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ABSTRACT

Multivariate time series data play a pivotal role in a wide range of real-world appli-
cations, such as finance, healthcare, and meteorology, where accurate forecasting
is critical for informed decision-making and proactive interventions. However,
the presence of block missing data introduces significant challenges, often com-
promising the performance of predictive models. Traditional two-step approaches,
which first impute missing values and then perform forecasting, are prone to er-
ror accumulation, particularly in complex multivariate settings characterized by
high missing ratios and intricate dependency structures. In this work, we in-
troduce S4M, an end-to-end time series forecasting framework that seamlessly
integrates missing data handling into the Structured State Space Sequence (S4)
model architecture. Unlike conventional methods that treat imputation as a sep-
arate preprocessing step, S4M leverages the latent space of S4 models to directly
recognize and represent missing data patterns, thereby more effectively captur-
ing the underlying temporal and multivariate dependencies. Our framework com-
prises two key components: the Adaptive Temporal Prototype Mapper (ATPM) and
the Missing-Aware Dual Stream S4 (MDS-S4). The ATPM employs a prototype
bank to derive robust and informative representations from historical data patterns,
while the MDS-S4 processes these representations alongside missingness masks
as dual input streams to enable accurate forecasting. Through extensive empirical
evaluations on diverse real-world datasets, we demonstrate that S4M consistently
achieves state-of-the-art performance. These results underscore the efficacy of
our integrated approach in handling missing data, showcasing its robustness and
superiority over traditional imputation-based methods. Our findings highlight the
potential of S4M to advance reliable time series forecasting in practical applica-
tions, offering a promising direction for future research and deployment. Code is
available at https://github.com/WINTERWEEL/S4M.git.

1 INTRODUCTION

Multivariate time series are common in real-world applications, including finance (Zhang et al.,
2024), health care (Kaushik et al., 2020), and meteorology (Duchon & Hale, 2012). Time series
forecasting (Box et al., 2015) predicts future values based on historical data. Accurate forecasting
enables informed decision making and helps anticipate trends and take proactive measures, from op-
timizing financial investments to improving patient care and responding to environmental changes.

Time series forecasting has been a long-standing area of research, with numerous methods devel-
oped over the years. Traditional statistical methods typically build on linear assumptions and autore-
gressive models to capture temporal dependency, such as ARIMA (Box & Jenkins, 1968), failing
to forecast well in complex multivariate time series. Recent machine learning advancements have
introduced promising solutions, including RNN-based methods (Salinas et al., 2017; Rangapuram
et al., 2018; Lim et al., 2020; Hewamalage et al., 2021) that capture long-term dependencies and
attention-based models (Qin et al., 2017; Shih et al., 2019; Wu et al., 2021; Liu et al., 2022; Shabani
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et al., 2023; Nie et al., 2022; Liu et al., 2023; Xue et al., 2023) that leverage temporal attention
mechanisms. A more recent and influential technique is the Structured State Space Sequence (S4)
model (Gu et al., 2021), which combines the strengths of state-space models with modern deep
learning architectures to efficiently model long sequences. This study highlights the strong suitabil-
ity of S4 models for time-series forecasting, driven by their ability to address the growing demand for
efficiency in large-scale applications where computational resources and scalability are paramount.

A significant challenge in time series forecasting is the effective handling of missing data, which
often arises due to sensor failures, data collection issues, or external disruptions. Missing values can
severely degrade model performance if not properly addressed. For instance, in healthcare, gaps in
wearable device data may occur due to inconsistent usage (Darji et al., 2023); in financial transac-
tions, data might be incomplete owing to network outages or system downtimes (Emmanuel et al.,
2021); in environmental monitoring, sensor networks measuring air or water quality frequently face
data loss due to device malfunctions or harsh weather scenarios (Zhang & Thorburn, 2022). In these
applications, the data may exhibit block missing patterns, where missing values occur consecutively
rather than randomly (see Fig. 5). These gaps not only reduce the amount of available data but can
also introduce biases, leading to inaccurate forecasts.

Traditional approaches to handling missing data in time series typically involve a two-step pro-
cess: imputing missing values and then performing forecasting on the imputed data (Cao et al.,
2018; Cini et al., 2021; Marisca et al., 2022). However, in multivariate time series, the complex-
ity of missing data patterns and high missing ratios make direct imputation challenging. This
two-step approach often leads to error accumulation, resulting in suboptimal forecasting per-
formance. Consequently, there is a growing need for end-to-end methods that integrate miss-
ing data handling directly into the forecasting process. Existing methods for handling miss-
ing data have notable limitations. RNN-based methods like GRU-D (Che et al., 2018) and
BRITS (Cao et al., 2018) address missing data but often require long training and perform
poorly. Graph models like BiTGraph (Chen et al., 2023) capture dependencies at high mem-
ory cost, while ODE-based methods like Neural ODE (Chen et al., 2018), GraFITi (Yalavarthi
et al., 2024) and CRUs (Schirmer et al., 2022) are computationally expensive. Fig. 1 presents a
comprehensive comparison of forecasting accuracy, training time, and memory usage across the
methods. The results highlight that S4-based methods not only achieve superior performance

BRITS 558 MB, 487 s

CRUs
32146 MB, 64990 s

GRU-D 446 MB, 244 s

Transformer 
778 MB, 78 s

Autoformer
1106 MB, 96 s

BiTGraph 2564 MB, 268 s

iTransformer 2108 MB, 74 s

CARD 7518 MB, 274 s

S4M(Ours) 1071 MB, 110 s

S4
765 MB, 85 s

Figure 1: Comparison of prediction MSE
versus training time for various methods on
the Electricity dataset. Each method is rep-
resented by a dot, with size scaled accord-
ing to its memory footprint. Lower values
for MSE, training time, and memory indi-
cate better performance. Our S4M method
demonstrates superior performance across all
metrics.

but also offer significantly lower computational costs
compared to alternative approaches. This efficiency
underpins our decision to focus on S4 in this work.
A more detailed review of related work is provided
in Appendix A.

To address these challenges, we propose an end-to-
end method in this work that is both computationally
and memory efficient while maintaining robust fore-
casting performance under block missing data. We
build on the S4 model due to its demonstrated suc-
cess in time series forecasting (Wang et al., 2024)
and its ability to handle multiple inputs concurrently.
This capability allows us to address missing data
while simultaneously learning the complex depen-
dency structures inherent in the forecasting task. By
integrating missing data handling directly into the S4
framework, we aim to fully leverage its strengths for
multivariate time series forecasting.

Our method termed S4 with missing values (S4M)
that explicitly considers missing values in the S4
model consists of two modules: adaptive temporal
prototype mapper (ATPM) and missing-aware dual
stream S4 (MDS-S4). The ATPMmodule is designed
to use rich historical data patterns stored in a proto-
type bank to learn robust and informative represen-
tations of the time sequence. These representations,
along with a mask indicating missing values, are then processed by the MDS-S4 module, which
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performs forecasting using a dual-stream S4 architecture. As shown in Fig. 1, S4M demonstrates
superior efficiency in both training and inference compared to existing baselines. We conduct exten-
sive experiments on real-world datasets, comparing our method with state-of-the-art approaches and
their variants. The results demonstrate that S4M consistently achieves top-tier performance across
various settings, highlighting its robustness in handling missing data. Our work addresses the crit-
ical challenge of missing data in time series forecasting, offering a scalable, efficient, and robust
solution for real-world applications.

2 PRELIMINARY

The S4 model, introduced by Gu et al. (2021), is a pioneering sequence model designed to handle
continuous-time data with long-range dependencies, making it highly effective for tasks like time
series forecasting. For completeness, we provide a brief overview of S4.

Let u(t),y(t) ∈ RD be two D-variate continuous signals. The continuous state space model (SSM)
maps u(t) to y(t) via the following equations:

d

dt
h(t) = Ah(t) +Bu(t), y(t) = Ch(t) +Du(t), (1)

where h(t) ∈ RH is an unobserved hidden state, and the system is parameterized by matrices A ∈
RH×H , B ∈ RH×D, C ∈ RH×H , and D ∈ RH×D. Since real-world data is typically observed at
discrete time points t = 0, 1, . . . , T , the continuous model in equation 1 can be discretized as:

ht = Aht−1 +But, yt = Cht +Dut (2)

where A = (I −∆A/2)−1(I +∆A/2) and B = (I −∆A/2)−1∆B are based on bilinear trans-
form (Gu et al., 2021) with some parameter ∆. By recursively applying the recurrent representation
of SSM in equation 2 model over discrete time, the output yt at time t is computed as a convolution
of all previous inputs u0:t:

yt =

t∑
i=0

CA
t−i

But−i +Dut.

For an input sequence u = (u0,u1, . . . ,uT ), one can observe that the output sequence y =
(y0,y1, . . . ,yT ) can be computed using a convolution with a skip connection y = CK ∗u+Du,
where ∗ is the convolution operation and K = (B,AB, . . . ,A

T−1
B) is called the SSM kernel.

One key challenge of discrete-time SSMs is that computing the output involves repeated matrix mul-
tiplications by A, which can be expensive, with a computational cost of O(H2T ) when implemented
naively. S4 addresses two main challenges compared to basic SSMs. First, it solves the long-range
dependencies modeling challenge by employing the HiPPO matrix (Gu et al., 2020) for A, enabling
continuous-time memorization. Second, S4 solves the computational bottleneck by introducing a
specialized representation and algorithm that significantly reduces the computational cost.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

We denote X(L) and X(H) the look-back and horizon windows for the forecast, respectively, of
corresponding lengths ℓL and ℓH . Given a starting time t0, they are denoted as X(L) = {xt ∈
RD : t ∈ t0 : t0 + ℓL} and X(H) = {xt : t ∈ t0 + ℓL + 1 : t0 + ℓL + ℓH}. We consider the
case where there exist missing values in the observations due to the failure of devices or some other
unexpected errors. We use a mask matrix M (L) ∈ RℓL×D to denote whether the value is missing
or not. Specifically, the (t, d)-th element in the mask matrix is binary and is given by

M
(L)
td =

{
1, if X(L)

td is observed,
0, otherwise.

The goal of forecasting is to predict the horizon window X(H) given the look-back window X(L).
Thus, time series forecasting can be framed as learning a mapping f from X(L) to X(H).
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We design an approach to learn f that is parameterized by θ in the presence of missing data. During
training, let f(X(L),M (L);θ) be the predicted values for the horizon window, then the parameter
θ is learned by minimizing the error between the true horizon window X(H) and its predicted value.
Note that the input and output of f have the same length, for the foresting task where ℓH ≤ ℓL, we
slice the last ℓH as the predicted value.

Adaptive Temporal Prototype Mapper (ATPM) Missing-aware Dual Stream S4 (MDS-S4)

Bank writing

Bank reading

Local 
statistics 
extraction

Li
ne

ar
 la

ye
r

(no gradient)

(forecasting)

MDS-S4 block

Regular S4 block

Regular S4 block

Figure 2: Illustration of our end-to-end prediction method S4M. Our method consists of two
modules. The first ATPM module uses historical data patterns to learn robust and informative rep-
resentations for the current input time sequence. Specifically, we extract the local statistics zt−s:t

of the time series at time point t based on raw values xt−s:t. These statistics are then fed into the
query encoder Eq to obtain qt, which queries the prototype bank to retrieve the prototype q̂t. Both
qt andq̂t are subsequently fed into a linear layer to produce the final representation ot. Addition-
ally, the prototype encoder Ep generates the prototype pt for bank updating. In the second module
MDS-S4, we model the representation ot and the mask mt using S4 to generate the forecast yt.

