–2022. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 14(1):e1519, 2024.

Yifan Zhang and Peter J Thorburn. Handling missing data in near real-time environmental moni-
toring: A system and a review of selected methods. Future Generation Computer Systems, 128:
63–72, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 TIME SERIES FORECASTING

Time series forecasting has seen major improvements thanks to both traditional statistical methods
and modern deep learning models. The ARIMA model, for example, improves prediction accuracy
by making non-stationary data more stable, which is a key method in time series analysis (Box
& Jenkins, 1968). Recurrent Neural Networks (RNNs) have also become important tools in this
field, providing a solid framework for modeling sequences and predicting time series, especially for
capturing long-term patterns (Hewamalage et al., 2021). Improvements in RNN designs have led to
different RNN-based approaches specifically made for forecasting (Rangapuram et al., 2018; Salinas
et al., 2017; Lim et al., 2020). Attention-based models have gained attention because they can focus
on key time steps, helping to capture long-term patterns that are critical for accurate forecasts (Qin
et al., 2017; Shih et al., 2019). The encoder-decoder setup, in particular, has become a popular ap-
proach because of its strong forecasting ability. This has inspired various upgrades and new versions
of the original Transformer model. One example is the Autoformer, which uses a new architecture
with an Auto-Correlation mechanism, setting new standards for long-term forecasting accuracy (Wu
et al., 2021). Similarly, the Pyraformer uses a pyramidal attention strategy to model different levels
of data efficiently, boosting the accuracy of long-range time series predictions (Liu et al., 2022). The
Scaleformer framework refines forecasts across different scales, leading to improved performance
with little extra computation (Shabani et al., 2023). iTransformer introduces a novel approach by
leveraging transformer-based architecture with adaptive self-attention mechanisms to capture tem-
poral dependencies in time series forecasting (Liu et al., 2023). PatchTST applies a patch-based
technique within a transformer framework to effectively capture both short- and long-term depen-
dencies, improving forecasting accuracy across diverse time series tasks (Nie et al., 2022). Besides
these advances, new models like the structured state space squence (S4) model combine the strengths
of RNNs and CNNs, offering flexible solutions for a wide range of tasks, including generation, fore-
casting, and classification (Gu et al., 2021). S4 model combines the strengths of state-space models
with modern deep learning architectures and can efficiently model long sequences.

A.2 MISSING DATA IN TIME SERIES

In many real-world scenarios, datasets can be incomplete due to unforeseen events such as equip-
ment failure or communication errors, making it crucial to address time series forecasting with
missing data. GRU-D (Che et al., 2018) stands out as a classic method to manage missing data
in recurrent models. Subsequent advances such as BRITS (Cao et al., 2018) have further refined
the approach for LSTMs. The field has also seen the emergence of various imputation techniques,
including M-RNN, GP-VAE, and SAITS, which prioritize the estimation of missing values to im-
prove the precision of forecasting (Yoon et al., 2018; Fortuin et al., 2020; Du et al., 2023). Latent
ODE (Rubanova et al., 2019), Neural ODE (Chen et al., 2018), CRU (Schirmer et al., 2022), and
GraFITi (Yalavarthi et al., 2024) each address missing values in time series through different mech-
anisms, with Latent ODE (Rubanova et al., 2019) and Neural ODE (Chen et al., 2018) learning
continuous dynamics over time, CRU (Schirmer et al., 2022) utilizing confidence regularization to
improve imputation accuracy, and GraFITi (Yalavarthi et al., 2024) applying graph-based methods
to capture temporal and spatial dependencies for missing data recovery. LGNet innovatively cap-
tures local and global temporal dynamics through a memory network (Tang et al., 2020). BiTGraph
dexterously navigates temporal dependencies and spatial structures. By explicitly incorporating the
challenge of missing values into its model architecture, BiTGraph aims to optimize the information
flow and mitigate the adverse effects of data incompleteness (Chen et al., 2023).

B NOTATION TABLE

A summary of key notations used in the main paper is given in Tab. 4.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Notations
Notations Description

X(L) look-back time series
M (L) mask: indicator for missing for look-back time series
X(H) horizon time series
xt raw value of the time series at time point t
ot representation learning output at time point t
ht S4 hidden state at time point t
yt predicted value of S4
mt mask at time point t
cj the centroid of the jth cluster
ℓL length of the look-back window
ℓH length of the horizon window
D dimension of the time series
R encoder output dimension
F output channel of ConvD1

K1 prototype bank parameter: maximum number of clusters
K2 prototype bank parameter: maximum number of elements within each cluster
τ1, τ2 threshold for similarity in prototype bank writing
γ momentum coefficient
θ S4 model parameters

t0 : t0 + ℓ {t0, t0 + 1, . . . , t0 + ℓ}
Ep, Eq, Em encoder

C ADDITIONAL DETAILS OF THE PROPOSED METHOD

In this section, we provide additional details of the proposed methods. We describe the procedure for
local statistics extraction in Section C.1, the encoder design in the representation learning module in
Section C.2, and the design of S4 blocks in Section C.3.

C.1 LOCAL STATISTICS EXTRACTION

As the first step in dealing with missing values in time series, we extract useful local statistical
features using contextual information from observed parts of the time series for missing values.
Specifically, we denote xmin,xmax ∈ RD respectively as the minimum and maximum of the ob-
served value of X(L). ∆min ∈ RℓL×D, ∆max ∈ RℓL×D are the time gap between each entry of
X with xmin, xmax. We use the combination of two exponential weights to extract local feature
information from missing data. Specifically, we let

Z(L) = M (L)X(L) + (1−M (L))(Ω
′

1xmin +Ω
′

2xmax)

be the local statistics where
Ω1 = exp {−max (0,W1∆min + b1)}
Ω2 = exp {−max (0,W2∆max + b2)}

Ω
′

1 = Ω1/(Ω1 +Ω2), Ω
′

2 = Ω2/(Ω1 +Ω2)

and W1,W2, b1 and b2 are the decay parameters. The local statistics Z are fed in the ATPM module
to query from the prototype bank.

