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ABSTRACT

Serial crystallography is the field of science that studies the structure and prop-
erties of crystals via diffraction patterns. In this paper, we introduce a new serial
crystallography dataset comprised of real and synthetic images; the synthetic im-
ages are generated through the use of a simulator that is both scalable and accurate.
The resulting dataset is called DiffraNet, and it is composed of 25,457 512x512
grayscale labeled images. We explore several computer vision approaches for
classification on DiffraNet such as standard feature extraction algorithms associ-
ated with Random Forests and Support Vector Machines but also an end-to-end
CNN topology dubbed DeepFreak tailored to work on this new dataset. All im-
plementations are publicly available and have been fine-tuned using off-the-shelf
AutoML optimization tools for a fair comparison. Our best model achieves 98.5%
accuracy on synthetic images and 94.51% accuracy on real images. We believe
that the DiffraNet dataset and its classification methods will have in the long term
a positive impact in accelerating discoveries in many disciplines, including chem-
istry, geology, biology, materials science, metallurgy, and physics.

1 INTRODUCTION

Real-time feedback on diffraction images is vital in Crystallography (Berntson et al. (2003); Ke
et al. (2018)). Crystallography (Woolfson (1997)) is the science that studies properties of crystals.
It makes use of X-ray diffraction to infer structures of crystals. Broadly, a crystal is irradiated with
an X-ray beam that strikes the crystal and produces an image with the diffraction pattern (Fig. 1).
Images are captured by a detector that runs at 130 Hz. At present serial crystallography, scientists
have to screen tons of images by manual classification. This process is not only error-prone but also
has the effect of slowing down the overall discovery process.

In this paper, we introduce a method for generating labeled diffraction images. The technique pro-
duces and labels images via a simulator and, therefore, the process is both scalable and accurate.
The simulator receives as input the properties of the incident X-ray beam, the environment, and the
structure to be analyzed and generates synthetic diffraction images. Since the process is simulated
and controlled, the dataset annotation is 100% accurate, an impossible feat for manually annotated
real images.

As a result of the simulator we introduce DiffraNet, the first dataset of serial crystallography diffrac-
tion that combines real and synthetic images. DiffraNet is composed of 25,457 512x512 grayscale
labeled images and we open it to the rest of the community. The synthetic images are divided into
five classes, each representing a possible outcome of the serial crystallography experiment. Of the
five possible classes, two classes denote images with no diffraction patterns (an undesired outcome)
and the other three denote images with varying degrees of diffraction. The real images are divided
into two classes, representing images with and without diffraction patterns. DiffraNet contains fun-
damentally different images with respect to standard image datasets such as ImageNet (Deng et al.
(2009)) and the CIFARs (Krizhevsky (1993)), see Fig. 2.

Finally, we also present three different approaches for classifying diffraction images. First, a method
based on a mix of feature extractors and Random Forests (RF). Second, a combination of feature
extractors and Support Vector Machines (SVM). Last, DeepFreak, a Convolutional Neural Network
(CNN) topology based on ResNet-50. All approaches are open-source and have been fine-tuned
using AutoML hyperparameter optimization tools such as Hyperopt (Bergstra et al. (2013)) and
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BOHB (Falkner et al. (2018)). These approaches achieve 98.45%, 97.66%, 98.5% accuracy on
synthetic data, respectively, and 86.81%, 91.1%, 94.51% accuracy on real data.

To sum up, the contributions of this paper are:

• A new, openly available, classification dataset dubbed DiffraNet for image diffraction in
the serial crystallography experimental setting.
• Three classification methods based on RFs, SVMs and CNNs able to classify synthetic

diffraction images with up to 98.5% accuracy and real diffraction images with up to 94.5%
accuracy.
• An open-source implementation of the newly introduced approaches.

The rest of this paper is organized as follows. Section 2 presents a background in X-ray crystallog-
raphy and a summary of related work. Section 3 describes our simulator and the DiffraNet dataset.
Sections 4 and 5 describe our approaches for classifying diffraction images from DiffraNet and the
experimental results achieved. Finally, Section 6 concludes this work and presents future work.

