Pattern recognition of labeled concepts by a single
spiking neuron model.
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Abstract

Making an informed, correct and quick decision can be life-saving. It’s crucial
for animals during an escape behaviour or for autonomous cars during driving.
The decision can be complex and may involve an assessment of the amount of
threats present and the nature of each threat. Thus, we should expect early sensory
processing to supply classification information fast and accurately, even before
relying the information to higher brain areas or more complex system compo-
nents downstream. Today, advanced convolution artificial neural networks can
successfully solve such tasks and are commonly used to build complex decision
making systems. However, in order to achieve excellent performance on these tasks
they require increasingly complex, "very deep" model structure, which is costly
in inference run-time, energy consumption and number of training samples, only
trainable on cloud-computing clusters. A single spiking neuron has been shown
to be able to solve many of these required tasks [[1] for homogeneous Poisson
input statistics, a commonly used model for spiking activity in the neocortex; when
modeled as leaky integrate and fire with gradient decent learning algorithm it was
shown to posses a wide variety of complex computational capabilities. Here we
refine its learning algorithm. The refined gradient-based local learning rule allows
for better and stable generalization. We take advantage of this improvement to
solve a problem of multiple instance learning (MIL) with counting where labels are
only available for collections of concepts. We use an MNIST task to show that the
neuron indeed exploits the improvements and performs on par with conventional
ConvNet architecture with similar parameter space size and number of training
epochs.

1 Introduction

The basic elements of our brains are neurons. Biological neurons communicate among themselves
with discrete time events - action potentials or simply spikes. However, networks of spiking neurons
are difficult to model and analyze, because of the discrete nature of spikes and their mechanism of
fast rise and reset of the neuron’s voltage. Hence, vast majority of models ignore the spikes discrete
nature and assume that only the rate of spike occurrences matters. Rates, by concept, can be treated
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with continuous time-varying functions, which allows for various derivative based approaches such
as gradient decent learning, to be implemented.

Hence, it is not surprising that the majority of neural network studies and algorithms are rate based.
Their implementations through deep learning [2]], ConvNet ([3])), echo state ([4]) and recurrent Long
Short-Term Memory (LSTM) networks ([5]) are indeed highly successful. As the tasks are becoming
more complex, however, these model classes are becoming increasingly more costly and often require
cloud-computing clusters and millions of samples to be trained [6]. It was recently shown by OpenAl
that the amount of computation needed by such artificial systems has been growing exponentially
since 2012.

Thanks to their efficiency, spiking neurons and networks seem to be natural candidates for the next
generation of neural network algorithms. Some recent studies managed to train spiking neural
networks with gradient-based learning methods. To overcome the discontinuity problem, the currents
created by the spikes in receiving neurons (essentially through linear low-pass filtering) were used
in [[7] and [8] for the training procedures. Other studies use the timing of the spikes as a continues
parameter [9], [10], which leads to neuronal (synaptic) learning rules that rely on the exact time
intervals between the spikes of the sending and receiving neurons (pre- and post- synaptic). These
Spike Timing Dependent (STDP) rules had first been observed experimentally and hence much of
attention is given to them in neuroscientific studies [11] [[12] [[13]. But their computational capability,
especially for classification tasks, has not been well exploited.

An additional intriguing approach is to train
spiking neurons as classifiers, perceptron-like
machines [14], [15]. Here, the gradient learn-
ing is done based on the neuron’s membrane
voltage in relation to the maximum voltage the
neuron reached compared to its threshold for
spiking. A full spiking network was trained L
in a similar fashion to generate patterns [[16].
Here we concentrate on the algorithm for the re-
cently published Multi-Spike Tempotron [1]], a
single neuron leaky integrate and fire model that
solves regression problems including learning
how to recognize concepts within a collection.
Specifically, the Multi-Spike Tempotron (MST)
learns to generate a certain number of spikes for
a given concept (stimulus). The learning algo-
rithm changes the input weights according to a
voltage threshold gradient decent, such that the
weights eventually fit the threshold in which the
neuron generates the exact number of spikes re-
quired. The signals we use for training the Multi-
Spike Tempotron are for collections (bags) of
concepts, a learning strategy termed Multiple Instance Learning (MIL) with counting that has been
recently proposed in the literature [17], [[18]. Thus, the Multi-Spike Tempotron is capable of evaluat-
ing a sum of multiple object instances present in an input stream. This is especially useful in early
stages of decision making, where assessment of the approximate number of threats present is needed
quickly, for example to help escape predators or avoid collisions. In this study we show that a synapse
specific adaptive update approach with smoothing over previous updates, similar to RMSprop [19],
generates more stable generalization compared to [1]] and apply it to a counting MNIST task.
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Figure 1: Counting Even Digits Using Spikes.
From left to right: An example of an image
(100x100 px) we generate using multiple digits
from the couting MNIST data set. We reshaped the
image to a single vector (1x10.000 px) and encode
each pixel as a Isec spike train. We use the pixel’s
intensity to define the rate of the spike train. The
spike train is then fed into a single Multi-Spike
Tempotron (MST) with 10.000 synapses which is
trained to elicit exactly p output spikes where p is
equal to the number of even digits present in the
image.