Method Overview: The pipeline of our proposed S4 with missing values (S4M) is given in Fig. 2.
It consists of two modules specifically designed to deal with missing values in an end-to-end man-
ner. The first ATPM module focuses on representation learning with missing values, it contains a
prototype bank, which stores a rich set of representations of historical data in the time series, from
which we can query the representation of missing values based on their local features. The second
MDS-S4 module directly models the missing patterns in the SSM. Our design explicitly considers
missing values in the model, and the model also progressively updates the missing patterns.

3.2 ADAPTIVE TEMPORAL PROTOTYPE MAPPER (ATPM)

3.2.1 OVERVIEW OF ATPM

To address missing values, we leverage a prototype bank that stores a rich set of representative pat-
terns from time series. The goal is to utilize historical data patterns to learn robust and informative
representations for the current input time sequence. Since the raw time series input is multivari-
ate and can be noisy, often containing missing values, rather than querying and storing prototypes
using the raw time series data, we design encoders to extract more robust latent representations,
allowing us to query and store the prototypes in the representation space. As the prototypes in the
bank evolve and are adaptive to the data during training, we call this module the adaptive temporal
prototype mapper (ATPM).

Specifically, recall xt ∈ RD is the value of the look-back window X(L) at time t. ATPM first
extracts local statistics zt at each time point t (such as its first previous non-missing value and the
time difference to the first non-missing time point) based on the look-back window X(L). We denote
this local statistics extraction as zt = flocal(xt), and its details are given in Appendix C.1.

At the t-th time point, our hypothesis is that local statistics zt of a single time point is insufficient
to infer patterns when t corresponds to a missing observation. To mitigate this, we look back over
a short period of length s to assist with inference at the missing time point, constructing a matrix
zt−s:t = {zl : l ∈ t − s : t}. This local statistics sequence zt−s:t is then used to query and update
the prototype bank in the representation space by feeding it into a query encoder Eq with parameter
θq to obtain the query representation, which is used to query the prototype bank, and a prototype
encoder Ep with parameter θp to obtain the prototype representation, which is used to update the
prototype bank. After querying the prototype bank, we combine the retrieved prototype and other
local statistics to obtain the final representation ot, which is detailed below.

4



Published as a conference paper at ICLR 2025

3.2.2 DESIGN OF THE PROTOTYPE BANK

The core concept of the prototype bank is to read (query) similar representations from rich historical
data stored in the bank. These representations are then used as input for the subsequent module. At
the same time, the representations are also used to write (update) the bank adaptively. We describe
the structure of the bank and how to read and write the bank below.

Bank Storage. Prototypes are organized in a two-level queue. The first level represents different
clusters, with each element serving as the centroid of a cluster of prototypes. Within each cluster, the
second-level queue stores the corresponding prototypes that belong to that cluster. To ensure efficient
storage, inference, and stability, the first-level queue can hold a maximum of K1 centroids, while
each second-level queue can accommodate up to K2 prototypes per cluster. The prototype bank is
designed as a queue to facilitate updates following the First-In-First-Out (FIFO) principle, allowing
outdated prototypes that no longer align with the updated encoder to be filtered out efficiently. The
prototype bank is initialized at its first level by applying k-means clustering on the output of the
encoder of the first batch.

Bank Reading. Denote qt = Eq(zt−s:t;θq) be the query encoder that has local temporal and
spatial information. We then use qt to query the prototype bank to retrieve the most similar patterns
and use their weighted average as the prototype vector at the time point t. In cases where t is a
missing value time point, the retrieved prototypes help account for the missing values. Specifically,
let {c1, c2, . . .} represent the cluster centroids stored in the first-level queue, and let qt be the query
feature. We compute their cosine similarity as ρtj = q⊤

t cj/∥qt∥∥cj∥. Let St = {j1, . . . , jK}
where ρt,j1 ≥ ρt,j2 ≥ · · · ≥ ρt,jK ≥ · · · be the index of the top K maximum similarities and
normalize them as wtj = exp(ρtj)/

∑
j′∈St

exp(ρtj′) for j ∈ St. These retrieved prototypes are
then aggregated as: q̂t =

∑
j∈St wtjcj . Chandar et al. (2016) observed that selecting the top K

similar centroids, rather than using all centroids, can improve performance. Finally, we combine
zt−s:t, qt, and q̂t using a dense layer to form a single representation ot.

Algorithm 1 Bank Reading

Input: local statistics {zt}ℓLt=1, query encoder
Eq , bank prototype centroids {c1, c2, . . . , }, ini-
tial values for parameter W and d
Output: target representation O

1: for zt in Z = {z1, z2, ...,zℓL} do
2: Encoding: qt = Eq(zt−s:t)
3: Similarity: ρtj = q⊤

t cj/ ∥qt∥ ∥cj∥
4: Normalization for top-K maximum val-

ues: wtj = exp(ρtj)/
∑

j∈St exp(ρtj)
5: Aggregate prototype: q̂t =

∑
j∈St wtjcj

6: Combine: vt = W [zt, qt, q̂t] + d
7: Output: ot = qt + vt

8: end for
9: Final Output O = {o1,o2, ...,oℓL}

Bank Writing. After querying the proto-
type bank, we also update it using the out-
put from pt = Ep(zt−s:t;θp) be the output
of Ep. We compute the cosine similarity be-
tween this representation and the prototype cen-
troids to assess their closeness. If the cur-
rent patterns are very similar to existing pro-
totypes, we add them to the level two queue;
otherwise, we add the prototype to the level
one queue as a new cluster. Specifically, let
ωt = maxj p

⊤
t cj/∥pt∥∥cj∥ represent the sim-

ilarity value of the current representation to ex-
isting prototype centroids. If ωt ≥ τ1 for some
predefined hyper-parameter τ1, then pt is added
to the queue of the cluster with which it shares
the highest degree of similarity. If ωt < τ2
for some predefined hyper-parameter τ2, indi-
cating insufficient similarity with any existing
centroid, pt is introduced as a novel pattern to the bank and also serves as the initialization of
its prototypes cluster1. In both cases, the centroids are updated accordingly. In the case where
τ1 ≤ ωt ≤ τ2, the prototype is not used for updating the bank. This process ensures that the
prototype bank remains dynamic and capable of capturing a diverse range of patterns.

3.2.3 ENCODER UPDATE

Recall that the prototype pt = Ep(zt−s:t;θp) and the query feature qt = Eq(zt−s:t;θq) are the
outputs of two distinct encoders, Eq and Ep, parameterized by θp and θq , respectively. The archi-
tecture of the encoders are given in Appendix C.2. Although both encoders take the same input,
they serve different purposes: the prototype encoder Ep is designed to store a rich set of time series

1We set τ1 = 0.9 and τ2 = 0.6 in experiment.

5



Published as a conference paper at ICLR 2025

Algorithm 2 Bank Writing

Input: local statistics Z = {zt}ℓLt=1, pro-
totype encoder Ep, bank prototype centroids
{c1, c2, . . . , }
Output: bank with updated prototypes

1: Random sample n slices {zi}ni=1 from Z
2: for zi in {z1, z2, ...,zn} do
3: Encoding: pi = Ep(zi)
4: Similarity: ρij = p⊤

i cj/∥pi∥∥cj∥
5: Maximum index: j∗ = argmaxj ρi,j
6: if ρij∗ ≥ τ1 then
7: Add pi to the end of the j∗ second-

level queue
8: Update j∗th prototype centriod
9: else if ρij∗ < τ2 then

10: Add pi to the end of the first-level
queue

11: else continue
12: end if
13: end for

representations, while the query encoder Eq

aims to obtain a representation that diverges
from the prototypes. Thus, these encoders must
not be identical and should be updated differ-
ently. To ensure that the prototypes evolve
more stably, we use a momentum update for
the prototype encoder Ep, while the query en-
coder updates its parameters in a traditional
manner. Specifically, the parameter θq the
query encoder is updated using gradient de-
scent based on the final loss, whereas the pa-
rameter θp of the prototype encoder is updated
with a momentum-based approach, allowing
for smoother updates as suggested by He et al.
(2020). During the prototype bank writing pro-
cess, the gradients of θp are disabled, and the
parameters are updated via momentum:

θp = γθp + (1− γ)θq (3)

where γ ∈ [0, 1) is the momentum coefficient.
The momentum update in equation 3 makes θp
evolves more smoothly than θq .

3.3 MISSING-AWARE DUAL STREAM S4 (MDS-S4)

Drawing inspiration from the GRU-D model in (Che et al., 2018), we explicitly model the missing
values by including the mask M (L) in the SSM. Intuitively, with the presence of missing values,
both the hidden state ht and the output of S4 depend on the mask vector mt. We therefore modify
the SSM so that it has two input streams: the representation and the mask. Specifically, let ot be the
output from the representation learning module, and mt, yt be the tth row of M (L) and X(H). Our
missing-aware dual stream SSM is:

ht = Aht−1 +Bot +EEm(mt;θm)

yt = Cht +Dot + FEm(mt;θm),
(4)

where A and B are the same as in equation 2 and E = (I−∆A/2)−1∆E. The encoder Em param-
eterized by θm is used to ensure that we also use the latent representation of the mask to fully utilize
its information. Denote o = (ot0 , . . . ,ot0+ℓL), m = (mt0 , . . . ,mt0+ℓL), y = (yt0 , . . . ,yt0+ℓL).
Given the initial hidden state, the dual stream SSM in equation 4 can be recursively unrolled to get
the following explicit convolution operation:

y = CK1 ∗ o+CK2 ∗ Em(m;θm) +Do+ FEm(m;θm)

where K1 = (B,AB, . . . ,A
ℓL−1

B) and K2 = (E,AE, . . . ,A
ℓL−1

E) are two SSM kernels.

Therefore, our modified SSM model for missing data has an additive structure of the
SSM model in equation 2. We can use the same trick in S4 to efficiently calculate the

Algorithm 3 Testing Pipeline

Input: Look-back window X(L), learned proto-
type bank centroids C = {cj}, query encoder Eq ,
learned MDS-S4 module and local statistics ex-
tractor flocal

Output: Forecasted value Ŷ

1: Local Feature Extraction: Z = flocal(X)
2: Bank Reading: O = Alg. 1(Z,C, Eq)

3: MDS-S4 Output: Ŷ =MDS-S4(O)

convolution operation and end with adding two
outputs from the convolution operations. The
convolution operation, together with the HiPPO
matrix A, enables S4 to effectively model long-
term dependencies. Similarly, our dual-stream
SSM incorporates a convolution operation and
the HiPPO matrix, preserving S4’s compu-
tational efficiency and capacity for modeling
long-term dependencies, while simultaneously
addressing missing information through dis-
tinct computational kernels. Given the output
from MDS-S4, we can further feed it into ei-
ther MDS-S4 or regular S4 blocks to increase

6



Published as a conference paper at ICLR 2025

the complexity of our model. We describe the specific structure of the encoder Em and multiple S4
blocks in Appendix C.3. Our full algorithm for training and testing is, respectively, given in Alg. 4
and Alg. 3.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENT SETUP

Algorithm 4 Training Pipeline
Input: Batches of look-back window {Xi}Bi=1

and corresponding masks {Mi}Bi=1, initial values
for model parameters
Output: Prediction {Ŷi}Bi=2

1: Initialize: prototype centroids C =
{c1, . . . , cK} based on K-means from
Ep(X1;θp)

2: for i = 2 to B do
3: Local Feature Extraction: Zi =

flocal(Xi)
4: Bank Reading: Oi = Alg. 1(Zi,C, Eq)
5: Bank Writing (No grad): C =

Alg. 2(Zi,C, Ep)
6: (No Gradient) Momentum Update:

θp = γθp + (1− γ)θq
7: Backbone Output:

Ŷi =MDS-S4(Oi,Mi)
8: Loss construction & backpropagation:

L = ∥Ŷi −Xi∥2F
9: end for

We select four commonly used time series
datasets for forecasting: Electricity (Wu et al.,
2021), ETTh1 (Zhou et al., 2021), Traffic (Wu
et al., 2021), and Weather (Wu et al., 2021).
Since these benchmark datasets are complete,
we manually created block missing on the train-
ing and test dataset. These datasets span vari-
ous domains and encompass diverse character-
istics in terms of magnitude ranges, sampling
frequencies, and statistical properties like sea-
sonality. The base statistics of the data set can
be found in Tab. 7. To model practical sce-
narios where sensors cannot record data for a
period due to failure or other reasons, we de-
sign block-based missing pattern for two types
of missing data scenarios: time point missing
and variable missing with missing rate r =
0.03, 0.06, 0.12, 0.14. The details of making
missing pattern can be found in Appendix D.2.
After obtaining the dataset with missing values,
we split it chronologically into training, valida-
tion, and test sets, with a ratio of 0.7/0.1/0.2.
The horizon window for all methods is fixed at
96, while the lookback length is varied across
96, 192, 384, and 768. In addition to these
benchmark datasets, we also conduct experiments on a real-world dataset, as detailed in Ap-
pendix D.8.