C.2 ENCODER ARCHITECTURE

The architecture of the encoder Ep, Eq , and Em contains (1) a delay embedding layer, (2) a 2D-
convolutional layer with ReLU activation, (3) a self-attention layer, and (4) a S4 layer. We describe
these layers, respectively.

Delay embedding The delay embedding layer converts the original two-dimensional matrix Z(L)

(or M (L) in Em) into a third-order tensor. This technique involves recursively augmenting the
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multivariate time series by unfolding the matrix along the temporal dimension. This process signif-
icantly enriches the local information at each time point by incorporating its historical time series
data. Consequently, this enrichment facilitates the formalization and storage of various patterns.

Convolution We then incorporate a convolutional layer with a kernel size of W in the temporal
dimension and D in the variable dimension to capture local temporal patterns and inter-variable
dependencies. Subsequently, the output is passed through a Rectified Linear Unit (ReLU) layer.
The ReLU layer’s output is a matrix with dimensions R × Tc , where R represents the number of
filters in the convolutional layer and Tc = L − W + 1. Additionally, a dropout layer is applied
subsequent to the ReLU layer to prevent overfitting.

Attention Subsequently, we implement an attention mechanism over the temporal dimension of
the sequence, enabling the model to selectively emphasize salient information without changing the
rank of tensor.

S4 layer The output from the attention layer is then fed into an S4 block. Unlike the layer of self-
attention above, the S4 block was used to compress temporal information. Within this framework,
we employ a S4 as an embedding tool, which serves to encapsulate the embedding of size Tc ×R at
each time point into a fixed-size representation vector of length R.

C.3 DESIGN OF MDS-S4 BLOCKS

Our second MDS-S4 module consists of one MDS-S4 block and multiple normal S4 blocks, each
designed to process sequential data efficiently. The architecture begins with an MDS-S4 block.
MDS-S4 is the core and initial layer of this block, which has dual inputs, the representation ot

learned from ATPM and m̃t = Em(mt), both are fed into a regular S4 block. The output is then
fed into a residual connection, coupled with layer normalization, to address gradient vanishing.
Subsequently, a 1D convolutional layer with a kernel size of 1 and F output channels is applied
together with ReLU. Then, it comes another convolutional layer that reverts the output back to
R channels. Finally, a dropout layer is integrated to introduce regularization, which is crucial for
preventing overfitting. The culmination of these operations completes a single MDS-S4 block within
the architecture. We list these layers of the block in Tab. 5 for easy reference.

Table 5: Architecture of MDS-S4 block. For convolutional layer (Conv1D), we list parameters with
sequence of input and output dimension, and kernel size.

Layer Details

1 MDS-S4 model or S4 model, Residual, LayerNorm

2 Conv1D(R, F , 1), ReLU, Dropout

3 Conv2D(F , R, 1), Dropout

The following S4 blocks in MDS-S4 module have the same architecture with MDS-S4 block, except
for the initial MDS-S4 model replaced with traditional S4 model. Begin with the MDS-S4 block,
the output of one block is fed directly as input to the subsequent block.This iterative process allows
for increasingly complex feature extraction and integration. The final output from the last block in
the sequence represents S4M’s prediction.

D EXPERIMENT DETAILS AND MORE RESULTS

D.1 BASELINE METHODS

In this section, we describe the baseline methods that we compare with. The baselines include latest
state-of-art methods and some classic methods. For models not specifically designed for missing
data forecasting, we impute the missing observations with the mean value and conduct experiments
on the imputed dataset.
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• GRU-D: It is a time series model that extends the Gated Recurrent Unit (GRU) by incorpo-
rating decay mechanisms to handle missing data and capture temporal dependencies (Che
et al., 2018).

• BRITS: A time series imputation model that integrates a Bidirectional Recurrent Neural
Network (RNN) with a time decay mechanism to capture the relationships between missing
values and observed data (Cao et al., 2018).

• Autoformer: A model designed for long-term time series forecasting using auto-correlation
mechanisms (Wu et al., 2021).

• Transformer: A foundational sequential model that utilizes stacked self-attention blocks to
effectively capture temporal dependencies in time series data (Vaswani et al., 2017).

• iTransformer: The iTransformer introduces a novel methodology by integrating
transformer-based architecture with adaptive self-attention mechanisms, enabling more ef-
ficient handling of complex temporal dependencies in time series forecasting tasks (Liu
et al., 2023).

• PatchTST: It introduces a novel approach by applying patch-based techniques to time se-
ries forecasting, leveraging a Transformer model to capture both short-term and long-term
dependencies, thereby enhancing prediction accuracy and computational efficiency (Nie
et al., 2022).

• CRU: It introduces a unique method for handling missing or irregularly spaced data points,
incorporating confidence-based regularization to improve the robustness and accuracy of
time series forecasting models (Schirmer et al., 2022).

• Grafiti: A novel approach that models irregularly sampled time series data using graph-
based techniques (Yalavarthi et al., 2024).

• BiTGraph: A state-of-the-art method that performs end-to-end prediction with biased tem-
poral convolutional graph networks when missing data is present (Chen et al., 2023).

• S4 (Mean): Impute missing data using the global mean and employ S4 blocks as the back-
bone.

• S4 (Ffill): Impute missing data by forward filling with the latest observation, using S4
blocks as the backbone.

• S4 (Decay): Impute missing data by combining the global mean and the latest observation,
with a decay factor controlling the weighting, and use S4 blocks as the backbone.

• S4 (SAITS): Fill missing entries with the state-of-the-art imputation method SAITS, using
the imputed data as input for S4 blocks. SAITS is a time series forecasting method that em-
ploys a self-attention mechanism to capture long-term dependencies and trends, enabling
more accurate imputation across various temporal patterns (Du et al., 2023).