2 BACKGROUND

2.1 CRYSTALLOGRAPHY

Crystallography is used in many disciplines, including chemistry, geology, biology, materials sci-
ence, metallurgy, and physics. It has been a central tool in driving significant increases in under-
standing processes from solid-state physics to molecular biology to synthetic chemistry (Woolfson
(1997)). This understanding, in turn, has led to substantial advances in, for instance, drugs devel-
opment for fighting diseases. Serial Crystallography (Stellato et al. (2014)) refers to a more recent
crystallography technique for investigating properties from hundreds of thousands of microcrystals
using X-ray free-electron laser.

Crystallography makes use of X-ray diffraction to infer the structure of crystalline samples. First, a
crystal is irradiated with an X-ray beam. As X-ray photons strike the crystal, some will diffract due
to the geometry of the lattice and produce a diffraction pattern unique to the material as in Fig. 1.
These patterns are recorded by a detector (usually phosphor or silicon) and make it possible to infer
information about the crystal, like the chemical bonds and disorder of its atoms.

Figure 1: Generic scheme depicting a crystallography experiment.

Analysis and feedback on diffraction images are paramount in both conventional and serial crys-
tallography (Berntson et al. (2003); Ke et al. (2018)). Recent technological advances have auto-
mated and accelerated crystallography experiment steps and, in turn, allowed researchers to gener-
ate diffraction results at unprecedented speeds. However, as no system currently exists to provide
real-time analysis of the diffraction images produced, many of the compelling advantages afforded
by these technological leaps cannot be fully utilized. Besides, without timely feedback, expensive
and limited quantity samples may be wasted because of problems regarding experimental optimiza-
tion, sample positioning, or X-ray beam alignment. This paper addresses the automation of serial
crystallography image screening.
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2.2 PREVIOUS APPROACHES TO CLASSIFICATION ON SERIAL CRYSTALLOGRAPHY

Several studies have been done for trying to automatically classify images derived from crystallog-
raphy phenomena (Berntson et al. (2003); Becker & Streit (2014); Yann & Tang (2016); Park et al.
(2017); Bruno et al. (2018); Ke et al. (2018); Ziletti et al. (2018)).

In particular, Bruno et al. (2018) employed CNNs for classifying outcomes of crystallization pro-
cesses. The model they used is a variation of Inception-v3 (Szegedy et al. (2016)), images were
categorized in the following four classes: clear, precipitate, crystal, and other. The dataset used in
this study has nearly half a million images, and around 10% of them were used for testing. They
achieved 94% accuracy on the test set, approximately. Yann & Tang (2016) aimed at analyzing pro-
tein crystallization-trial images. Notably, their CNN approach dubbed CrystalNet hits around 8%
and 20% improvement in overall accuracy compared to the Random Forests and Nearest Neighbor
approaches, respectively.

Ziletti et al. (2018) used CNNs to classify crystal structures, i.e., the way atoms inside a crystal
are arranged. By using diffraction images, they were able to represent and classify a dataset with
around 100,000 crystal structures. Park et al. (2017) worked on classifying powder X-ray diffraction
patterns using CNNs achieving 94.99% of accuracy.

Similar to our work, Ke et al. (2018) used a CNN for detecting Bragg spots on crystallography
diffraction images. Their CNN employs a structure similar to that of AlexNet (Krizhevsky et al.
(2012)) and comprises four sets of layers: convolution, batch normalization, rectification, and down-
sampling (max pooling). They used local contrast normalization to enhance the contrast between
background and Bragg spots. They also augmented the dataset through the use of random and center
cropping. Ke et al. used a human expert annotated dataset, consisting of 2,000 images, as the ground
truth and compared their CNN accuracy against with automatic spot-finding tools. They achieved
around 93% accuracy in classifying images as a hit, maybe, or miss. Respectively, these classes refer
to when an image does, might, and does not possess Bragg spots.

Our work sets apart from these above in several ways. First, our process of labeling data is scalable
and accurate. Second, our dataset is tailored to a specialized application: Crystallography. Third,
we explore different computer vision techniques for classification. Last, we use multiple AutoML
optimization tools to achieve the best results in each setting.