4.2 COMPETING METHODS

We compare our proposed method, S4M, with two main groups of baseline methods: S4-based
baselines and other state-of-the-art and classical methods for handling missing data. The S4-based
baseline group includes S4 (Mean), S4 (Ffill), S4 (Decay), and S4 (SAITS). These methods impute
missing data using strategies such as global mean, last observation, a decay mechanism based on
these statistics, and the superior imputation method SAITS (Du et al., 2023). The other methods
include classic RNN-based methods like GRUD (Che et al., 2018), LSTM-based methods such as
BRITS (Cao et al., 2018), the top-performing Transformer-based methods Transformer (Vaswani
et al., 2017) and Autoformer (Wu et al., 2021), and the end-to-end method BiTGraph (Chen et al.,
2023), which is specifically designed for missing data prediction.

4.3 COMPARISON WITH BASELINES AND S4-BASED VARIANTS ON TIME POINT MISSING

Varying Input Length. The results in Tab. 1 illustrate the forecasting performance of various
methods under time point missing scenarios r = 0.06 across the four datasets. Our proposed S4M
consistently achieves the best or second-best performance across most settings, demonstrating its
robustness in handling missing data. For the Weather dataset, our method exhibits outstanding per-
formance, achieving the best MSE in nearly all configurations, particularly at the 192-step length
with 0.225, which is significantly better than the closest competitor. For the other datasets, S4M
maintains strong performance, as no competing methods can consistently outperform it across vari-
ous datasets and settings.
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Varying Missing Ratio. Fig. 3 illustrates the performance of various methods under time point
missing scenarios across four datasets: Electricity, ETTh1, Weather, and Traffic. The methods are
evaluated using MAR as the missing ratio (r) increases. Across all datasets, our proposed S4M (de-
noted by the red line), consistently maintains lower MAE compared to other methods, particularly
as the missing ratio increases. For the Electricity and Weather datasets, S4M outperforms competing
methods at all missing ratios, showing a clear advantage in handling missing data. In the ETTh1
and Traffic datasets, while some other methods like GRU-D or BRITS perform well at lower miss-
ing ratios, S4M still demonstrates robust performance, particularly as r increases, showing strong
resilience to higher levels of missing data.

Table 1: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.06.
Entries with ‘–’ indicate the experiment can not be done due to out-of-memory issue.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.633 0.431 0.399 0.375 0.397 0.408 0.418 0.402 0.432 0.372
MSE 0.623 0.363 0.400 0.272 0.309 0.337 0.345 0.323 0.372 0.287

192 MAE 0.636 0.437 0.402 0.366 0.388 0.387 0.384 0.381 0.394 0.367
MSE 0.628 0.366 0.314 0.257 0.290 0.303 0.292 0.289 0.309 0.274

384 MAE 0.653 0.434 0.419 0.369 0.384 0.383 0.367 0.379 0.394 0.370
MSE 0.659 0.363 0.339 0.272 0.295 0.298 0.272 0.285 0.307 0.277

768 MAE 0.644 0.437 0.416 0.379 0.387 0.378 0.384 0.379 0.393 0.373
MSE 0.656 0.365 0.333 0.285 0.290 0.291 0.288 0.285 0.306 0.282

E
T

T
h1

96 MAE 0.705 0.644 0.905 0.866 0.571 0.629 0.625 0.614 0.851 0.571
MSE 0.937 0.793 0.942 0.923 0.613 0.747 0.759 0.716 0.914 0.624

192 MAE 0.707 0.653 0.898 0.797 0.609 0.600 0.605 0.595 0.788 0.574
MSE 0.721 0.805 0.938 0.885 0.745 0.670 0.681 0.666 0.881 0.593

384 MAE 0.755 0.649 0.968 0.791 0.601 0.595 0.605 0.605 0.719 0.571
MSE 1.029 0.798 0.973 0.882 0.721 0.662 0.689 0.683 0.840 0.624

768 MAE 0.788 0.668 1.110 0.797 0.599 0.614 0.614 0.619 0.733 0.588
MSE 1.072 0.841 1.041 0.885 0.684 0.697 0.710 0.706 0.848 0.647

W
ea

th
er

96 MAE 0.419 0.363 0.421 0.465 0.516 0.371 0.361 0.399 0.440 0.313
MSE 0.372 0.293 0.350 0.395 0.510 0.312 0.296 0.344 0.407 0.237

192 MAE 0.427 0.346 0.308 0.471 0.419 0.332 0.318 0.347 0.384 0.305
MSE 0.385 0.268 0.238 0.408 0.385 0.255 0.235 0.274 0.320 0.225

384 MAE 0.434 0.342 0.391 0.479 0.587 0.329 0.345 0.339 0.378 0.306
MSE 0.375 0.271 0.310 0.430 0.596 0.249 0.269 0.264 0.311 0.220

768 MAE 0.489 0.354 0.374 0.489 0.467 0.330 0.349 0.340 0.368 0.316
MSE 0.445 0.280 0.297 0.459 0.445 0.250 0.272 0.263 0.287 0.232

Tr
af

fic

96 MAE 0.667 0.467 0.421 0.430 0.516 0.455 0.459 0.451 0.498 0.428
MSE 1.158 0.871 0.726 0.812 0.919 0.808 0.844 0.794 0.917 0.809

192 MAE 0.667 0.473 0.419 0.410 0.496 0.401 0.398 0.386 0.415 0.385
MSE 1.170 0.893 0.728 0.721 0.836 0.709 0.692 0.711 0.734 0.687

384 MAE 0.675 0.483 0.452 0.496 0.527 0.400 0.398 0.381 0.412 0.385
MSE 1.193 0.918 0.746 0.817 0.913 0.690 0.682 0.702 0.711 0.702

768 MAE 0.697 0.490 0.410 0.465 – 0.394 0.392 0.381 0.407 0.388
MSE 1.236 0.947 0.706 0.774 – 0.687 0.678 0.692 0.716 0.699

Figure 3: The performance of different methods on four datasets under time point missing scenario
when the missing ratio r varies from 0.03 to 0.24.

4.4 COMPARISON WITH BASELINES AND S4-BASED VARIANTS ON VARIABLE MISSING

Varying Input Length. Tab. 2 presents the forecasting performance of different methods under
variable missing scenarios (r = 0.06) across four datasets. Our method, S4M, consistently achieves
either the best or second-best results across the majority of configurations, demonstrating its robust-
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ness in handling feature-missing data. On the ETTh1 dataset, S4M shows particularly strong results,
securing the lowest MAE and MSE values in several settings. Similarly, for the Weather dataset,
S4M excels, delivering the best MAE and MSE in all configurations. Across the remaining datasets,
S4M continues to perform competitively, consistently matching or surpassing other methods, high-
lighting its general effectiveness in feature-missing scenarios.

Table 2: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.06.
Entries with ‘–’ indicate the experiment can not be done due to out-of-memory issue.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.439 0.426 0.400 0.373 0.383 0.387 0.387 0.396 0.432 0.369
MSE 0.369 0.354 0.312 0.271 0.292 0.305 0.304 0.311 0.354 0.282

192 MAE 0.457 0.477 0.400 0.366 0.376 0.366 0.365 0.378 0.405 0.357
MSE 0.390 0.408 0.308 0.257 0.277 0.273 0.272 0.282 0.310 0.261

384 MAE 0.625 0.470 0.412 0.361 0.389 0.366 0.367 0.377 0.411 0.359
MSE 0.619 0.408 0.317 0.255 0.290 0.270 0.272 0.279 0.317 0.264

768 MAE 0.635 0.487 0.411 0.363 0.387 0.367 0.376 0.374 0.402 0.362
MSE 0.637 0.434 0.326 0.261 0.287 0.272 0.286 0.279 0.309 0.269

E
T

T
h1

96 MAE 0.696 0.618 0.589 0.583 0.571 0.641 0.642 0.620 0.682 0.571
MSE 0.905 0.727 0.658 0.648 0.653 0.761 0.763 0.717 0.851 0.624

192 MAE 0.820 0.617 0.647 0.583 0.599 0.619 0.619 0.598 0.658 0.568
MSE 1.165 0.725 0.817 0.640 0.719 0.687 1.619 0.665 0.788 0.598

384 MAE 0.821 0.607 0.614 0.585 0.602 0.607 0.606 0.607 0.633 0.584
MSE 1.166 0.708 0.683 0.635 0.719 0.665 0.673 0.683 0.719 0.613

768 MAE 0.820 0.625 0.749 0.641 0.636 0.616 0.623 0.624 0.641 0.599
MSE 1.163 0.734 1.029 0.733 0.811 0.676 0.706 0.721 0.733 0.649

W
ea

th
er

96 MAE 0.408 0.409 0.427 0.498 0.543 0.413 0.394 0.388 0.439 0.336
MSE 0.336 0.348 0.357 0.440 0.545 0.364 0.337 0.332 0.392 0.267

192 MAE 0.417 0.383 0.426 0.507 0.444 0.363 0.352 0.347 0.403 0.320
MSE 0.357 0.311 0.351 0.454 0.418 0.296 0.275 0.275 0.335 0.261

384 MAE 0.452 0.381 0.405 0.517 0.654 0.359 0.345 0.338 0.405 0.334
MSE 0.401 0.314 0.329 0.477 0.698 0.292 0.269 0.265 0.333 0.256

768 MAE 0.470 0.392 0.401 0.529 0.623 0.349 0.349 0.340 0.395 0.341
MSE 0.427 0.323 0.337 0.508 0.663 0.272 0.272 0.263 0.321 0.266

Tr
af

fic

96 MAE 0.676 0.483 0.428 0.439 0.516 0.443 0.438 0.440 0.504 0.442
MSE 1.240 0.905 0.759 0.708 0.907 0.821 0.819 0.812 0.874 0.786

192 MAE 0.679 0.500 0.411 0.390 0.521 0.383 0.398 0.391 0.447 0.381
MSE 1.208 0.927 0.705 0.632 0.886 0.707 0.692 0.726 0.776 0.685

384 MAE 0.678 0.503 0.399 0.393 0.486 0.379 0.420 0.385 0.444 0.383
MSE 1.197 0.953 0.696 0.648 0.795 0.702 0.755 0.716 0.772 0.700

768 MAE 0.679 0.512 0.441 0.407 – 0.381 0.375 0.383 0.442 0.383
MSE 1.207 0.967 0.758 0.666 – 0.704 0.692 0.708 0.775 0.697

Varying Missing Ratio. Fig. 4 displays the performance of various methods under variable miss-
ing scenarios across the four datasets. As with time point missing, MAE is used as the evaluation
metric, plotted against different missing ratios (r). Our method, S4M (indicated by the red line), con-
sistently demonstrates competitive or superior performance across all datasets and missing ratios. In
the Electricity dataset, S4M maintains one of the lowest MAEs, showing more stability compared to
methods like GRU-D, which shows a sharp increase in error as the missing ratio grows. Similarly,
in the ETTh1 and Weather datasets, S4M continues to outperform or match the best methods, par-
ticularly at higher missing ratios. For the Traffic dataset, while some methods perform comparably
at lower missing ratios, S4M demonstrates robust resilience, with relatively low error even as the
proportion of missing features increases. Overall, S4M shows strong generalization and consistent
performance, effectively handling variable missing data scenarios across multiple datasets.