We also provide detailed comparisons and computational cost analysis for above methods in Tab. 6.
To measure the training and inference time, we conducted performance experiments using the elec-
tricity dataset, with a batch size of 16 and a hidden size of 512. The training and inference times
were recorded for each iteration.

We observe that S4M (ours) achieves a lower FLOPS value compared to other SOTA transformer-
based methods, including Grafiti. Also, S4M (ours) is similar to the S4-based methods. The results
confirm our motivation to focus on S4-based architecture, given their efficiency. Furthermore, S4M
demonstrates shorter training times than CRUD, PatchTST, BiTGraph, and BRITS. S4M also out-
performs CRUD, PatchTST, and BRITS, making it a more efficient choice for both training and
inference.

D.2 DATASET DETAILS

In Tab. 7, we present the number of variables (Variables), the total length of the time series (Time
steps), and the frequency that observations are made (Granularity).

For all datasets in our experiment, we consider two different missing scenarios: time point missing
and variable missing, which is illustrated in Fig. 3. Under the time point missing scenario, we first
randomly select a ratio r of time points, and for each selected time point, we remove its following
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Table 6: Computation Cost for Different Methods (’OOM’ refers to ”Out-of-Memory”).

Method GRUD CRUD Grafiti S4(Mean) S(Ffill) S(Decay) S4M(Ours)

Flops(M) 3813.82 219.57 265118.32 12463.39 12463.39 12618.52 139191.88

Training
Time(s) 0.19958 49.4002 OOM 0.11282 0.11498 0.08325 0.219381

Inference
Time(s) 0.08756 4.76765 OOM 0.07416 0.07983 0.06152 0.099314

Method Autoformer BiTGraph Transformer iTransformer PatchTST BRITS

Flops(M) 18734.88 3185.64 17627.87 565.36 392299.02 9091.16

Training
Time(s) 0.09613 0.24546 0.09035 0.06744 0.46017 0.4692

Inference
Time(s) 0.07662 0.08122 0.06088 0.04009 0.16896 0.21126

Table 7: Dataset statistics.
Data Variables Time steps Granularity

Electricity 321 26,304 1 hour
ETTh1 7 17,420 15 min
Weather 21 52,696 10 min
Traffic 862 17,544 1 hour

consecutive time points of length 5 and eliminate all variables at those time points. In the variable
missing scenario, we perform the same procedure independently for each variable. When generating
the missing data, the missing ratio r ranges from 0.03, 0.06, 0.12, to 0.24. Due to the design of the
consecutive missing points, the overall missing ratio (the percentage of missing entries in the times
series matrix) is higher than r, and we report these values in Table ?? under the different values of
r.

Table 8: Overall missing ratio statistics.
Missing
pattern r 0.030 0.060 0.120 0.240

Time point
missing

Electricity 0.139 0.260 0.450 0.694
ETTh1 0.122 0.231 0.399 0.616
Traffic 0.139 0.256 0.447 0.705

Weather 0.132 0.247 0.432 0.667

Variable
missing

Electricity 0.139 0.258 0.450 0.696
ETTh1 0.122 0.228 0.395 0.613
Traffic 0.139 0.259 0.451 0.698

Weather 0.133 0.258 0.431 0.667

D.3 HYPER-PARAMETER DETAILS

The learning rates are set to 0.01 for the Electricity and Traffic datasets, 0.005 for the ETTh1 dataset,
and 0.001 for the Weather dataset. We use the Adam optimizer and implement an early stopping
strategy across all experiments. For our proposed method, the maximum number of clusters is set to
K1 = 30 and the maximum number of elements in each cluster is K2 = 5 to ensure computational
efficiency. Other hyperparameters for both the proposed method and baseline methods are adjusted
based on their performance on the validation set. The performance of different methods is evaluated
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Figure 4: Illustration of block missing under time point missing and variable missing. In the time
point missing scenario, the random selection in the first step select time point 4 and 12, we then
remove time 4-9 and 12-17 based on our design. In the variable missing scenario,

using Mean Squared Error (MSE) and Mean Absolute Error (MAE). For both metrics, lower values
indicate better performance.

D.4 SENSITIVITY ANALYSIS

In this section, we evaluate the sensitivity of our method with respect to the size of queue K1, K2,
threshold τ1, τ2, the dimension R of encoder output, the size of the short period retrieve window
s, and the number of memory centroids K we choose. All of the experiments are done under the
time point missing scenario with r = 0.06, look-back window H = 96, which is a representative
scenario to make analysis on.

D.4.1 ANALYSIS OF K1 AND K2

We fix τ1 = 0.95, τ2 = 0.6, R = 256, and s = 32. K1 represents the size of the maximum centroid,
which governs the storage of prototype clusters. Choosing an appropriate value for K1 allows the
bank to effectively filter out outdated representations, especially in cases with a large number of
patterns in the original time series. Tab. 9 indicates that a suitable value for K1 is below 50.

For the analysis of K2, we set K1 = 30. K2 controls the size of each cluster in the prototype bank.
A smaller K2 allows the bank to store only newly generated representations, ensuring that it remains
aligned with the model’s updates. Tab. 10 shows the performance changes across different values
of K2, suggesting that a relatively smaller value is more beneficial. We do not include results for
ETTh1 because its shorter time series length and variable dimensions result in a significantly smaller
pattern size, which does not require a constraint on the number of clusters.