2.3 IMAGE DATASETS

Today, there is a great deal of publicly available datasets for training machine learning models.
Few notorious datasets are: ImageNet (Deng et al. (2009)), CIFAR-10/100 (Krizhevsky (1993)) and
COCO (Lin et al. (2014)). ImageNet, for example, comprises around 14 million images following
the WordNet hierarchy organization. On average, each node of the ImageNet’s hierarchy has 500
images. Some popular ImageNet synsets include animal, plant, material, and activity. Common Ob-
jects in Context, or COCO for short, is an annotated dataset consisting of images portraying scenes
from everyday life and their ordinary objects. COCO features, for instance, 200,000 labeled images,
1.5 million object instances, and 250,000 people with keypoints. The CIFAR-10 and CIFAR-100 are
annotated samples of the Tiny Images Dataset (Krizhevsky (1993)). CIFAR-10 comprises 60,000
images divided into ten (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) classes
containing 6,000 images each. Of these, 50,000 are for training and the rest for testing. Its larger
counterpart, CIFAR-100, is much like CIFAR-10, but it is made up of 100 classes with 600 images
each.

3 THE DIFFRANET DATASET

We introduce a new, openly available, dataset of diffraction images dubbed DiffraNet. DiffraNet is
comprised of both real and synthetic diffraction images. However, experimental diffraction images
are difficult to classify on a large scale. Highly trained experts are needed to categorize these images
manually, and the process is both slow and error-prone. Thus, the majority of our dataset is synthet-
ically generated. The synthetic dataset is 100% accurate because labels derive images, not the other
way round.
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Figure 2: DiffraNet dataset synthetic and real classes.

Our synthetic images were generated using the nanoBragg simulator1. The physics of X-ray diffrac-
tion are well understood and we have developed simulators for the entire process of producing
diffraction images. The input to nanoBragg includes X-ray beam properties (flux, beam size, di-
vergence, and bandpass), crystal properties (unit cell, number of cells, and a structure factor table),
and the experimental parameters (sources of background noise, detector point-spread, and shadows
– such as the beamstop). The simulation is computationally intensive but highly parallelizable: im-
ages can be rendered and labeled at an average rate of one per second on the 384-core SMB cluster.

The images were generated using a single crystal structure, but different diffraction parameters.
Most notably, the X-ray beam intensity varied widely from shot to shot, as did the volume of crys-
talline material in that beam relative to non-crystalline matter. This wide dynamic range is a big
factor in making this kind of data difficult to analyze. We also simulate imperfections in the crystal
by breaking it up into smaller crystals and vary parameters like the sources of background noise
and the orientation of the crystal. At last, we convert the 16-bit images generated by the simulator
to 8-bits by taking the square root of each pixel. For a detailed description of the entire simulation
process, the reader can refer to Appendix A.

DiffraNet comprises 25,000 512x512 grayscale synthetic diffraction images. The classes are blank,
no-crystal, weak, good, or strong. Blank denotes an image with no X-rays and only detector noise
while No-crystal the diffraction from amorphous carrier material but no crystalline matter. Weak,
Good, and Strong, in turn, denote images with a crystal in the beam with increasingly stronger
contribution to the pattern: Weak has small or faint diffraction patterns, Good has slightly larger and
more discernible patterns, and Strong are ideal images, with large and clear diffraction patterns.

DiffraNet also comprises 457 512x512 grayscale real diffraction images. Real images have higher
resolution, are notably darker, and include a horizontal beamstop shadow across the middle that
blocks part of the diffracted beams. We downsample and crop these images down to 512x512
resolution, removing the beamstop shadow, and provide two real dataset variants in DiffraNet: one
with the raw cropped images and another with the images preprocessed to make the patterns more
visible. The preprocessed images were generated by multiplying the pixels of the raw images by a
constant factor so that their mean pixel value matches the mean pixel value of the synthetic images.
Finally, because accurately labeling real images is a challenging and expensive task, we label these
images simply as diffraction and no-diffraction. Fig. 2 shows samples from each class of DiffraNet’s
synthetic and real datasets.