4.5 ABLATION STUDY

In the previous experiment, we investigated the effects of replacing the data inputs to the S4 back-
bone (blue columns in Tab. 1 and Tab. 2). To deepen the analysis, we conducted additional ablations
on ATPM and the input stream of mask indications as shown in Tab. 3.

The results demonstrate the importance of incorporating the mask as the inputs to S4 backbone, as
removing it consistently increases both MAE and MSE across various prediction horizons. Notably,
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Figure 4: The performance of different methods on four datasets under variable missing scenario
when the missing ratio r varies from 0.03 to 0.24.

even when the error increases after removing masks appear numerically small in some entries, the
overall predominantly positive red values reflect the model’s enhanced stability and accuracy when
handling missing data. This is particularly evident in the ETT and Weather datasets, where the pres-
ence of the mask significantly reduces errors, affirming the effectiveness of dual-inputs in MDS-S4
to capture the complex dependencies inherent in multivariate time series with missing values.

The results also highlight the significance of ATPM. The model’s performance improved signifi-
cantly after incorporating ATPM, as both MSE and MAE increased across various settings when
ATPM was removed, particularly on the Traffic and ETTh1 datasets. Additionally, ATPM demon-
strated substantial improvements, especially with shorter lookback windows on the Electricity and
Weather datasets, further emphasizing the improvements brought by ATPM.

Table 3: Results of ablation study for the mask and ATPM with blue values indicating a decrease in
errors, while red values representing increase in errors.

Electricity ETTh1 Weather Traffic

ℓL Metric ↓ S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

S4M
(Ours)

S4M
(w/o mask)

S4M
(w/o ATPM)

Variable missing

MAE 0.369 +0.012 +0.011 0.571 -0.008 +0.044 0.336 +0.106 +0.020 0.442 +0.001 +0.02496 MSE 0.282 +0.010 +0.010 0.624 -0.008 +0.091 0.267 +0.520 +0.206 0.786 +0.039 +0.125
MAE 0.357 +0.004 +0.010 0.568 -0.013 +0.045 0.320 +0.061 +0.600 0.381 +0.003 +0.030192 MSE 0.261 +0.006 +0.009 0.598 -0.014 +0.090 0.261 +0.424 +0.002 0.685 +0.036 +0.092
MAE 0.359 +0.001 +0.009 0.584 +0.003 +0.029 0.334 +0.049 +0.006 0.383 +0.062 +0.026384 MSE 0.264 +0.002 +0.009 0.613 +0.008 +0.064 0.256 +0.444 +0.008 0.700 +0.092 +0.065
MAE 0.362 +0.004 +0.020 0.599 +0.012 +0.028 0.341 +0.043 +0.016 0.383 +0.000 +0.026768 MSE 0.269 +0.003 +0.002 0.649 +0.027 +0.058 0.266 +0.431 +0.011 0.697 +0.020 +0.074

Time point missing

MAE 0.372 +0.014 +0.025 0.571 +0.003 +0.049 0.313 +0.035 +0.021 0.428 +0.003 +0.04596 MSE 0.287 +0.016 +0.030 0.624 +0.006 +0.110 0.237 +0.033 +0.017 0.809 +0.010 +0.116
MAE 0.367 +0.013 +0.004 0.574 -0.009 +0.039 0.305 +0.040 +0.006 0.385 +0.006 +0.005192 MSE 0.274 +0.012 +0.004 0.593 +0.022 +0.110 0.225 +0.041 +0.001 0.687 +0.034 +0.023
MAE 0.370 +0.002 +0.014 0.571 +0.012 +0.057 0.306 +0.040 +0.012 0.385 +0.000 +0.013384 MSE 0.277 +0.003 +0.004 0.624 +0.008 +0.112 0.220 +0.047 +0.015 0.702 -0.015 +0.047
MAE 0.373 -0.005 +0.013 0.588 +0.006 +0.048 0.316 +0.029 +0.005 0.388 -0.004 +0.000768 MSE 0.282 -0.003 +0.016 0.647 -0.001 +0.079 0.232 +0.037 +0.004 0.699 +0.011 +0.024

5 CONCLUSION

In this paper, we present S4M for time series forecasting with missing values. S4M is an end-to-end
framework that first uses a ATPM module to learn robust latent representation to account for missing
values using rich historical data from a prototype bank, and then uses a missing-aware dual stream
S4, MDS-S4, to directly model the mask of missing and the representation. The experimental results
on four real-world benchmark datasets verify its superiority under various missing value scenarios.
The ablation studies also show the importance of the masking mechanism in improving the model’s
robustness and accuracy. In the future, we would like to explore other S4-based architectures and
missing types to make our proposed method more versatile.
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Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert
Systems with Applications, 219:119619, 2023.

Claude Duchon and Robert Hale. Time series analysis in meteorology and climatology: an intro-
duction. John Wiley & Sons, 2012.

Tlamelo Emmanuel, Thabiso Maupong, Dimane Mpoeleng, Thabo Semong, Banyatsang Mphago,
and Oteng Tabona. A survey on missing data in machine learning. Journal of Big data, 8:1–37,
2021.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. GP-VAE: Deep proba-
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A RELATED WORK

A.1 TIME SERIES FORECASTING

Time series forecasting has seen major improvements thanks to both traditional statistical methods
and modern deep learning models. The ARIMA model, for example, improves prediction accuracy
by making non-stationary data more stable, which is a key method in time series analysis (Box
& Jenkins, 1968). Recurrent Neural Networks (RNNs) have also become important tools in this
field, providing a solid framework for modeling sequences and predicting time series, especially
for capturing long-term patterns (Hewamalage et al., 2021). Improvements in RNN designs have
led to different RNN-based approaches specifically made for forecasting (Rangapuram et al., 2018;
Salinas et al., 2017; Lim et al., 2020). Attention-based models have gained attention because they
can focus on key time steps, helping to capture long-term patterns that are critical for accurate fore-
casts (Qin et al., 2017; Shih et al., 2019). The encoder-decoder setup, in particular, has become a
popular approach because of its strong forecasting ability. This has inspired various upgrades and
new versions of the original Transformer model. One example is the Autoformer, which uses a new
architecture with an Auto-Correlation mechanism, setting new standards for long-term forecasting
accuracy (Wu et al., 2021). Similarly, the Pyraformer uses a pyramidal attention strategy to model
different levels of data efficiently, boosting the accuracy of long-range time series predictions (Liu
et al., 2022). The Scaleformer framework refines forecasts across different scales, leading to im-
proved performance with little extra computation (Shabani et al., 2023). iTransformer introduces
a novel approach by leveraging transformer-based architecture with adaptive self-attention mech-
anisms to capture temporal dependencies in time series forecasting (Liu et al., 2023). PatchTST
applies a patch-based technique within a transformer framework to effectively capture both short-
and long-term dependencies, improving forecasting accuracy across diverse time series tasks (Nie
et al., 2022). CARD leverages a transformer architecture, focusing on aligning multiple temporal
channels to capture dependencies effectively (Xue et al., 2023). Besides these advances, new models
like the structured state space squence (S4) model combine the strengths of RNNs and CNNs, offer-
ing flexible solutions for a wide range of tasks, including generation, forecasting, and classification
(Gu et al., 2021). S4 model combines the strengths of state-space models with modern deep learning
architectures and can efficiently model long sequences.

A.2 MISSING DATA IN TIME SERIES

In many real-world scenarios, datasets can be incomplete due to unforeseen events such as equip-
ment failure or communication errors, making it crucial to address time series forecasting with
missing data. GRU-D (Che et al., 2018) stands out as a classic method to manage missing data
in recurrent models. Subsequent advances such as BRITS (Cao et al., 2018) have further refined
the approach for LSTMs. The field has also seen the emergence of various imputation techniques,
including M-RNN, GP-VAE, and SAITS, which prioritize the estimation of missing values to im-
prove the precision of forecasting (Yoon et al., 2018; Fortuin et al., 2020; Du et al., 2023). Latent
ODE (Rubanova et al., 2019), Neural ODE (Chen et al., 2018), CRUs (Schirmer et al., 2022), and
GraFITi (Yalavarthi et al., 2024) each address missing values in time series through different mech-
anisms, with Latent ODE (Rubanova et al., 2019) and Neural ODE (Chen et al., 2018) learning
continuous dynamics over time, CRUs (Schirmer et al., 2022) utilizing confidence regularization to
improve imputation accuracy, and GraFITi (Yalavarthi et al., 2024) applying graph-based methods
to capture temporal and spatial dependencies for missing data recovery. LGNet innovatively cap-
tures local and global temporal dynamics through a memory network (Tang et al., 2020). BiTGraph
dexterously navigates temporal dependencies and spatial structures. By explicitly incorporating the
challenge of missing values into its model architecture, BiTGraph aims to optimize the information
flow and mitigate the adverse effects of data incompleteness (Chen et al., 2023).

B NOTATION TABLE

A summary of key notations used in the main paper is given in Tab. 4.
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Table 4: Notations
Notations Description

X(L) look-back time series
M (L) mask: indicator for missing for look-back time series
X(H) horizon time series
xt raw value of the time series at time point t
ot representation learning output at time point t
ht S4 hidden state at time point t
yt predicted value of S4
mt mask at time point t
cj the centroid of the jth cluster
ℓL length of the look-back window
ℓH length of the horizon window
D dimension of the time series
R encoder output dimension
F output channel of ConvD1

K1 prototype bank parameter: maximum number of clusters
K2 prototype bank parameter: maximum number of elements within each cluster
τ1, τ2 threshold for similarity in prototype bank writing
γ momentum coefficient
θ S4 model parameters

t0 : t0 + ℓ {t0, t0 + 1, . . . , t0 + ℓ}
Ep, Eq, Em encoder

C ADDITIONAL DETAILS OF THE PROPOSED METHOD

In this section, we provide additional details of the proposed methods. We describe the procedure for
local statistics extraction in Section C.1, the encoder design in the representation learning module in
Section C.2, and the design of S4 blocks in Section C.3.

C.1 LOCAL STATISTICS EXTRACTION

As the first step in dealing with missing values in time series, we extract useful local statistical
features using contextual information from observed parts of the time series for missing values.
Specifically, we denote xmin,xmax ∈ RD respectively as the minimum and maximum of the ob-
served value of X(L). ∆min ∈ RℓL×D, ∆max ∈ RℓL×D are the time gap between each entry of
X with xmin, xmax. We use the combination of two exponential weights to extract local feature
information from missing data. Specifically, we let

Z(L) = M (L)X(L) + (1−M (L))(Ω
′

1xmin +Ω
′

2xmax)

be the local statistics where
Ω1 = exp {−max (0,W1∆min + b1)}
Ω2 = exp {−max (0,W2∆max + b2)}

Ω
′

1 = Ω1/(Ω1 +Ω2), Ω
′

2 = Ω2/(Ω1 +Ω2)

and W1,W2, b1 and b2 are the decay parameters. The local statistics Z are fed in the ATPM module
to query from the prototype bank.