Table 9: Performance of S4M (our) when K1 = 5, 19, 30, 50, and 100 with other parameters fixed.
Data Metric ↓ 5 10 30 50 100

Electricity MSE 0.372 0.377 0.377 0.376 0.376
MAE 0.287 0.293 0.293 0.293 0.290

Weather MSE 0.347 0.345 0.345 0.347 0.347
MAE 0.270 0.267 0.267 0.268 0.268

Traffic MSE 0.442 0.438 0.437 0.436 0.439
MSE 0.863 0.823 0.819 0.817 0.830

D.4.2 ANALYSIS OF R AND s

In this section, we performe sensitivity analysis when the dimension of the encoder R and the short
period window size s varies. We set K1 = 30, K2 = 50, τ1 = 0.95, and τ2 = 0.6. For the analysis
of R, we fix s = 16 and vary the values of R from 16 to 1024. Similarly, for the analysis of s,
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Table 10: Performance of S4M (our) when K2 = 3, 5, 10, 20, 50, and 100 with other parameters
fixed.

Data Metric ↓ 3 5 10 20 50 100

Electricity MAE 0.393 0.377 0.393 0.398 0.393 0.394
MSE 0.313 0.299 0.312 0.319 0.312 0.313

ETTh1 MAE 0.606 0.610 0.607 0.603 0.605 0.601
MSE 0.695 0.700 0.694 0.655 0.659 0.655

Weather MAE 0.347 0.345 0.343 0.346 0.346 0.347
MSE 0.268 0.267 0.268 0.268 0.268 0.268

Traffic MAE 0.438 0.436 0.438 0.437 0.438 0.438
MSE 0.815 0.818 0.827 0.828 0.830 0.822

we set R = 256 and vary the values of s from 8 to 48. Tab. 11 shows that R significantly affects
performance, with values larger than 128 benefiting the model. Tab. 12 shows that increasing s
generally improves performance.

Table 11: Performance of S4M (our) when R ranging from 16 to 1024 with other parameters fixed.
Data Metric ↓ 16 32 64 128 256 512 1024

Electricity MAE 0.409 0.400 0.406 0.388 0.376 0.379 0.375
MSE 0.358 0.335 0.339 0.308 0.279 0.295 0.292

ETTh1 MAE 0.480 0.438 0.465 0.444 0.418 0.418 0.400
MSE 0.895 0.826 0.846 0.855 0.363 0.351 0.332

Weather MAE 0.585 0.591 0.603 0.571 0.571 0.610 0.609
MSE 0.654 0.656 0.680 0.624 0.621 0.699 0.690

Traffic MAE 0.329 0.320 0.329 0.315 0.352 0.317 0.349
MSE 0.257 0.246 0.255 0.243 0.277 0.244 0.274

Table 12: Performance of S4M (our) when s varies with other parameters fixed.
Data s 8 16 32 48

Electricity MAE 0.379 0.379 0.378 0.378
MSE 0.297 0.296 0.295 0.293

ETTh1 MAE 0.596 0.570 0.584 0.582
MSE 0.660 0.624 0.656 0.649

Weather MAE 0.345 0.350 0.351 0.332
MSE 0.267 0.275 0.279 0.253

Traffic MAE 0.453 0.438 0.443 0.436
MSE 0.847 0.826 0.853 0.786

D.4.3 ANALYSIS OF τ1 AND τ2

We set K1 = 30, K2 = 50, τ2 = 0.6, s = 16, and R = 256, and then vary the values of τ1
and τ2 across four datasets to observe how changes in these thresholds affect model performance
in Tab. 13 – Tab. 16. Overall, the forecasting performance is less sensitive to τ1 and τ2 compared
to other hyperparameters we previously analyzed. Specifically, model performance on ETTh1 and
Traffic is more sensitive to these threshold values than on the other two datasets. ETTh1 achieves its
best performance when τ1 ≤ 0.95 and τ2 ≤ 0.9, while Traffic performs optimally at τ1 = 0.9 and
τ2 = 0.5. Electricity and Weather exhibit similar patterns, with slight performance improvements
when τ1 = 0.975 and τ2 = 0.5.
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Table 13: Performance under different values of τ1 and τ2 on Electricity. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.393 0.392 0.392 0.393 – –
MSE 0.312 0.311 0.311 0.311 – –

0.700 MAE 0.393 0.393 0.393 0.393 0.393 –
MSE 0.311 0.312 0.312 0.312 0.312 –

0.900 MAE 0.392 0.391 0.392 0.392 0.393 0.393
MSE 0.311 0.310 0.311 0.311 0.312 0.311

0.950 MAE 0.395 0.395 0.394 0.393 0.393 0.393
MSE 0.316 0.315 0.315 0.313 0.314 0.312

0.975 MAE 0.392 0.395 0.395 0.394 0.393 0.393
MSE 0.311 0.315 0.316 0.314 0.314 0.312

Table 14: Performance under different values of τ1 and τ2 on Weather. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.342 0.342 0.342 0.342 – –
MSE 0.269 0.269 0.269 0.268 – –

0.700 MAE 0.343 0.342 0.343 0.343 0.342 –
MSE 0.270 0.270 0.270 0.270 0.269 –

0.900 MAE 0.343 0.343 0.343 0.343 0.343 0.343
MSE 0.271 0.271 0.271 0.271 0.270 0.270

0.950 MAE 0.340 0.341 0.341 0.340 0.341 0.344
MSE 0.267 0.268 0.268 0.267 0.268 0.270

0.975 MAE 0.339 0.339 0.339 0.340 0.342 0.345
MSE 0.266 0.266 0.266 0.267 0.269 0.270

Table 15: Performance under different values of τ1 and τ2 on ETTh1. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.591 0.591 0.591 0.591 – –
MSE 0.662 0.662 0.663 0.663 – –

0.700 MAE 0.591 0.591 0.591 0.591 0.591 –
MSE 0.663 0.662 0.663 0.662 662 –

0.900 MAE 0.591 0.591 0.591 0.591 0.591 0.591
MSE 0.659 0.659 0.659 0.659 0.659 –

0.950 MAE 0.591 0.591 0.591 0.591 0.591 0.597
MSE 0.651 0.651 0.651 0.651 0.651 0.671

0.975 MAE 0.580 0.582 0.583 0.582 0.586 0.599
MSE 0.643 0.647 0.647 0.644 0.650 0.680
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Table 16: Performance under different values of τ1 and τ2 on Traffic. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.444 0.442 0.445 0.442 – –
MSE 0.870 0.855 0.870 0.856 – –