DiffraNet is publicly available2 and can be used for training, validating, and testing machine learning
models. The primary goal in the classification of DiffraNet is to differentiate between classes with
and without crystal diffraction patterns so that images without diffraction pattern can be discarded
and downstream analysis can focus on images that are the most promising. DiffraNet partitions the
synthetic dataset into training (40% of the dataset with a total of 10,000 images), validation (9.6%

1http://doubleblind.com
2http://doubleblind.com
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of the dataset with a total of 2,400 images), and test sets (50.4% of the dataset with a total of 12,600
images) and the real dataset into validation (~80% of the dataset with a total of 366 images) and test
(~20% of the dataset with a total of 91 images) sets.

4 CLASSIFICATION ON IMAGE DIFFRACTION

We propose three approaches for the classification of the DiffraNet dataset introduced in 3. The first
two approaches rely on RFs and SVMs combined with feature extractors and the third approach is a
CNN. We use off-the-shelf AutoML tools to search the hyperparameter space of the three classifiers
automatically. We adopt two different tools: Hyperopt (Bergstra et al. (2013)) for the RF and SVM
classifiers, and BOHB (Falkner et al. (2018)) for the CNN classifier. We use BOHB for the CNN
because it includes a multi-fidelity feature that accelerates searches on CNNs. Both tools are based
on Tree Parzen Estimator (TPE) (Bergstra et al. (2011)) models.

4.1 FEATURE EXTRACTORS

We implement three feature extractors to use together with our RF and SVM classifiers. Specifically,
we use the Scale Invariant Feature Transform (SIFT, Lowe (2004)) with the Bag-of-Visual-Words
approach (BoVW, Yang et al. (2007)) as local feature extractor, and the Gray-level Co-occurrence
Matrix (GLCM, Haralick et al. (1973)) and Local Binary Patterns (LBP, Ojala et al. (2002)) as
global feature extractors. We choose these extractors because of their strong performance in image
classification tasks (Kumar et al. (2017)) and in particular GLCM and LBP for their global texture
features that are suitable in describing the images in DiffraNet.

We implement the feature extractors in Python using the OpenCV and scikit-image libraries. Also,
we fine-tune the parameters of the extractors and both the SVM and RF classifiers using the Hyper-
opt Python library (Bergstra et al. (2013)). For the SIFT + BoVW extractor, we use the k-means
algorithm to aggregate the visual codewords and optimize the size of the codebook by tuning the
number of clusters in the k-means algorithm. For GLCM, we tune the distances and angles between
pixel value pairs and use six Haralick features (Haralick et al. (1973)): Contrast, Dissimilarity, Ho-
mogeneity, Angular Second Moment, Energy, and Correlation. Finally, for LBP we tune the radius
and number of points parameters that define the neighborhood size used by the extractor to compute
the binary patterns. The feature extractors search space is summarized in Appendix B.

4.2 RF AND SVM CLASSIFIERS

RFs (Breiman (2001); Criminisi et al. (2012)) is an ensemble learning technique that can be used
for both classification and regression. RFs create a forest of decision trees, a supervised learning
technique for decision-making processes. A randomized decision tree, in turn, randomly select
attributes out of a set of randomly chosen training samples.

SVMs (Vapnik (1995)) is a supervised learning technique used for classification and regression.
For (almost) linearly separable data SVMs are straightforward: given labeled training data, SVMs
output a separating hyperplane which may be then used to classify unlabeled data. For data that
is not linearly separable, on the other hand, SVMs first employ kernel functions to map that onto
another—often higher—dimensional space where the data is (almost) linearly separable and then,
accordingly, proceed by finding a hyperplane.

We use Hyperopt to search for feature extractors and classifier hyperparameters jointly. Hyperopt
proceeds by choosing one feature extractor and one classifier and then choosing a hyperparameter
configuration based on the search spaces of each. By optimizing the extractor and classifier together,
we allow Hyperopt to estimate particular extractor and classifier combinations that function well
together. The search space is summarized in Appendix B.