C.2 ENCODER ARCHITECTURE

The architecture of the encoder Ep, Eq , and Em contains (1) a delay embedding layer, (2) a 2D-
convolutional layer with ReLU activation, (3) a self-attention layer, and (4) a S4 layer. We describe
these layers, respectively.

Delay embedding The delay embedding layer converts the original two-dimensional matrix Z(L)

(or M (L) in Em) into a third-order tensor. This technique involves recursively augmenting the

15



Published as a conference paper at ICLR 2025

multivariate time series by unfolding the matrix along the temporal dimension. This process signif-
icantly enriches the local information at each time point by incorporating its historical time series
data. Consequently, this enrichment facilitates the formalization and storage of various patterns.

Convolution We then incorporate a convolutional layer with a kernel size of W in the temporal
dimension and D in the variable dimension to capture local temporal patterns and inter-variable
dependencies. Subsequently, the output is passed through a Rectified Linear Unit (ReLU) layer.
The ReLU layer’s output is a matrix with dimensions R × Tc , where R represents the number of
filters in the convolutional layer and Tc = L − W + 1. Additionally, a dropout layer is applied
subsequent to the ReLU layer to prevent overfitting.

Attention Subsequently, we implement an attention mechanism over the temporal dimension of
the sequence, enabling the model to selectively emphasize salient information without changing the
rank of tensor.

S4 layer The output from the attention layer is then fed into an S4 block. Unlike the layer of self-
attention above, the S4 block was used to compress temporal information. Within this framework,
we employ a S4 as an embedding tool, which serves to encapsulate the embedding of size Tc ×R at
each time point into a fixed-size representation vector of length R.

C.3 DESIGN OF MDS-S4 BLOCKS

Our second MDS-S4 module consists of one MDS-S4 block and multiple normal S4 blocks, each
designed to process sequential data efficiently. The architecture begins with an MDS-S4 block.
MDS-S4 is the core and initial layer of this block, which has dual inputs, the representation ot

learned from ATPM and m̃t = Em(mt), both are fed into a dual-stream S4 block. To address
the missing data problem in S4 models, we incorporate m̃t to distinguish the missing time points,
enabling the model to treat them differently from the observed data (e.g., by referring to data in the
prototype bank). At the same time, this structure ensures that the core properties of the S4 model
are preserved. To this end, we seek a term that can flag missing values while preserving the HiPPO
structure of S4. We find that integrating additional masking terms M , inspired by Che et al. (2018),
to serve as a simple yet effective indicator for the model to recognize missing values. However,
since the elements of M take binary values (0 or 1), they are not naturally on the same scale as the
other terms in equation 4. To address this, we design an encoder to transform the mask information
to an appropriate scale. Incorporating this term still preserves the HiPPO structure of S4, thereby
enriching the model with additional information while maintaining its core advantages. The output
of the dual-stream S4 is then fed into a residual connection, coupled with layer normalization, to
address gradient vanishing. Subsequently, a 1D convolutional layer with a kernel size of 1 and F
output channels is applied together with ReLU. Then, it comes another convolutional layer that re-
verts the output back to R channels. Finally, a dropout layer is integrated to introduce regularization,
which is crucial for preventing overfitting. The culmination of these operations completes a single
MDS-S4 block within the architecture. We list these layers of the block in Tab. 5 for easy reference.

Table 5: Architecture of MDS-S4 block. For convolutional layer (Conv1D), we list parameters with
sequence of input and output dimension, and kernel size.

Layer Details

1 MDS-S4 model or S4 model, Residual, LayerNorm

2 Conv1D(R, F , 1), ReLU, Dropout

3 Conv2D(F , R, 1), Dropout

The following S4 blocks in MDS-S4 module have the same architecture with MDS-S4 block, except
for the initial MDS-S4 model replaced with traditional S4 model. Begin with the MDS-S4 block,
the output of one block is fed directly as input to the subsequent block.This iterative process allows
for increasingly complex feature extraction and integration. The final output from the last block in
the sequence represents S4M’s prediction.
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D EXPERIMENT DETAILS AND MORE RESULTS

D.1 BASELINE METHODS

In this section, we describe the baseline methods that we compare with. The baselines include latest
state-of-art methods and some classic methods. For models not specifically designed for missing
data forecasting, we impute the missing observations with the mean value and conduct experiments
on the imputed dataset.

• GRU-D: It is a time series model that extends the Gated Recurrent Unit (GRU) by incorpo-
rating decay mechanisms to handle missing data and capture temporal dependencies (Che
et al., 2018).

• BRITS: It’s a time series imputation model that integrates a Bidirectional Recurrent Neural
Network (RNN) with a time decay mechanism to capture the relationships between missing
values and observed data (Cao et al., 2018).

• Autoformer: It incorporates a seasonal decomposition mechanism that captures both long-
term trends and short-term seasonal patterns. Autoformer also leverages auto-correlation
to capture the dependencies between different time steps, allowing it to model the temporal
relationships effectively (Wu et al., 2021).

• Transformer: It’s a foundational sequential model that utilizes stacked self-attention blocks
to effectively capture temporal dependencies in time series data (Vaswani et al., 2017).

• iTransformer: It introduces a novel methodology by integrating transformer-based architec-
ture with adaptive self-attention mechanisms, enabling more efficient handling of complex
temporal dependencies in time series forecasting tasks (Liu et al., 2023).

• CARD: It leverages a transformer architecture, focusing on aligning multiple temporal
channels to capture dependencies effectively. Also, CARD incorporates a token blend
module, which efficiently utilizes multi-scale knowledge to enhance the model’s predic-
tive power (Xue et al., 2023).

• CRUs: It introduces a unique method for handling missing or irregularly spaced data points,
incorporating confidence-based regularization to improve the robustness and accuracy of
time series forecasting models (Schirmer et al., 2022).

• GraFITi: A novel approach that models irregularly sampled time series data using graph-
based techniques (Yalavarthi et al., 2024).

• BiTGraph: A state-of-the-art method that performs end-to-end prediction with biased tem-
poral convolutional graph networks when missing data is present (Chen et al., 2023).

• S4 (Mean): Impute missing data using the global mean and employ S4 blocks as the back-
bone.

• S4 (Ffill): Impute missing data by forward filling with the latest observation, using S4
blocks as the backbone.

• S4 (Decay): Impute missing data by combining the global mean and the latest observation,
with a decay factor controlling the weighting, and use S4 blocks as the backbone.

• S4 (SAITS): Fill missing entries with the state-of-the-art imputation method SAITS, using
the imputed data as input for S4 blocks. SAITS is a time series forecasting method that em-
ploys a self-attention mechanism to capture long-term dependencies and trends, enabling
more accurate imputation across various temporal patterns (Du et al., 2023).

We also provide detailed comparisons and computational cost analysis for above methods in Tab. 6.
To measure the training and inference time, we conducted performance experiments using the elec-
tricity dataset, with a batch size of 16 and a hidden size of 512. The maximum memory usage, along
with the training and inference times, were recorded for a single epoch.

We observe that the ODE-based method incurs an extraordinarily high computational cost com-
pared to other approaches. Notably, S4M demonstrates significantly lower memory usage compared
to other state-of-the-art transformer-based methods, particularly iTransformer and CARD. Addi-
tionally, S4-based methods generally exhibit shorter training times compared to recurrent methods
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designed for forecasting with missing observations, such as BRITS and GRU-D. These results rein-
force our decision to focus on S4-based architectures due to their superior efficiency.

Table 6: Computation Cost for Different Methods (’OOM’ refers to ”Out-of-Memory”).
Method GRU-D CRUs GraFITi S4(Mean) S4(Decay) S4M(Ours)

Memory(MB) 445.70 32146.06 OOM 764.75 887.28 1071.39
Training Time(s) 244.26 64990.81 OOM 84.71 90.07 110.65
Inference Time(s) 32.64 1524.16 OOM 12.16 13.23 14.55

Method Autoformer BiTGraph Transformer iTransformer CARD BRITS

Memory(MB) 1106.41 2564.35 777.69 2107.67 7517.68 557.68
Training Time(s) 95.98 267.74 78.00 74.16 274.29 486.68
Inference Time(s) 17.88 24.88 10.35 12.31 34.40 57.19

D.2 DATASET DETAILS

In Tab. 7, we present the number of variables (Variables), the total length of the time series (Time
steps), and the frequency that observations are made (Granularity). We select these four datasets
because they exhibit significant variation in size, number of variables, and the presence or absence
of seasonality.

Table 7: Dataset statistics.
Data Variables Time steps Granularity

Electricity 321 26,304 1 hour
ETTh1 7 17,420 15 min
Weather 21 52,696 10 min
Traffic 862 17,544 1 hour

For all datasets in our experiment, we consider two different missing scenarios: time point missing
and variable missing, which is illustrated in Fig. 5. Under the time point missing scenario, we first

Figure 5: Illustration of block missing patterns: Time Point Missing (Left) and Variable Missing
(Right). Each column represents a variable in the time series, and each row corresponds to observa-
tions at a specific time point. Red blocks indicate missing observations, while white blocks represent
observed data. Missing values are consecutive in both patterns. For time point missing, all variables
are missing at a given time point. For variable missing, some variables may remain observed at the
same time point.

randomly select a ratio r of time points, and for each selected time point, we remove its following
consecutive time points of length 5 and eliminate all variables at those time points. In the variable
missing scenario, we perform the same procedure independently for each variable. When generating
the missing data, the missing ratio r ranges from 0.03, 0.06, 0.12, to 0.24. Due to the design of the
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consecutive missing points, the overall missing ratio (the percentage of missing entries in the times
series matrix) is higher than r, and we report these values in Tab. 8 under different values of r.

Table 8: Overall missing ratio statistics.
Missing pattern r 0.030 0.060 0.120 0.240

Time point
missing

Electricity 0.139 0.260 0.450 0.694
ETTh1 0.122 0.231 0.399 0.616
Traffic 0.139 0.256 0.447 0.705

Weather 0.132 0.247 0.432 0.667

Variable
missing

Electricity 0.139 0.258 0.450 0.696
ETTh1 0.122 0.228 0.395 0.613
Traffic 0.139 0.259 0.451 0.698

Weather 0.133 0.258 0.431 0.667

D.3 HYPER-PARAMETER DETAILS

The learning rates are set to 0.01 for the Electricity and Traffic datasets, 0.005 for the ETTh1 dataset,
and 0.001 for the Weather dataset. The dimensions of the hidden layers are set to 512 for the Elec-
tricity and Traffic datasets, and 256 for the ETTh1 and Weather datasets. The number of basic blocks
or layers is selected from {2, 4, 8}. The batch size set for all experiments are 16. We use the Adam
optimizer and implement an early stopping strategy across all experiments. Other hyperparameters
for both the proposed method and baseline methods are adjusted based on their performance on the
validation set. The performance of different methods is evaluated using Mean Squared Error (MSE)
and Mean Absolute Error (MAE). For both metrics, lower values indicate better performance.

D.4 SENSITIVITY ANALYSIS

In this section, we evaluate the sensitivity of our method with respect to the size of queue K1, K2,
threshold τ1, τ2, the dimension R of encoder output, the size of the short period retrieve window
s, and the number of memory centroids K we choose. All of the experiments are done under the
time point missing scenario with r = 0.06, look-back window H = 96, which is a representative
scenario to make analysis on.

D.4.1 BANK INITIALIZATION

In our experiment, we find the performance is insensitive to the initial cluster configuration, as the
clusters are updated continuously throughout the training process. To provide evidence, we present
the experimental results on four datasets using different cluster numbers for initialization, as shown
below in Tab. 9. In practice, we recommend using 3 to 5 clusters for initialization or determining
the optimal number of clusters based on the within-cluster sum of squares.