0.700 MAE 0.442 0.439 0.441 0.440 0.441 –
MSE 0.854 0.836 0.848 0.833 0.857 –

0.900 MAE 0.441 0.441 0.440 0.438 0.440 0.441
MSE 0.851 0.840 0.849 0.808 0.852 0.857

0.950 MAE 0.439 0.439 0.446 0.440 0.444 0.439
MSE 0.837 0.834 0.869 0.842 0.859 0.838

0.975 MAE 0.445 0.443 0.442 0.438 0.445 0.439
MSE 0.865 0.848 0.857 0.825 0.872 0.851

D.5 ADDITIONAL EXPERIMENT RESULTS

In the main text of the manuscript, we include the comparison of S4M(ours) with different baselines
under the missing ratio r = 0.06. In this section, we provide the complete additional results in
Tab. 17 to Tab. 22 when r = 0.03, r = 0.12, and r = 0.24. Similar to the r = 0.06 case,
Our proposed S4M consistently achieves the best or second-best performance across most settings,
demonstrating its robustness in handling missing data.

Table 17: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.03.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.606 0.419 0.413 0.374 0.390 0.395 0.409 0.397 0.409 0.370
MSE 0.579 0.338 0.329 0.272 0.300 0.316 0.333 0.312 0.334 0.281

192 MAE 0.616 0.421 0.409 0.348 0.380 0.380 0.383 0.372 0.395 0.369
MSE 0.595 0.342 0.318 0.240 0.280 0.288 0.289 0.274 0.303 0.272

384 MAE 0.627 0.420 0.420 0.346 0.366 0.377 0.384 0.378 0.392 0.371
MSE 0.619 0.339 0.333 0.240 0.264 0.285 0.289 0.278 0.300 0.273

768 MAE 0.635 0.419 0.409 0.353 0.391 0.378 0.382 0.375 0.392 0.372
MSE 0.632 0.338 0.324 0.251 0.289 0.286 0.286 0.276 0.299 0.273

E
T

T
h1

96 MAE 0.696 0.624 0.681 0.624 0.528 0.618 0.625 0.603 0.632 0.565
MSE 0.917 0.734 0.885 0.752 0.556 0.721 0.732 0.689 0.757 0.603

192 MAE 0.731 0.629 0.669 0.619 0.607 0.596 0.599 0.588 0.619 0.555
MSE 0.971 0.742 0.883 0.739 0.736 0.661 0.663 0.650 0.710 0.566

384 MAE 0.745 0.625 0.698 0.625 0.545 0.597 0.602 0.599 0.616 0.557
MSE 1.010 0.734 0.933 0.746 0.599 0.663 0.669 0.669 0.697 0.586

768 MAE 0.781 0.646 1.156 0.651 0.623 0.616 0.618 0.614 0.623 0.580
MSE 1.061 0.780 1.157 0.768 0.760 0.695 0.696 0.700 0.711 0.624

W
ea

th
er

96 MAE 0.408 0.402 0.436 0.400 0.534 0.372 0.366 0.388 0.424 0.345
MSE 0.327 0.336 0.365 0.327 0.531 0.305 0.298 0.331 0.375 0.281

192 MAE 0.378 0.378 0.420 0.412 0.433 0.350 0.337 0.345 0.374 0.315
MSE 0.303 0.303 0.351 0.342 0.401 0.268 0.255 0.271 0.297 0.246

384 MAE 0.375 0.375 0.414 0.421 0.653 0.338 0.326 0.337 0.373 0.333
MSE 0.305 0.305 0.345 0.363 0.694 0.263 0.251 0.261 0.294 0.256

768 MAE 0.385 0.385 0.394 0.448 0.618 0.351 0.340 0.333 0.370 0.336
MSE 0.314 0.314 0.329 0.407 0.655 0.273 0.261 0.255 0.291 0.259

Tr
af

fic

96 MAE 0.677 0.504 0.449 0.471 0.516 0.455 0.444 0.433 0.455 0.420
MSE 1.198 0.923 0.788 0.767 0.915 0.837 0.822 0.811 0.837 0.849

192 MAE 0.681 0.501 0.437 0.405 0.537 0.404 0.399 0.391 0.413 0.381
MSE 1.225 0.927 0.754 0.648 0.944 0.698 0.710 0.710 0.711 0.697

384 MAE 0.680 0.507 0.417 0.390 0.527 0.401 0.392 0.385 0.406 0.380
MSE 1.216 0.940 0.715 0.632 0.908 0.695 0.700 0.703 0.701 0.689

768 MAE 0.680 0.507 0.456 0.435 – 0.391 0.389 0.388 0.396 0.380
MSE 1.223 0.882 0.772 0.715 – 0.693 0.707 0.731 0.694 0.696
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Table 18: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.03.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.415 0.424 0.401 0.356 0.373 0.384 0.386 0.389 0.403 0.379
MSE 0.339 0.351 0.312 0.250 0.280 0.301 0.303 0.305 0.321 0.290

192 MAE 0.423 0.408 0.415 0.338 0.381 0.370 0.371 0.376 0.385 0.358
MSE 0.349 0.327 0.326 0.226 0.281 0.275 0.281 0.280 0.289 0.260

384 MAE 0.439 0.429 0.409 0.359 0.380 0.364 0.368 0.374 0.384 0.362
MSE 0.368 0.361 0.316 0.251 0.279 0.268 0.274 0.278 0.291 0.265

768 MAE 0.437 0.445 0.406 0.358 0.376 0.364 0.373 0.373 0.388 0.362
MSE 0.370 0.378 0.323 0.253 0.274 0.267 0.284 0.277 0.294 0.265