4.3 THE DEEPFREAK NEURAL NETWORK

We introduce a new CNN dubbed DeepFreak. DeepFreak uses an adapted version of the Residual
Neural Network with 50 layers (ResNet-50, He et al. (2016)). ResNet introduces identity shortcut
connections that bypass one or more layers (as in Highway Networks, Srivastava et al. (2015)) with
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Table 1: DeepFreak topology hyperparameters.

Hyperparameter Value
Number of filters 64
1st convolution kernel 7
1st convolution stride 2
1st pool size 3
1st pool stride 2
2nd pool size 7
2nd pool stride 1
Number of blocks 3, 4, 6, 3
Block strides 1, 2, 3, 3

Table 2: DeepFreak learning hyperparameters.

Hyperparameter Value
Number of epochs 180
Optimizer SGD
Learning rate 8.4474×10−4

Decay epochs Every 10 epochs
Decay rate 0.1
Momentum 0.56168
Weight decay 3.4855×10−5

Loss function Cross-Entropy
Batch size 1

the addition of residual blocks which let the stacked layers fit a residual mapping instead of directly
fitting the desired underlying mapping. This helps to address the vanishing gradient problem of deep
networks.

The original ResNet topology, however, presumes images of size 224x224 as opposed to our
512x512 DiffraNet images. Further, we have found that simply downsampling our images to the
image size accepted by ResNet leads to poor performance (96.79% training accuracy and 72.08%
validation accuracy). Instead, we design a set of potential adjustments to ResNet’s topology to inten-
sify the network’s downsampling while still enabling it to leverage additional information from our
high-resolution images. We use PyTorch’s official implementation of ResNet-50 as a baseline (Py-
Torch (2018)), implement our topology adaptations, and use BOHB (Falkner et al. (2018)) to find the
best topology and hyperparameter combination for DeepFreak; the reader can refer to Appendix C
for more details on the DeepFreak search space.

BOHB is an AutoML tool based on Hyperband (Li et al. (2017)) and Bayesian Optimiza-
tion (Bergstra et al. (2011)). It uses an iterative algorithm parameterized by two hyperparameters:
maximum budget and η. These hyperparameters define how many configurations are evaluated per
iteration and for how many epochs the network uses each configuration. In every iteration, BOHB
assigns a budget—equal to or lower than the maximum budget—to all the configurations sampled.
For each iteration i, BOHB keeps 1/η of the configurations tested in the iteration i− 1 and increase
the budget assigned to each configuration, up to the maximum budget. Our ultimate goal in using
BOHB is to downsample the network so that DeepFreak trains faster and achieves higher accuracy.

We run BOHB on DeepFreak with a maximum budget of 50 epochs and η = 3. The best topology
and hyperparameters found extends the strides of ResNet-50’s last two blocks to 3 (instead of 2),
uses a batch size of 1, a weight decay of 3.4855×10−5, and a momentum of 0.56168. The learning
rate starts at 8.4474×10−4 and decays by 10 every 10 epochs. We split DiffraNet’s synthetic dataset
into training, validation, and testing (c.f. Section 3) and train the network for over 180 epochs. For
each image in the training set, we rescale the pixel values to the [0, 1] range and subtract the per-
pixel mean. DeepFreak configuration is summarized in Tables 1 and 2 and our code has been made
publicly available (authors omitted (2018)).

5 EXPERIMENTS

In this section, we present the results of our hyperparameters search with Hyperopt and BOHB, as
well as the performance of our models in the classification of DiffraNet. We first show results for
synthetic images only and then evaluate our models on real diffraction images.

5.1 HYPEROPT RESULTS

We present the best configurations found by Hyperopt for the SVM and RF classifiers and their
performance in the validation set. For this experiment, we have run Hyperopt for 150 iterations on a
machine with 2 Intel Xeon E5 processors. The optimization has taken roughly 36 hours to complete,
and the results are shown in Table 3.
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Table 3: Best configuration of RF (left) and SVM (right) and accuracy on the validation set.