Table 9: Performance of S4M (Ours) with different number of clusters for initialization with other
parameters fixed.

number of clusters 1 2 3 4 8 12 16

Electricity MAE 0.415 0.415 0.415 0.415 0.415 0.415 0.415
MSE 0.356 0.356 0.356 0.356 0.357 0.358 0.356

ETTh1 MAE 0.647 0.647 0.648 0.648 0.647 0.648 0.65
MSE 0.768 0.767 0.77 0.77 0.767 0.767 0.773

Weather MAE 0.386 0.39 0.387 0.385 0.388 0.388 0.385
MSE 0.307 0.31 0.308 0.306 0.31 0.31 0.307

Traffic MAE 0.510 0.505 0.504 0.515 0.509 0.513 0.509
MSE 0.966 0.954 0.944 0.999 0.974 0.992 0.985
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D.4.2 ANALYSIS OF K1 AND K2

We fix τ1 = 0.95, τ2 = 0.6, R = 256, and s = 32. K1 represents the size of the maximum centroid,
which governs the storage of prototype clusters. Choosing an appropriate value for K1 allows the
bank to effectively filter out outdated representations, especially in cases with a large number of
patterns in the original time series. Tab. 10 indicates that a suitable value for K1 is below 50.

For the analysis of K2, we set K1 = 30. K2 controls the size of each cluster in the prototype bank.
A smaller K2 allows the bank to store only newly generated representations, ensuring that it remains
aligned with the model’s updates. Tab. 11 shows the performance changes across different values
of K2, suggesting that a relatively smaller value is more beneficial. We do not include results for
ETTh1 because its shorter time series length and variable dimensions result in a significantly smaller
pattern size, which does not require a constraint on the number of clusters.

Table 10: Performance of S4M (Ours) when K1 = 5, 19, 30, 50, and 100 with other parameters
fixed.

Data Metric ↓ 5 10 30 50 100

Electricity MSE 0.372 0.377 0.377 0.376 0.376
MAE 0.287 0.293 0.293 0.293 0.290

Weather MSE 0.347 0.345 0.345 0.347 0.347
MAE 0.270 0.267 0.267 0.268 0.268

Traffic MSE 0.442 0.438 0.437 0.436 0.439
MSE 0.863 0.823 0.819 0.817 0.830

Table 11: Performance of S4M (Ours) when K2 = 3, 5, 10, 20, 50, and 100 with other parameters
fixed.

Data Metric ↓ 3 5 10 20 50 100

Electricity MAE 0.393 0.377 0.393 0.398 0.393 0.394
MSE 0.313 0.299 0.312 0.319 0.312 0.313

ETTh1 MAE 0.606 0.610 0.607 0.603 0.605 0.601
MSE 0.695 0.700 0.694 0.655 0.659 0.655

Weather MAE 0.347 0.345 0.343 0.346 0.346 0.347
MSE 0.268 0.267 0.268 0.268 0.268 0.268

Traffic MAE 0.438 0.436 0.438 0.437 0.438 0.438
MSE 0.815 0.818 0.827 0.828 0.830 0.822

D.4.3 ANALYSIS OF R AND s

In this section, we performe sensitivity analysis when the dimension of the encoder R and the short
period window size s varies. We set K1 = 30, K2 = 50, τ1 = 0.95, and τ2 = 0.6. For the analysis
of R, we fix s = 16 and vary the values of R from 16 to 1024. Similarly, for the analysis of s,
we set R = 256 and vary the values of s from 8 to 48. Tab. 12 shows that R significantly affects
performance, with values larger than 128 benefiting the model. Tab. 13 shows that increasing s
generally improves performance.

D.4.4 ANALYSIS OF τ1 AND τ2

We set K1 = 30, K2 = 50, s = 16, and R = 256, and then vary the values of τ1 and τ2 across four
datasets to observe how changes in these thresholds affect model performance in Tab. 14 – Tab. 17.
Overall, the forecasting performance is less sensitive to τ1 and τ2 compared to other hyperparameters
we previously analyzed. Specifically, model performance on ETTh1 and Traffic is more sensitive to
these threshold values than on the other two datasets. ETTh1 achieves its best performance when
τ1 ≤ 0.95 and τ2 ≤ 0.9, while Traffic performs optimally at τ1 = 0.9 and τ2 = 0.5. Electricity
and Weather exhibit similar patterns, with slight performance improvements when τ1 = 0.975 and
τ2 = 0.5.
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Table 12: Performance of S4M (Ours) when R ranging from 16 to 1024 with other parameters fixed.
Dataset Metric ↓ 16 32 64 128 256 512 1024

Electricity MAE 0.409 0.400 0.406 0.388 0.376 0.379 0.375
MSE 0.358 0.335 0.339 0.308 0.279 0.295 0.292

ETTh1 MAE 0.480 0.438 0.465 0.444 0.418 0.418 0.400
MSE 0.895 0.826 0.846 0.855 0.363 0.351 0.332

Weather MAE 0.585 0.591 0.603 0.571 0.571 0.610 0.609
MSE 0.654 0.656 0.680 0.624 0.621 0.699 0.690

Traffic MAE 0.329 0.320 0.329 0.315 0.352 0.317 0.349
MSE 0.257 0.246 0.255 0.243 0.277 0.244 0.274

Table 13: Performance of S4M (Ours) when s varies with other parameters fixed.
Dataset s 8 16 32 48

Electricity MAE 0.379 0.379 0.378 0.378
MSE 0.297 0.296 0.295 0.293

ETTh1 MAE 0.596 0.570 0.584 0.582
MSE 0.660 0.624 0.656 0.649

Weather MAE 0.345 0.350 0.351 0.332
MSE 0.267 0.275 0.279 0.253

Traffic MAE 0.453 0.438 0.443 0.436
MSE 0.847 0.826 0.853 0.786

D.4.5 MORE DISCUSSION ON HYPERPARAMETERS K1, K2, τ1, AND τ2.

Based on our results, we recommend setting K2 between 5 and 10, as this range is both effective and
relatively insensitive to performance variations. The suggested ranges for τ1 and τ2 are [0.3, 0.6] and
[0.8, 1.0), respectively, with both parameters selectable using the validation set. Most experiments
are robust to choices of K1 = 30 or K1 = 50. If a dataset contains a very large number of clusters,
as determined by a preliminary experiment with a higher K1 value, the number of clusters can be
adjusted accordingly.

Table 14: Performance under different values of τ1 and τ2 on Electricity. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.393 0.392 0.392 0.393 – –
MSE 0.312 0.311 0.311 0.311 – –

0.700 MAE 0.393 0.393 0.393 0.393 0.393 –
MSE 0.311 0.312 0.312 0.312 0.312 –

0.900 MAE 0.392 0.391 0.392 0.392 0.393 0.393
MSE 0.311 0.310 0.311 0.311 0.312 0.311

0.950 MAE 0.395 0.395 0.394 0.393 0.393 0.393
MSE 0.316 0.315 0.315 0.313 0.314 0.312

0.975 MAE 0.392 0.395 0.395 0.394 0.393 0.393
MSE 0.311 0.315 0.316 0.314 0.314 0.312
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Table 15: Performance under different values of τ1 and τ2 on Weather. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.342 0.342 0.342 0.342 – –
MSE 0.269 0.269 0.269 0.268 – –

0.700 MAE 0.343 0.342 0.343 0.343 0.342 –
MSE 0.270 0.270 0.270 0.270 0.269 –

0.900 MAE 0.343 0.343 0.343 0.343 0.343 0.343
MSE 0.271 0.271 0.271 0.271 0.270 0.270

0.950 MAE 0.340 0.341 0.341 0.340 0.341 0.344
MSE 0.267 0.268 0.268 0.267 0.268 0.270

0.975 MAE 0.339 0.339 0.339 0.340 0.342 0.345
MSE 0.266 0.266 0.266 0.267 0.269 0.270

Table 16: Performance under different values of τ1 and τ2 on ETTh1. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.591 0.591 0.591 0.591 – –
MSE 0.662 0.662 0.663 0.663 – –

0.700 MAE 0.591 0.591 0.591 0.591 0.591 –
MSE 0.663 0.662 0.663 0.662 662 –

0.900 MAE 0.591 0.591 0.591 0.591 0.591 0.591
MSE 0.659 0.659 0.659 0.659 0.659 –

0.950 MAE 0.591 0.591 0.591 0.591 0.591 0.597
MSE 0.651 0.651 0.651 0.651 0.651 0.671

0.975 MAE 0.580 0.582 0.583 0.582 0.586 0.599
MSE 0.643 0.647 0.647 0.644 0.650 0.680

Table 17: Performance under different values of τ1 and τ2 on Traffic. Entries with ‘–’ mean the
experiment is not meaningful in our setting because we set τ1 ≥ τ2.

τ1\τ2 Metric ↓ 0.050 0.100 0.300 0.500 0.700 0.900

0.500 MAE 0.444 0.442 0.445 0.442 – –
MSE 0.870 0.855 0.870 0.856 – –

0.700 MAE 0.442 0.439 0.441 0.440 0.441 –
MSE 0.854 0.836 0.848 0.833 0.857 –

0.900 MAE 0.441 0.441 0.440 0.438 0.440 0.441
MSE 0.851 0.840 0.849 0.808 0.852 0.857

0.950 MAE 0.439 0.439 0.446 0.440 0.444 0.439
MSE 0.837 0.834 0.869 0.842 0.859 0.838

0.975 MAE 0.445 0.443 0.442 0.438 0.445 0.439
MSE 0.865 0.848 0.857 0.825 0.872 0.851
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D.5 EXPERIMENT RESULT ON DATASET WITH NO MISSING VALUE

If there is no missing data, as expected in Tab. 18, our method does not show a significant advantage
over the other methods but still maintains a very competitive performance. For this experiment, we
report the results using a horizon window of size 96 and a lookback window of size 96, with no
missing values in the original dataset.

Table 18: Comparison of forecasting performance of S4M (Ours) and baselines with ℓH = 96,
ℓL = 96 on four datasets with no missing value.

Dataset Metric ↓ BRITS GRU-D Transformer Autoformer S4 BiTGraph S4M(Ours)

Electricity MAE 0.398 0.413 0.411 0.352 0.386 0.348 0.383
MSE 0.318 0.332 0.321 0.242 0.301 0.254 0.295

ETTh1 MAE 0.676 0.571 0.604 0.556 0.538 0.530 0.538
MSE 0.867 0.636 0.677 0.588 0.560 0.571 0.560

Weather MAE 0.373 0.370 0.383 0.306 0.363 0.504 0.332
MSE 0.291 0.301 0.298 0.235 0.301 0.494 0.259

Traffic MAE 0.428 0.446 0.405 0.454 0.425 0.504 0.414
MSE 0.770 0.840 0.707 0.705 0.425 0.879 0.761

D.6 ADDITIONAL EXPERIMENT RESULTS

In the main text of the manuscript, we include the comparison of S4M with different baselines under
the missing ratio r = 0.06. In this section, we provide the complete additional results in Tab. 19
to Tab. 24 when r = 0.03, r = 0.12, and r = 0.24. Similar to the r = 0.06 case, Our proposed
S4M consistently achieves the best or second-best performance across most settings, demonstrating
its robustness in handling missing data.