E
T

T
h1

96 MAE 0.691 0.599 0.607 0.593 0.544 0.645 0.623 0.606 0.644 0.560
MSE 0.892 0.678 0.683 0.681 0.600 0.757 0.714 0.686 0.786 0.598

192 MAE 0.725 0.601 0.686 0.564 0.580 0.605 0.603 0.584 0.628 0.547
MSE 0.943 0.679 0.890 0.614 0.682 0.605 0.668 0.631 0.732 0.574

384 MAE 0.738 0.600 0.603 0.596 0.581 0.600 0.591 0.601 0.627 0.556
MSE 0.982 0.680 0.672 0.673 0.680 0.661 0.636 0.676 0.730 0.593

768 MAE 0.771 0.607 0.759 0.619 0.619 0.600 0.606 0.612 0.642 0.569
MSE 1.024 0.689 0.967 0.672 0.744 0.661 0.665 0.690 0.766 0.599

W
ea

th
er

96 MAE 0.375 0.373 0.384 0.377 0.511 0.375 0.362 0.360 0.388 0.340
MSE 0.298 0.308 0.306 0.296 0.505 0.319 0.302 0.300 0.329 0.272

192 MAE 0.380 0.349 0.406 0.388 0.410 0.325 0.317 0.314 0.349 0.308
MSE 0.317 0.278 0.332 0.311 0.374 0.249 0.237 0.239 0.270 0.227

384 MAE 0.417 0.357 0.369 0.403 0.626 0.324 0.315 0.306 0.347 0.302
MSE 0.358 0.287 0.288 0.338 0.662 0.247 0.234 0.230 0.266 0.222

768 MAE 0.437 0.362 0.372 0.421 0.603 0.325 0.317 0.306 0.342 0.300
MSE 0.387 0.294 0.306 0.374 0.635 0.246 0.235 0.225 0.342 0.220

Tr
af

fic

96 MAE 0.680 0.459 0.439 0.452 0.510 0.427 0.431 0.437 0.479 0.431
MSE 1.211 0.845 0.756 0.746 0.894 0.779 0.805 0.791 0.847 0.798

192 MAE 0.669 0.475 0.434 0.386 0.504 0.377 0.387 0.380 0.419 0.360
MSE 1.181 0.873 0.741 0.619 0.839 0.694 0.727 0.694 0.738 0.598

384 MAE 0.669 0.467 0.397 0.389 0.482 0.373 0.383 0.375 0.413 0.372
MSE 1.181 0.843 0.689 0.632 0.790 0.685 0.722 0.691 0.732 0.675

768 MAE 0.670 0.460 0.401 0.404 – 0.374 0.385 0.376 0.413 0.371
MSE 1.182 0.832 0.702 0.655 – 0.688 0.732 0.687 0.740 0.680
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Table 19: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.12.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.655 0.458 0.419 0.405 0.414 0.429 0.450 0.421 0.478 0.402
MSE 0.666 0.394 0.339 0.313 0.331 0.369 0.390 0.347 0.442 0.328

192 MAE 0.652 0.450 0.411 0.378 0.401 0.398 0.404 0.399 0.414 0.374
MSE 0.666 0.386 0.326 0.279 0.307 0.320 0.317 0.307 0.340 0.281

384 MAE 0.659 0.450 0.430 0.395 0.437 0.395 0.398 0.397 0.413 0.378
MSE 0.682 0.383 0.344 0.301 0.347 0.317 0.310 0.304 0.336 0.286

768 MAE 0.659 0.450 0.432 0.390 0.437 0.397 0.397 0.395 0.413 0.382
MSE 0.680 0.384 0.348 0.299 0.347 0.319 0.310 0.303 0.337 0.299

E
T

T
h1

96 MAE 0.733 0.680 0.701 0.675 0.566 0.673 0.663 0.637 0.752 0.591
MSE 0.983 0.853 0.909 0.831 0.627 0.830 0.810 0.749 1.004 0.674

192 MAE 0.759 0.687 0.686 0.662 0.628 0.616 0.615 0.605 0.711 0.595
MSE 1.022 0.865 0.906 0.780 0.764 0.695 0.691 0.675 0.883 0.648

384 MAE 0.764 0.689 0.713 0.669 0.678 0.608 0.614 0.613 0.701 0.588
MSE 1.042 0.869 0.949 0.794 0.905 0.679 0.686 0.688 0.841 0.638

768 MAE 0.793 0.701 1.099 0.663 0.654 0.711 0.624 0.633 0.711 0.611
MSE 1.078 0.890 1.118 0.768 0.802 0.863 0.709 0.729 0.863 0.663

W
ea

th
er

96 MAE 0.413 0.402 0.471 0.698 0.556 0.401 0.385 0.385 0.536 0.355
MSE 0.341 0.336 0.492 0.767 0.562 0.348 0.323 0.325 0.540 0.278

192 MAE 0.426 0.377 0.468 0.706 0.455 0.368 0.344 0.348 0.447 0.335
MSE 0.365 0.303 0.414 0.789 0.431 0.299 0.271 0.275 0.386 0.253

384 MAE 0.454 0.383 0.451 0.708 0.656 0.359 0.343 0.337 0.453 0.331
MSE 0.405 0.313 0.396 0.806 0.699 0.286 0.266 0.263 0.393 0.256

768 MAE 0.480 0.382 0.418 0.719 0.633 0.364 0.340 0.336 0.446 0.350
MSE 0.439 0.312 0.362 0.838 0.673 0.288 0.264 0.261 0.381 0.276

Tr
af

fic

96 MAE 0.693 0.531 0.464 0.516 0.554 0.469 0.495 0.463 0.527 0.454
MSE 1.221 0.915 0.812 0.850 1.025 0.827 0.872 0.806 0.951 0.841