Hyperparameter Values
GLCM Distances [1, 2, 5, 8]
GLCM Angles [45, 135]
Max Depth 20
Max Features

√
features

Number of Trees 100
Class Weights None
Accuracy 98.58%

Hyperparameter Values
GLCM Distances [1, 5, 8]
GLCM Angles [0, 90, 135]
C 32
γ 0.5
Class Weights [0.25, 0.25, 0.166, 0.166, 0.166]
Accuracy 97.88%

RF and SVM classifiers have achieved 98.58% and 97.88%, respectively, i.e., RF has performed
slightly better than SVM (0.7%). Note that the highest accuracy for both SVM and RF use GLCM
as a feature extractor. This accuracy indicates that the GLCM works better than LBP and SIFT
in the DiffraNet dataset. Precisely, GLCM has been the best extractor (98.58% accuracy), with
LBP closely behind (96.71% accuracy). These results corroborate our hypothesis that global texture
extractors would fit DiffraNet better. On the other hand, the SIFT + BoVW extractor has achieved
56.4% accuracy. This low accuracy is not surprising since SIFT looks for features in corners and
objects of images, which are unusual in images from DiffraNet. Table 4 exhibits the best results
achieved by classifiers for each feature extractor.

Table 4: Feature extractors and models best accuracy on validation set.

Feature Model Hyperparameters Values Validation
Extractors Accuracy

GLCM RF Distances [1, 2, 5 8] 98.58%Angles [45, 135]

LBP SVM Points 24 96.71%Radius 3
SIFT RF Clusters 25 56.42%

5.2 BOHB RESULTS

We present the results of the DeepFreak optimization using BOHB. Here, we have run BOHB for
16 iterations in parallel in a machine with 2 Nvidia GeForce GTX 1080 Ti GPUs. The optimization
has taken about nine days.

Figure 3: Mean accuracy (thin line) and 80% confidence interval (shade) of the three best configu-
rations found by BOHB on the validation set. Each configuration was run five times for 180 epochs.
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We have run the three best configurations (A, B, and C) found by BOHB, five times each. Figure 3
shows the mean learning curve (thin line) and the 80% confidence interval (shade) for each configu-
ration. Note A and B have highest mean accuracy; B has a broader confidence interval. We believe
A has a narrower confidence interval due to its larger pooling layer, which leads to faster downsam-
pling. Given the variability of CNNs training, we use these curves to choose the best DeepFreak
configuration by analyzing mean and variance of these configurations. We have chosen B due to its
highest validation accuracy over the networks we trained. The details on the three configurations
used in this experiment are shown in Appendix D.

The final learning curve for DeepFreak, with the best configuration found by BOHB, is shown in
Figure 4; the details on this configuration have been discussed in Section 4.3. We have trained the
network for 180 epochs; the training converged after around 20 epochs. After training, DeepFreak
achieved 98.42% validation accuracy, a result similar to RF and superior to SVM.

Figure 4: DeepFreak accuracy (solid line) and
loss (dashed line) curves on training and valida-
tion sets; 180 epochs in total.

Feature Extractor Classifier Accuracy
GLCM RF 98.45%
GLCM SVM 97.66%

n/a DeepFreak 98.51%

Table 5: DeepFreak, RF, and SVM accuracies on
DiffraNet’s test set.

5.3 TEST SET RESULTS

We have run the best configuration for our three classifiers over DiffraNet’s test set, results are
shown in Table 5. Note that the results are similar to those in the validation set, indicating that the
three models can generalize the training data. Besides, all classifiers achieved over 97.6% accuracy.
Notably, DeepFreak achieved the highest accuracy. Precisely, the accuracy of DeepFreak on the test
set has been higher than that on the validation set, surpassing the RF and SVM by 0.06% and 0.85%,
respectively.

We show the DeepFreak confusion matrix on the test set in Table 6; we show the RF and SVM
confusion matrices on the test set in Appendix E. Note that misclassification often happens between
weak and good and between good and strong. This behavior is natural since classes in these pairs are
similar. Besides, note that DeepFreak hits near perfect results on the blank and no-crystal classes,
as evidenced by their precision (99.95% and 99.45%) and recall values (100% and 99.94%). This
result means we can discard images without diffraction patterns with 99.83% accuracy. This is an
important result for this application domain because it is important not to discard useful images; as
mentioned in Section 3, it is less problematic to misclassify between the classes weak, good, strong.