Table 19: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.03.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.606 0.419 0.413 0.374 0.390 0.395 0.409 0.397 0.409 0.370
MSE 0.579 0.338 0.329 0.272 0.300 0.316 0.333 0.312 0.334 0.281

192 MAE 0.616 0.421 0.409 0.348 0.380 0.380 0.383 0.372 0.395 0.369
MSE 0.595 0.342 0.318 0.240 0.280 0.288 0.289 0.274 0.303 0.272

384 MAE 0.627 0.420 0.420 0.346 0.366 0.377 0.384 0.378 0.392 0.371
MSE 0.619 0.339 0.333 0.240 0.264 0.285 0.289 0.278 0.300 0.273

768 MAE 0.635 0.419 0.409 0.353 0.391 0.378 0.382 0.375 0.392 0.372
MSE 0.632 0.338 0.324 0.251 0.289 0.286 0.286 0.276 0.299 0.273

E
T

T
h1

96 MAE 0.696 0.624 0.681 0.624 0.528 0.618 0.625 0.603 0.632 0.565
MSE 0.917 0.734 0.885 0.752 0.556 0.721 0.732 0.689 0.757 0.603

192 MAE 0.731 0.629 0.669 0.619 0.607 0.596 0.599 0.588 0.619 0.555
MSE 0.971 0.742 0.883 0.739 0.736 0.661 0.663 0.650 0.710 0.566

384 MAE 0.745 0.625 0.698 0.625 0.545 0.597 0.602 0.599 0.616 0.557
MSE 1.010 0.734 0.933 0.746 0.599 0.663 0.669 0.669 0.697 0.586

768 MAE 0.781 0.646 1.156 0.651 0.623 0.616 0.618 0.614 0.623 0.580
MSE 1.061 0.780 1.157 0.768 0.760 0.695 0.696 0.700 0.711 0.624

W
ea

th
er

96 MAE 0.408 0.402 0.436 0.400 0.534 0.372 0.366 0.388 0.424 0.345
MSE 0.327 0.336 0.365 0.327 0.531 0.305 0.298 0.331 0.375 0.281

192 MAE 0.378 0.378 0.420 0.412 0.433 0.350 0.337 0.345 0.374 0.315
MSE 0.303 0.303 0.351 0.342 0.401 0.268 0.255 0.271 0.297 0.246

384 MAE 0.375 0.375 0.414 0.421 0.653 0.338 0.326 0.337 0.373 0.333
MSE 0.305 0.305 0.345 0.363 0.694 0.263 0.251 0.261 0.294 0.256

768 MAE 0.385 0.385 0.394 0.448 0.618 0.351 0.340 0.333 0.370 0.336
MSE 0.314 0.314 0.329 0.407 0.655 0.273 0.261 0.255 0.291 0.259

Tr
af

fic

96 MAE 0.677 0.504 0.449 0.471 0.516 0.455 0.444 0.433 0.455 0.420
MSE 1.198 0.923 0.788 0.767 0.915 0.837 0.822 0.811 0.837 0.849

192 MAE 0.681 0.501 0.437 0.405 0.537 0.404 0.399 0.391 0.413 0.381
MSE 1.225 0.927 0.754 0.648 0.944 0.698 0.710 0.710 0.711 0.697

384 MAE 0.680 0.507 0.417 0.390 0.527 0.401 0.392 0.385 0.406 0.380
MSE 1.216 0.940 0.715 0.632 0.908 0.695 0.700 0.703 0.701 0.689

768 MAE 0.680 0.507 0.456 0.435 – 0.391 0.389 0.388 0.396 0.380
MSE 1.223 0.882 0.772 0.715 – 0.693 0.707 0.731 0.694 0.696
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Table 20: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.03.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.415 0.424 0.401 0.356 0.373 0.384 0.386 0.389 0.403 0.379
MSE 0.339 0.351 0.312 0.250 0.280 0.301 0.303 0.305 0.321 0.290

192 MAE 0.423 0.408 0.415 0.338 0.381 0.370 0.371 0.376 0.385 0.358
MSE 0.349 0.327 0.326 0.226 0.281 0.275 0.281 0.280 0.289 0.260

384 MAE 0.439 0.429 0.409 0.359 0.380 0.364 0.368 0.374 0.384 0.362
MSE 0.368 0.361 0.316 0.251 0.279 0.268 0.274 0.278 0.291 0.265

768 MAE 0.437 0.445 0.406 0.358 0.376 0.364 0.373 0.373 0.388 0.362
MSE 0.370 0.378 0.323 0.253 0.274 0.267 0.284 0.277 0.294 0.265

E
T

T
h1

96 MAE 0.691 0.599 0.607 0.593 0.544 0.645 0.623 0.606 0.644 0.560
MSE 0.892 0.678 0.683 0.681 0.600 0.757 0.714 0.686 0.786 0.598

192 MAE 0.725 0.601 0.686 0.564 0.580 0.605 0.603 0.584 0.628 0.547
MSE 0.943 0.679 0.890 0.614 0.682 0.605 0.668 0.631 0.732 0.574

384 MAE 0.738 0.600 0.603 0.596 0.581 0.600 0.591 0.601 0.627 0.556
MSE 0.982 0.680 0.672 0.673 0.680 0.661 0.636 0.676 0.730 0.593

768 MAE 0.771 0.607 0.759 0.619 0.619 0.600 0.606 0.612 0.642 0.569
MSE 1.024 0.689 0.967 0.672 0.744 0.661 0.665 0.690 0.766 0.599

W
ea

th
er

96 MAE 0.375 0.373 0.384 0.377 0.511 0.375 0.362 0.360 0.388 0.340
MSE 0.298 0.308 0.306 0.296 0.505 0.319 0.302 0.300 0.329 0.272

192 MAE 0.380 0.349 0.406 0.388 0.410 0.325 0.317 0.314 0.349 0.308
MSE 0.317 0.278 0.332 0.311 0.374 0.249 0.237 0.239 0.270 0.227

384 MAE 0.417 0.357 0.369 0.403 0.626 0.324 0.315 0.306 0.347 0.302
MSE 0.358 0.287 0.288 0.338 0.662 0.247 0.234 0.230 0.266 0.222

768 MAE 0.437 0.362 0.372 0.421 0.603 0.325 0.317 0.306 0.342 0.300
MSE 0.387 0.294 0.306 0.374 0.635 0.246 0.235 0.225 0.342 0.220

Tr
af

fic

96 MAE 0.680 0.459 0.439 0.452 0.510 0.427 0.431 0.437 0.479 0.431
MSE 1.211 0.845 0.756 0.746 0.894 0.779 0.805 0.791 0.847 0.798

192 MAE 0.669 0.475 0.434 0.386 0.504 0.377 0.387 0.380 0.419 0.360
MSE 1.181 0.873 0.741 0.619 0.839 0.694 0.727 0.694 0.738 0.598

384 MAE 0.669 0.467 0.397 0.389 0.482 0.373 0.383 0.375 0.413 0.372
MSE 1.181 0.843 0.689 0.632 0.790 0.685 0.722 0.691 0.732 0.675

768 MAE 0.670 0.460 0.401 0.404 – 0.374 0.385 0.376 0.413 0.371
MSE 1.182 0.832 0.702 0.655 – 0.688 0.732 0.687 0.740 0.680

Table 21: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.12.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.655 0.458 0.419 0.405 0.414 0.429 0.450 0.421 0.478 0.402
MSE 0.666 0.394 0.339 0.313 0.331 0.369 0.390 0.347 0.442 0.328

192 MAE 0.652 0.450 0.411 0.378 0.401 0.398 0.404 0.399 0.414 0.374
MSE 0.666 0.386 0.326 0.279 0.307 0.320 0.317 0.307 0.340 0.281

384 MAE 0.659 0.450 0.430 0.395 0.437 0.395 0.398 0.397 0.413 0.378
MSE 0.682 0.383 0.344 0.301 0.347 0.317 0.310 0.304 0.336 0.286

768 MAE 0.659 0.450 0.432 0.390 0.437 0.397 0.397 0.395 0.413 0.382
MSE 0.680 0.384 0.348 0.299 0.347 0.319 0.310 0.303 0.337 0.299

E
T

T
h1

96 MAE 0.733 0.680 0.701 0.675 0.566 0.673 0.663 0.637 0.752 0.591
MSE 0.983 0.853 0.909 0.831 0.627 0.830 0.810 0.749 1.004 0.674

192 MAE 0.759 0.687 0.686 0.662 0.628 0.616 0.615 0.605 0.711 0.595
MSE 1.022 0.865 0.906 0.780 0.764 0.695 0.691 0.675 0.883 0.648

384 MAE 0.764 0.689 0.713 0.669 0.678 0.608 0.614 0.613 0.701 0.588
MSE 1.042 0.869 0.949 0.794 0.905 0.679 0.686 0.688 0.841 0.638

768 MAE 0.793 0.701 1.099 0.663 0.654 0.711 0.624 0.633 0.711 0.611
MSE 1.078 0.890 1.118 0.768 0.802 0.863 0.709 0.729 0.863 0.663

W
ea

th
er

96 MAE 0.413 0.402 0.471 0.698 0.556 0.401 0.385 0.385 0.536 0.355
MSE 0.341 0.336 0.492 0.767 0.562 0.348 0.323 0.325 0.540 0.278

192 MAE 0.426 0.377 0.468 0.706 0.455 0.368 0.344 0.348 0.447 0.335
MSE 0.365 0.303 0.414 0.789 0.431 0.299 0.271 0.275 0.386 0.253

384 MAE 0.454 0.383 0.451 0.708 0.656 0.359 0.343 0.337 0.453 0.331
MSE 0.405 0.313 0.396 0.806 0.699 0.286 0.266 0.263 0.393 0.256

768 MAE 0.480 0.382 0.418 0.719 0.633 0.364 0.340 0.336 0.446 0.350
MSE 0.439 0.312 0.362 0.838 0.673 0.288 0.264 0.261 0.381 0.276

Tr
af

fic

96 MAE 0.693 0.531 0.464 0.516 0.554 0.469 0.495 0.463 0.527 0.454
MSE 1.221 0.915 0.812 0.850 1.025 0.827 0.872 0.806 0.951 0.841

192 MAE 0.685 0.521 0.448 0.413 0.501 0.401 0.441 0.419 0.426 0.397
MSE 1.201 0.904 0.779 0.667 0.835 0.716 0.744 0.720 0.756 0.703

384 MAE 0.686 0.576 0.499 0.445 0.533 0.394 0.439 0.397 0.416 0.393
MSE 1.222 0.962 0.839 0.744 0.908 0.692 0.740 0.694 0.731 0.702

768 MAE 0.688 0.563 0.486 0.530 – 0.386 0.425 0.397 0.415 0.389
MSE 1.226 0.949 0.801 0.920 – 0.687 0.722 0.694 0.732 0.709
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Table 22: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.12.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.641 0.452 0.402 0.395 0.426 0.396 0.403 0.410 0.503 0.387
MSE 0.642 0.395 0.320 0.300 0.343 0.324 0.329 0.337 0.454 0.307

192 MAE 0.644 0.432 0.412 0.368 0.407 0.374 0.373 0.391 0.465 0.362
MSE 0.649 0.368 0.331 0.262 0.315 0.284 0.281 0.304 0.388 0.270

384 MAE 0.625 0.453 0.413 0.390 0.405 0.372 0.376 0.391 0.462 0.364
MSE 0.619 0.396 0.329 0.291 0.309 0.279 0.283 0.304 0.459 0.271

768 MAE 0.643 0.466 0.442 0.369 0.397 0.377 0.381 0.385 0.381 0.365
MSE 0.649 0.412 0.363 0.266 0.298 0.288 0.296 0.291 0.758 0.274

E
T

T
h1

96 MAE 0.727 0.646 0.611 0.625 0.599 0.678 0.684 0.642 1.000 0.590
MSE 0.960 0.778 0.687 0.718 0.707 0.836 0.830 0.766 0.718 0.651

192 MAE 0.754 0.643 0.683 0.611 0.640 0.601 0.637 0.603 0.920 0.581
MSE 0.995 0.772 0.877 0.674 0.807 0.625 0.726 0.670 0.699 0.610