192 MAE 0.685 0.521 0.448 0.413 0.501 0.401 0.441 0.419 0.426 0.397
MSE 1.201 0.904 0.779 0.667 0.835 0.716 0.744 0.720 0.756 0.703

384 MAE 0.686 0.576 0.499 0.445 0.533 0.394 0.439 0.397 0.416 0.393
MSE 1.222 0.962 0.839 0.744 0.908 0.692 0.740 0.694 0.731 0.702

768 MAE 0.688 0.563 0.486 0.530 – 0.386 0.425 0.397 0.415 0.389
MSE 1.226 0.949 0.801 0.920 – 0.687 0.722 0.694 0.732 0.709
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Table 20: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.12.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.641 0.452 0.402 0.395 0.426 0.396 0.403 0.410 0.503 0.387
MSE 0.642 0.395 0.320 0.300 0.343 0.324 0.329 0.337 0.454 0.307

192 MAE 0.644 0.432 0.412 0.368 0.407 0.374 0.373 0.391 0.465 0.362
MSE 0.649 0.368 0.331 0.262 0.315 0.284 0.281 0.304 0.388 0.270

384 MAE 0.625 0.453 0.413 0.390 0.405 0.372 0.376 0.391 0.462 0.364
MSE 0.619 0.396 0.329 0.291 0.309 0.279 0.283 0.304 0.459 0.271

768 MAE 0.643 0.466 0.442 0.369 0.397 0.377 0.381 0.385 0.381 0.365
MSE 0.649 0.412 0.363 0.266 0.298 0.288 0.296 0.291 0.758 0.274

E
T

T
h1

96 MAE 0.727 0.646 0.611 0.625 0.599 0.678 0.684 0.642 1.000 0.590
MSE 0.960 0.778 0.687 0.718 0.707 0.836 0.830 0.766 0.718 0.651

192 MAE 0.754 0.643 0.683 0.611 0.640 0.601 0.637 0.603 0.920 0.581
MSE 0.995 0.772 0.877 0.674 0.807 0.625 0.726 0.670 0.699 0.610

384 MAE 0.757 0.645 0.626 0.662 0.623 0.623 0.607 0.605 0.868 0.594
MSE 1.012 0.781 0.687 0.791 0.765 0.648 0.664 0.673 0.702 0.642

768 MAE 0.784 0.656 0.802 0.665 0.656 0.698 0.621 0.625 0.873 0.635
MSE 1.045 0.792 1.061 0.787 0.810 0.848 0.701 0.726 15.503 0.721

W
ea

th
er

96 MAE 0.384 0.371 0.417 0.678 0.530 0.393 0.394 0.389 0.444 0.350
MSE 0.314 0.305 0.353 0.749 0.530 0.348 0.336 0.332 0.401 0.276

192 MAE 0.397 0.362 0.425 0.684 0.433 0.362 0.350 0.347 0.421 0.322
MSE 0.340 0.290 0.363 0.764 0.404 0.294 0.274 0.275 0.360 0.244

384 MAE 0.428 0.354 0.386 0.691 0.626 0.359 0.344 0.338 0.427 0.342
MSE 0.379 0.282 0.316 0.789 0.663 0.291 0.268 0.265 0.365 0.264

768 MAE 0.445 0.359 0.392 0.699 0.605 0.359 0.348 0.336 0.417 0.332
MSE 0.402 0.286 0.337 0.818 0.638 0.290 0.270 0.260 0.351 0.250

Tr
af

fic

96 MAE 0.686 0.502 0.433 0.447 0.519 0.457 0.455 0.459 0.630 0.447
MSE 1.232 0.955 0.750 0.727 0.924 0.834 0.875 0.882 1.082 0.867

192 MAE 0.681 0.542 0.430 0.398 0.540 0.389 0.392 0.410 0.542 0.387
MSE 1.221 1.047 0.753 0.661 0.948 0.703 0.744 0.795 0.891 0.725

384 MAE 0.683 0.534 0.415 0.406 0.485 0.387 0.392 0.405 0.558 0.387
MSE 1.229 1.019 0.730 0.693 0.811 0.692 0.744 0.786 0.901 0.726

768 MAE 0.684 0.540 0.491 0.416 – 0.387 0.389 0.398 0.541 0.400
MSE 1.228 1.036 0.817 0.706 – 0.695 0.740 0.763 0.885 0.749
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Table 21: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.24.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.673 0.481 0.422 0.441 0.436 0.556 0.501 0.460 0.556 0.418
MSE 0.698 0.437 0.344 0.363 0.367 0.570 0.479 0.409 0.570 0.366

192 MAE 0.681 0.456 0.434 0.453 0.410 0.464 0.410 0.420 0.464 0.391
MSE 0.713 0.394 0.356 0.396 0.322 0.409 0.324 0.336 0.409 0.305

384 MAE 0.656 0.464 0.432 0.418 0.425 0.472 0.420 0.424 0.472 0.389
MSE 0.671 0.404 0.357 0.343 0.340 0.417 0.334 0.341 0.417 0.304

768 MAE 0.665 0.464 0.447 0.433 0.823 0.469 0.413 0.415 0.469 0.399
MSE 0.690 0.406 0.376 0.356 0.998 0.413 0.328 0.331 0.413 0.318

E
T

T
h1

96 MAE 0.765 0.733 0.695 0.749 0.654 0.710 0.717 0.681 0.841 0.627
MSE 1.043 0.992 0.898 0.976 0.851 0.908 0.946 0.879 1.145 0.742

192 MAE 0.776 0.739 0.685 0.707 0.650 0.644 0.659 0.640 0.817 0.609
MSE 1.047 1.004 0.893 0.856 0.815 0.739 0.792 0.782 1.076 0.703

384 MAE 0.772 0.738 0.702 0.712 0.677 0.632 0.648 0.648 0.814 0.628
MSE 1.058 1.001 0.917 0.870 0.908 0.710 0.768 0.779 1.059 0.710

