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Abstract

Temporal attention mechanism has been applied to get state-of-the-art results in
neural machine translation. LSTMs can capture the long-term temporal dependen-
cies in a multivariate time series. We use temporal attention mechanism on top
of stacked LSTMs demonstrating the performance on a multivariate time-series
dataset for predicting pollution. Using attention to soft search for relevant parts
of the input, our proposed model outperforms the encoder-decoder model version
(using only stacked LSTMs) in most cases. In our approach, the soft alignments
highlight the important time-steps that are most relevant in predicting pollution for
future time steps.

1 Introduction

The air pollution levels are increasing nowadays in major cities like Beijing with modern urbanization
and industrialization. Long-term exposure to fine particulate matters is an environmental risk factor
causing cardiopulmonary diseases and lung cancer [1]. Particulate matters (with diameters up to 2.5
microns) is, therefore, one of the important metrics for pollution. Previous works of forecasting air
pollution have been performed using deterministic models [2], linear models [3}, 4] and support vector
regression [3}16]. LSTM has been used to predict air pollution for single future timestep [7, 8]. LSTM
framework demonstrates equivalent accuracy compared to the baseline support vector regression,
but LSTM can be used to predict multiple timesteps in the future [7]. We propose a forecasting
model to predict air pollution for multiple timestep based on stacked LSTMs and temporal attention
mechanism which outperforms the previous results [7] in terms of RMSE values.

LSTM networks use input, output and forget gates to prevent the memory contents being perturbed by
irrelevant information. LSTM networks are capable of learning long-range correlations in a sequence
and can accurately model complex multivariate sequences [9]. LSTMs have been used effectively for
prediction tasks involving multivariate time series data as input [[10, [11]].
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In our encoder-decoder model, we use two layers of stacked LSTMs to predict the pollution in
the future using multivariate time series data as input. But, in this model, the entire information
in the input sequence is encoded in a vector which is used for decoding the output sequence. As
the dimension of the vector is fixed, the performance may degrade when the length of the input
sequence increases. The temporal attention mechanism learns the alignments by soft searching the
most relevant time steps in the input. Our proposed model jointly learns to align and demonstrates
improved performance for different lengths of the input. We can get an enhanced understanding from
the attention weights learned by the model which explain the time steps of the multivariate time series
input contributing the most for predicting pollution.

2 Experiments

We propose the use of temporal attention mechanism for multivariate time series prediction. The
evaluation is performed on the Beijing PM2.5 Data Set. We vary the lengths of the input and output
sequences keeping the number of variables in the input sequence fixed. In our approach, we compare
the performance of two models for this task using the same dataset.

2.1 Dataset

The Beijing PM2.5 Data Set from UCI Machine Learning Repository is an hourly dataset containing
the PM2.5 data of the US Embassy in Beijing and meteorological data from Beijing Capital Interna-
tional Airport [[12]]. For the problem formulation, we predict the pollution of the upcoming hours with
the weather conditions and pollution from the previous hours as input. We have 8 input variables-
pollution (PM2.5 concentration), dew point, temperature, pressure, combined wind direction, cumu-
lated wind speed, cumulated hours of snow, cumulated hours of rain. The time period of the data
is between Jan 1st, 2010 to Dec 31st, 2014 with 43824 total number of instances. Instead of using
different intervals with six months’ data as training and two months’ data as testing [8], we use first 4
years’ data for training and we test our model performance on the last 1 year.

2.2 Models

We use two types of models in this work. The first model is the LSTM Encoder-Decoder Model
which doesn’t comprise an attention block. The second model is the LSTM Attention Model with the
attention block.

2.2.1 LSTM Encoder-Decoder Model

In the Encoder-Decoder Model, the encoder part compresses the information from the entire input
sequence into a vector which is generated from the sequence of the LSTM hidden states [[13]]. The
fixed-dimensional representation of the input sequence is given by the last hidden state of the encoding
part as shown in Fig. 1. As we observe during experiments that deep LSTMs perform better than
shallow LSTMs, we use two layers of stacked LSTMs for encoding the input sequence. The decoding
part has one LSTM layer for predicting the output sequence.

2.2.2 LSTM Attention Model

The use of a fixed-length vector for encoding the input sequence can be a bottleneck in improving the
performance of the LSTM Encoder-Decoder Model [[14]]. The extension of this approach is to learn
the alignments by soft searching the set of time steps in the input having the most relevant information.
Similar to the Encoder-Decoder Model, we use two stacked LSTM layers for the encoding part and
one LSTM layer for decoding as shown in Fig. 2. The input sequence is encoded into a sequence of
vectors instead of encoding into a fixed-length vector. Each annotation a<*> focuses on information
surrounding the time step < ¢ > in the sequence. The context vector is generated by taking a weighted
sum of the annotations.
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Figure 1: Encoder-decoder model using stacked LSTMs for encoding and one LSTM layer for
decoding.
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Figure 2: Proposed model predicts multiple output timesteps using temporal attention. The alignments
are learned by the attention mechanism.

We use softmax to compute the attention weights for each annotation a<*> as:
exp(e<ti>)

>z exp(e<hi>)

Q<ti> —

The alignment model (dense layer,d) is parametrized as a feedforward neural network and is jointly
trained with the entire network. The alignment model which scores the inputs around timestep ¢ is
given as:

€
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3 Results

For the Encoder-Decoder model, we get test set RMSE values (for T, = 5) ranging from 40.08 to
41.56 as we increase the number of input timesteps from 20 to 100. When we are predicting pollution
for 10 future timesteps (7}, = 10), due to fixed vector length encoding the RMSE values increase



Input Sequence Length (T,,) Model RMSE(T, = 5) | RMSE(T, = 10)
20 Attention 39.55 51.65
Encoder-Decoder 40.08 55.54
30 Attention 39.64 53.16
Encoder-Decoder 42.03 54.79
40 Attention 40.06 53.93
Encoder-Decoder 41.57 55.03
50 Attention 41.32 56.82
Encoder-Decoder 41.45 57.99
100 Attention 40.14 57.03
Encoder-Decoder 41.56 56.58

Table 1: Comparison of performance of the two models using test set rmse values for different input
and output sequence lengths
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Figure 3: Distribution of attention weights for different lengths of input sequence.

55.54 to 57.99 with increasing T,. With increasing 77, our proposed model (with Attention) performs
better than the Encoder-Decoder model in most cases except for some cases with comparable results
as shown in Table[I] We show the temporal attention weights for varying number of input timesteps
in Fig. 3. The explanations provided by our model demonstrate that the model learns to focus only
on the last few timesteps for predicting the output, even when we increase 7, from 20 to 100. For
predicting pollution, Fig. 3. suggests that using less number of input timesteps is sufficient and that
excess input information may degrade the performance.

4 Conclusions

Predicting pollution for future timesteps is an important task and accurate predictions can lower
the risk with adequate warnings and implementing beneficial policies. In this work, we propose a
model based on stacked LSTMs and temporal attention mechanism which focuses on relevant input
timesteps for prediction. Our approach performs better than the Encoder Decoder model without
using attention. We outperform other previous results on the same dataset with both of our models.
The model also shows that regardless of the length of the input sequence it focuses mostly on the
recent timesteps to predict the pollution. The input timesteps with the highest weights contribute
the most to predict the output sequence. The alignments learned by the model may provide a better
understanding of different types of multivariate time series prediction problems.
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