384 MAE 0.757 0.645 0.626 0.662 0.623 0.623 0.607 0.605 0.868 0.594
MSE 1.012 0.781 0.687 0.791 0.765 0.648 0.664 0.673 0.702 0.642

768 MAE 0.784 0.656 0.802 0.665 0.656 0.698 0.621 0.625 0.873 0.635
MSE 1.045 0.792 1.061 0.787 0.810 0.848 0.701 0.726 15.503 0.721

W
ea

th
er

96 MAE 0.384 0.371 0.417 0.678 0.530 0.393 0.394 0.389 0.444 0.350
MSE 0.314 0.305 0.353 0.749 0.530 0.348 0.336 0.332 0.401 0.276

192 MAE 0.397 0.362 0.425 0.684 0.433 0.362 0.350 0.347 0.421 0.322
MSE 0.340 0.290 0.363 0.764 0.404 0.294 0.274 0.275 0.360 0.244

384 MAE 0.428 0.354 0.386 0.691 0.626 0.359 0.344 0.338 0.427 0.342
MSE 0.379 0.282 0.316 0.789 0.663 0.291 0.268 0.265 0.365 0.264

768 MAE 0.445 0.359 0.392 0.699 0.605 0.359 0.348 0.336 0.417 0.332
MSE 0.402 0.286 0.337 0.818 0.638 0.290 0.270 0.260 0.351 0.250

Tr
af

fic

96 MAE 0.686 0.502 0.433 0.447 0.519 0.457 0.455 0.459 0.630 0.447
MSE 1.232 0.955 0.750 0.727 0.924 0.834 0.875 0.882 1.082 0.867

192 MAE 0.681 0.542 0.430 0.398 0.540 0.389 0.392 0.410 0.542 0.387
MSE 1.221 1.047 0.753 0.661 0.948 0.703 0.744 0.795 0.891 0.725

384 MAE 0.683 0.534 0.415 0.406 0.485 0.387 0.392 0.405 0.558 0.387
MSE 1.229 1.019 0.730 0.693 0.811 0.692 0.744 0.786 0.901 0.726

768 MAE 0.684 0.540 0.491 0.416 – 0.387 0.389 0.398 0.541 0.400
MSE 1.228 1.036 0.817 0.706 – 0.695 0.740 0.763 0.885 0.749

Table 23: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under time point missing scenario when missing ratio r = 0.24.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.673 0.481 0.422 0.441 0.436 0.556 0.501 0.460 0.556 0.418
MSE 0.698 0.437 0.344 0.363 0.367 0.570 0.479 0.409 0.570 0.366

192 MAE 0.681 0.456 0.434 0.453 0.410 0.464 0.410 0.420 0.464 0.391
MSE 0.713 0.394 0.356 0.396 0.322 0.409 0.324 0.336 0.409 0.305

384 MAE 0.656 0.464 0.432 0.418 0.425 0.472 0.420 0.424 0.472 0.389
MSE 0.671 0.404 0.357 0.343 0.340 0.417 0.334 0.341 0.417 0.304

768 MAE 0.665 0.464 0.447 0.433 0.823 0.469 0.413 0.415 0.469 0.399
MSE 0.690 0.406 0.376 0.356 0.998 0.413 0.328 0.331 0.413 0.318

E
T

T
h1

96 MAE 0.765 0.733 0.695 0.749 0.654 0.710 0.717 0.681 0.841 0.627
MSE 1.043 0.992 0.898 0.976 0.851 0.908 0.946 0.879 1.145 0.742

192 MAE 0.776 0.739 0.685 0.707 0.650 0.644 0.659 0.640 0.817 0.609
MSE 1.047 1.004 0.893 0.856 0.815 0.739 0.792 0.782 1.076 0.703

384 MAE 0.772 0.738 0.702 0.712 0.677 0.632 0.648 0.648 0.814 0.628
MSE 1.058 1.001 0.917 0.870 0.908 0.710 0.768 0.779 1.059 0.710

768 MAE 0.800 0.744 0.793 0.702 0.630 0.639 0.661 0.672 0.801 0.632
MSE 1.087 1.007 1.067 0.825 0.738 0.714 0.800 0.827 1.018 0.744

W
ea

th
er

96 MAE 0.448 0.397 0.606 1.022 0.585 0.421 0.381 0.378 0.710 0.362
MSE 0.389 0.328 0.602 1.571 0.598 0.379 0.321 0.317 0.866 0.286

192 MAE 0.459 0.372 0.593 1.034 0.488 0.386 0.357 0.353 0.610 0.350
MSE 0.413 0.296 0.604 1.615 0.473 0.324 0.283 0.282 0.644 0.269

384 MAE 0.489 0.375 0.563 1.024 0.656 0.381 0.349 0.343 0.607 0.358
MSE 0.451 0.303 0.562 1.594 0.697 0.315 0.273 0.270 0.638 0.276

768 MAE 0.517 0.375 0.512 1.017 0.645 0.381 0.351 0.342 0.584 0.375
MSE 0.489 0.304 0.490 1.586 0.683 0.312 0.276 0.268 0.592 0.300

Tr
af

fic

96 MAE 0.705 0.641 0.490 0.607 0.554 0.487 0.569 0.529 0.658 0.485
MSE 1.300 1.142 0.920 1.073 1.025 0.910 1.063 0.984 1.282 0.933

192 MAE 0.695 0.617 0.512 0.472 0.533 0.442 0.480 0.452 0.539 0.433
MSE 1.267 1.110 0.950 0.804 0.949 0.826 0.870 0.812 1.014 0.787

384 MAE 0.698 0.623 0.487 0.466 0.541 0.431 0.456 0.440 0.547 0.433
MSE 1.274 1.133 0.896 0.802 0.952 0.795 0.842 0.809 1.031 0.788

768 MAE 0.700 0.628 0.509 0.463 – 0.432 0.449 0.434 0.560 0.429
MSE 1.270 1.158 0.872 0.798 – 0.799 0.823 0.789 1.030 0.789
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Table 24: Comparison of forecasting performance of S4M (Ours) and baselines on four datasets with
various look-back window length under variable missing scenario when missing ratio r = 0.24.

Data ℓL Metric ↓ BRITS GRU-D Trans. Auto. BiTGraph S4
(Mean)

S4
(Ffill)

S4
(Decay)

S4
(SAITS)

S4M
(Ours)

E
le

ct
ri

ci
ty

96 MAE 0.647 0.497 0.424 0.423 0.436 0.407 0.431 0.430 0.621 0.402
MSE 0.654 0.453 0.346 0.342 0.362 0.340 0.364 0.367 0.646 0.324

192 MAE 0.649 0.454 0.423 0.412 0.425 0.382 0.391 0.401 0.575 0.373
MSE 0.659 0.388 0.348 0.326 0.341 0.299 0.301 0.316 0.557 0.281

384 MAE 0.652 0.482 0.424 0.416 0.446 0.383 0.392 0.413 0.573 0.377
MSE 0.667 0.434 0.347 0.335 0.358 0.299 0.298 0.329 0.557 0.290

768 MAE 0.654 0.509 0.469 0.407 0.415 0.380 0.398 0.410 0.569 0.383
MSE 0.672 0.473 0.413 0.320 0.320 0.293 0.311 0.324 0.549 0.298

E
T

T
h1

96 MAE 0.757 0.682 0.654 0.712 0.637 0.708 0.728 0.671 0.828 0.622
MSE 1.016 0.874 0.742 0.875 0.807 0.916 0.959 0.847 1.161 0.766

192 MAE 0.768 0.681 0.658 0.705 0.663 0.655 0.692 0.637 0.775 0.601
MSE 1.025 0.871 0.775 0.836 0.867 0.776 0.873 0.765 1.022 0.654

384 MAE 0.774 0.681 0.630 0.691 0.661 0.648 0.657 0.669 0.753 0.630
MSE 1.061 0.879 0.708 0.806 0.868 0.767 0.785 0.843 0.961 0.713

768 MAE 0.798 0.692 0.746 0.687 0.660 0.665 0.682 0.677 0.750 0.682
MSE 1.072 0.895 1.004 0.782 0.868 0.808 0.842 0.852 0.955 0.829

W
ea

th
er

96 MAE 0.430 0.396 0.529 0.544 0.584 0.442 0.386 0.384 0.544 0.370
MSE 0.373 0.327 0.504 0.538 0.595 0.403 0.318 0.318 0.538 0.288

192 MAE 0.454 0.385 0.514 0.505 0.490 0.385 0.355 0.356 0.505 0.355
MSE 0.405 0.309 0.484 0.468 0.473 0.324 0.272 0.276 0.468 0.270

384 MAE 0.485 0.376 0.479 0.506 0.655 0.385 0.351 0.348 0.506 0.359
MSE 0.443 0.300 0.436 0.469 0.693 0.320 0.269 0.269 0.469 0.278

768 MAE 0.492 0.379 0.461 0.494 0.640 0.384 0.356 0.345 0.494 0.377
MSE 0.459 0.305 0.418 0.583 0.674 0.317 0.273 0.264 0.447 0.301

Tr
af

fic

96 MAE 0.699 0.575 0.507 0.464 0.547 0.462 0.507 0.524 0.725 0.473
MSE 1.266 1.074 0.891 0.778 0.998 0.850 0.977 0.969 1.245 0.896

192 MAE 0.689 0.645 0.481 0.427 0.546 0.404 0.412 0.442 0.640 0.410
MSE 1.241 1.203 0.827 0.734 0.971 0.747 0.755 0.831 1.114 0.747

384 MAE 0.690 0.643 0.509 0.428 0.483 0.401 0.408 0.435 0.641 0.414
MSE 1.245 1.199 0.857 0.748 0.813 0.741 0.742 0.823 1.109 0.753

768 MAE 0.692 0.639 0.526 0.434 – 0.389 0.408 0.436 0.633 0.438
MSE 1.247 1.174 0.906 0.714 – 0.713 0.750 0.826 1.102 0.796

D.7 VISUALIZATION

To provide a clear comparison among different models, we list supplementary prediction showcases
of Electricity dataset in Fig. 6. The results demonstrate that S4M surpasses other methods in captur-
ing future trends in the presence of missing observations.

D.8 REAL WORLD APPLICATION

For more general evaluation, we also include the real world dataset, USHCN climate dataset (Menne
et al., 2015), with 271728 time steps and 10 variables in total. We set the lookback window ℓL = 96
and horizon window ℓH = 96. The results shown in Tab. 25 further confirm that S4M outperforms
other methods on the real-world dataset.

Table 25: Comparison of forecasting performance of S4M (Ours) and baselines on USHCN climate
dataset for fixed look-back length and horizon window under time point missing scenario when
missing ratio r = 0.12.

r Metric↓ BRITS GRU-D S4(Mean) S4(Ffill) S4(Decay) S4M(Ours)

0.12 MAE 0.644 0.477 0.477 0.489 0.466 0.447
MSE 0.668 0.452 0.455 0.414 0.447 0.417

0.24 MAE 0.644 0.499 0.507 0.522 0.502 0.473
MSE 0.689 0.484 0.503 0.517 0.503 0.433

r Metric↓ Transformer Autoformer BiTGraph iTransformer CARD

0.12 MAE 0.461 0.511 0.474 0.478 0.451
MSE 0.406 0.499 0.439 0.460 0.411

0.24 MAE 0.475 0.534 0.495 0.504 0.477
MSE 0.403 0.530 0.469 0.502 0.444
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Figure 6: Visualization of S4M (Ours) and baselines with ℓH = 96, ℓL = 96 on the Electricity
dataset under time point missing scenario when missing ratio r = 0.06.
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