768 MAE 0.800 0.744 0.793 0.702 0.630 0.639 0.661 0.672 0.801 0.632
MSE 1.087 1.007 1.067 0.825 0.738 0.714 0.800 0.827 1.018 0.744

W
ea

th
er

96 MAE 0.448 0.397 0.606 1.022 0.585 0.421 0.381 0.378 0.710 0.362
MSE 0.389 0.328 0.602 1.571 0.598 0.379 0.321 0.317 0.866 0.286

192 MAE 0.459 0.372 0.593 1.034 0.488 0.386 0.357 0.353 0.610 0.350
MSE 0.413 0.296 0.604 1.615 0.473 0.324 0.283 0.282 0.644 0.269

384 MAE 0.489 0.375 0.563 1.024 0.656 0.381 0.349 0.343 0.607 0.358
MSE 0.451 0.303 0.562 1.594 0.697 0.315 0.273 0.270 0.638 0.276

768 MAE 0.517 0.375 0.512 1.017 0.645 0.381 0.351 0.342 0.584 0.375
MSE 0.489 0.304 0.490 1.586 0.683 0.312 0.276 0.268 0.592 0.300

Tr
af

fic

96 MAE 0.705 0.641 0.490 0.607 0.554 0.487 0.569 0.529 0.658 0.485
MSE 1.300 1.142 0.920 1.073 1.025 0.910 1.063 0.984 1.282 0.933

192 MAE 0.695 0.617 0.512 0.472 0.533 0.442 0.480 0.452 0.539 0.433
MSE 1.267 1.110 0.950 0.804 0.949 0.826 0.870 0.812 1.014 0.787

384 MAE 0.698 0.623 0.487 0.466 0.541 0.431 0.456 0.440 0.547 0.433
MSE 1.274 1.133 0.896 0.802 0.952 0.795 0.842 0.809 1.031 0.788

768 MAE 0.700 0.628 0.509 0.463 – 0.432 0.449 0.434 0.560 0.429
MSE 1.270 1.158 0.872 0.798 – 0.799 0.823 0.789 1.030 0.789
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Table 22: Comparison of forecasting performance of S4M (ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.24.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.647 0.497 0.424 0.423 0.436 0.407 0.431 0.430 0.621 0.402
MSE 0.654 0.453 0.346 0.342 0.362 0.340 0.364 0.367 0.646 0.324

192 MAE 0.649 0.454 0.423 0.412 0.425 0.382 0.391 0.401 0.575 0.373
MSE 0.659 0.388 0.348 0.326 0.341 0.299 0.301 0.316 0.557 0.281

384 MAE 0.652 0.482 0.424 0.416 0.446 0.383 0.392 0.413 0.573 0.377
MSE 0.667 0.434 0.347 0.335 0.358 0.299 0.298 0.329 0.557 0.290

768 MAE 0.654 0.509 0.469 0.407 0.415 0.380 0.398 0.410 0.569 0.383
MSE 0.672 0.473 0.413 0.320 0.320 0.293 0.311 0.324 0.549 0.298

E
T

T
h1

96 MAE 0.757 0.682 0.654 0.712 0.637 0.708 0.728 0.671 0.828 0.622
MSE 1.016 0.874 0.742 0.875 0.807 0.916 0.959 0.847 1.161 0.766

192 MAE 0.768 0.681 0.658 0.705 0.663 0.655 0.692 0.637 0.775 0.601
MSE 1.025 0.871 0.775 0.836 0.867 0.776 0.873 0.765 1.022 0.654

384 MAE 0.774 0.681 0.630 0.691 0.661 0.648 0.657 0.669 0.753 0.630
MSE 1.061 0.879 0.708 0.806 0.868 0.767 0.785 0.843 0.961 0.713

768 MAE 0.798 0.692 0.746 0.687 0.660 0.665 0.682 0.677 0.750 0.682
MSE 1.072 0.895 1.004 0.782 0.868 0.808 0.842 0.852 0.955 0.829

W
ea

th
er

96 MAE 0.430 0.396 0.529 0.544 0.584 0.442 0.386 0.384 0.544 0.370
MSE 0.373 0.327 0.504 0.538 0.595 0.403 0.318 0.318 0.538 0.288

192 MAE 0.454 0.385 0.514 0.505 0.490 0.385 0.355 0.356 0.505 0.355
MSE 0.405 0.309 0.484 0.468 0.473 0.324 0.272 0.276 0.468 0.270

384 MAE 0.485 0.376 0.479 0.506 0.655 0.385 0.351 0.348 0.506 0.359
MSE 0.443 0.300 0.436 0.469 0.693 0.320 0.269 0.269 0.469 0.278

768 MAE 0.492 0.379 0.461 0.494 0.640 0.384 0.356 0.345 0.494 0.377
MSE 0.459 0.305 0.418 0.583 0.674 0.317 0.273 0.264 0.447 0.301

Tr
af

fic

96 MAE 0.699 0.575 0.507 0.464 0.547 0.462 0.507 0.524 0.725 0.473
MSE 1.266 1.074 0.891 0.778 0.998 0.850 0.977 0.969 1.245 0.896

192 MAE 0.689 0.645 0.481 0.427 0.546 0.404 0.412 0.442 0.640 0.410
MSE 1.241 1.203 0.827 0.734 0.971 0.747 0.755 0.831 1.114 0.747

384 MAE 0.690 0.643 0.509 0.428 0.483 0.401 0.408 0.435 0.641 0.414
MSE 1.245 1.199 0.857 0.748 0.813 0.741 0.742 0.823 1.109 0.753

768 MAE 0.692 0.639 0.526 0.434 – 0.389 0.408 0.436 0.633 0.438
MSE 1.247 1.174 0.906 0.714 – 0.713 0.750 0.826 1.102 0.796
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