2 Results

We apply the MST model to the problem of counting the occurrence of even digits within an
image composed of several random handwritten MNIST digits and compare its performance with a
conventional Convolutional Neural Network.

We consider the problem of multiple-instance learning using the MNIST data-set of handwritten
digits. Following [18], we generate new images of size 100x100 pixels which contain a random set of



5 MNIST digits, randomly positioned within that image (fig[T). Rejection sampling is used to ensure
digits are separated by at least 28 pixels. Each such image is weakly labeled with the total number of
even digits present in that image. The data set is imbalanced and contains significantly more samples
showing zero even digits. Thus a naive model which always predicts zero is already able to achieve a
better performance than chance level (random-guessing). The model is supposed to learn to count the
number of even digits given a weak label in order to solve this task correctly.

For the the Multi-Spike Tempotron the images have to be encoded as spiketrains. We first consider
a naive spike-encoding which encodes each individual pixel as 1s long spiketrain generated by a
I's process with the rate proportional to the pixel’s intensity (grey value). This type of encoding
is naive in the sense, that it considers each pixel to be independent and thus does not exploit local
spatial correlations of images. Next we consider a more sophisticated spike-encoding frontend, the
Filter-Overlap Correction Algorithm (FoCal), a model of the fovea centralis [20]. This encoding
algorithm makes use of spatial correlations in order to reduce the amount of redundant informa-
tion. This is a simplified version of the convolutional filters used in current deep neural networks.
For comparison, we train a conventional ConvNet archi-
tecture that has been shown to successfully accomplish

Counting MNIST Results this task when trained on 100000 samples. The archi-
Model #Params RMSE tecture uses several layers (convl - MaxPool - conv2 -
conv3 - conv4 - fc - softmax) and includes recently dis-

g—?;l;]gelt/[LP Sgég;@ %Zﬁlg covere.d advances like strided and dilated convol}ltipns.
always-zero n/a 1.65 To train the ConvNet we use the ADAM optimizer
random guessing n/a 92.50 which has been found to be an effective optimizer for
’ training ConvNets. For the MST model we use our

MST + naive Encoding adaptive learning rate method and the originally pro-
adaptive 10000 234 posed Momentum method. Since we want to evaluate
Momentum 10000 1.87 the different training methods with regard to compu-
- tational and sample efficiency all models are trained

MST + FoCal Encoding for 30 epochs on the same training set of 800 images
adaptive 10000 1.22 and are evaluated on an independent test set of 800
Momentum 10000 1.28 unseen images. In general, the counting problem is

more similar to a regression problem, since one does
not know a-priori the maximum number of desired con-
cepts present in an input. For this reason, we choose

Table 1: Results for the Counting MNIST
experiment where the model should learn

to count the number of even handwritten
digits present in a given 100x100 pixel im-
age. We evaluate each model with regard
to it’s complexity (number of parameters /
synapses), and RMSE of wrongly counted
digits (lower is better). The ConvNet and
MST models have both been trained for
30 epochs on the same training set of 800
samples. Evaluation was done on an in-
dependent set of 800 validation samples.
For reference we also report performance
for naive models which always-predict zero
and do random-guessing (chance-level).

root mean-squared error (RMSE) of wrongly counted
even digits as the evaluation criterion, where a lower
value means better performance. This criterion espe-
cially penalizes predictions that show a large difference
between the true and the predicted value. Thus, we
want to point out that the ConvNet model is build by in-
corporating prior knowledge regarding the distribution
of training targets. It is constrained to learn a categor-
ical distribution over [0, 5], where 5 is the maximum
possible count of even digits in an image. This has
two important implications; First, the ConvNet model
is unable to correctly predict images that would have
more than 5 even digits. While for this particular task

the data-set is constructed such that this is not possible
for general regression problems the prediction targets are usually not bounded or constrained to fixed
set of values. Second, the maximum possible prediction error is constrained to be 5. In contrast,
the MST model does not have any of this prior knowledge or constraints. It is able to solve the
general, true regression problem and can also make predictions for images that contain more than 5
even digits. Further this means, that for the MST the learning problem to be solved is harder. The
maximum prediction error in this case is unbounded and makes the MST more vulnerable to high
RMSE compared to the ConvNet. Results are summarized in table[T]and the best performing model,
MST with adaptive learning rate, is highlighted in bold. Interestingly the single-neuron MST model
is also able to perform on par with the rate-based ConvNet. In order for the ConvNet to achieve better
RMSE as the MST model, the ConvNet needs to be trained for 5-10x more epochs as the MST. If
the model’s complexity in terms of free parameters is taken into account (adjusted RMSE), the MST



model is computationally more efficient. We find that using FoCal as spike-encoding frontend works
much better compared to our naive encoding, which is expected behaviour. Exploiting local, spatial
correlations is known to be more effective compared to considering each pixel to be independent. This
goes in line with artificial neural networks where the success of ConvNets over regular, multilayer
networks is mostly due to the learned spatial filters by its convolutional layers. We conclude, that
the type of encoding has an impact on the model’s performance in general and by applying more
sophisticated and efficient encoding algorithms, the performance of the MST model can be improved
further. We leave the exploration of different types of encodings open for future research.
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