5.4 RESULTS ON REAL IMAGES

Last, we evaluate our models on DiffraNet real datasets. We first run our models from sections 5.1
and 5.2 on the real datasets to assess the impact of the reality gap. Table 7 shows the accuracy of
each model on all 457 images from DiffraNet real datasets. We note that the reality gap degrades
the accuracy of all of the models by at least 22.45%. DeepFreak was the least affected by the reality
gap in both variants of the real dataset (22.45% and 26.46% accuracy loss). Conversely, RF was the
most affected by the reality gap in both variants of the real dataset (54.56% and 53.22% accuracy
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Table 6: DeepFreak confusion matrix for the test set.

Predicted class
blank no-crystal weak good strong Recall (%)

True class

blank 2069 0 0 0 0 100
no-crystal 0 3266 2 0 0 99.94
weak 1 18 3280 47 0 98.03
good 0 0 38 2368 38 96.89
strong 0 0 0 44 1428 97.01

Precision (%) 99.95 99.45 98.80 96.3 97.41

Table 7: Accuracy of our models on DiffraNet’s real dataset before and after our AutoML optimiza-
tion for real data.

Pre-optimization Post-optimization
Extractor Classifier Raw Preprocessed Extractor Classifier Raw Preprocessed

GLCM RF 43.86% 45.2% LBP RF 90.11% 86.81%
GLCM SVM 50.42% 54.8% LBP SVM 59.34% 91.1%

n/a DeepFreak 76.06% 72.05% n/a DeepFreak 91.21% 94.51%

loss). These results indicate that, while our models perform well on the synthetic data, they do not
generalize as well to the real data.

The results on Table 7 (left side) indicate that we have to improve the generalization of our models
to real diffraction images. To do this, we repeat our AutoML optimization, this time, we optimize
for performance on the real dataset. Namely, we split the real dataset into validation and test sets
(c.f. Section 3) and use the AutoML tools to find the best configuration for each model based on
the accuracy on the real validation set. We do not add real images to the training set, our goal is to
find the models that generalize the best to real images, while training only on synthetic images. We
show the best configuration found for each model and each dataset in Appendix F.

Table 7 (right side) shows the performance of the best configuration of each of our models on the
real test sets. DeepFreak hits the highest accuracy on both real datasets (91.21% and 94.51% on
raw and preprocessed datasets, respectively). Conversely, SVM (59.34%) and RF (86,81%) were
the most affected by the reality gap on the raw and preprocessed real datasets, respectively. We
note that all models have degraded accuracy on the real datasets, compared to the synthetic dataset.
However, the high accuracy of our models shows that our simulated dataset can be effectively used
to train models for real diffraction image classification.

6 CONCLUSIONS AND FUTURE WORK

We have tackled the challenge of real-time classification of serial crystallography diffraction images.
We have developed a method for generating accurately labeled synthetic diffraction images and used
that to generate DiffraNet. DiffraNet comprises 25,000 512x512 grayscale synthetic diffraction
images, each tagged as one out of five classes representing possible outcomes from crystallography
experiments. DiffraNet also comprises 457 512x512 grayscale real diffraction images, each tagged
as one out of two classes representing desirable and undesirable outcomes from crystallography
experiments. DiffraNet is publicly available and can be used for training, validating, and testing
machine learning models tailored to crystallography.

We have also explored several computer vision classification approaches. They are based on a
blend of standard feature extractors with the RF and SVM classifiers and on an end-to-end CNN
architecture called DeepFreak. All of our approaches have been fine-tuned with AutoML tools
and tested over DiffraNet. Our results show that DeepFreak obtained the highest accuracy on both
synthetic and real diffraction images (98.51% and 94.51%, respectively). Moreover, DeepFreak
achieved 99.83% accuracy in distinguishing between images with and without diffraction patterns.

In future iterations of the DiffraNet dataset we plan to add new images and new classes that are
common place in serial crystallography. As an example, a class that is valuable in practice is to
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detect the presence of ice in the images. Images with ice indicate problems with the experiment
setup that can disrupt the results and even damage the detector. It is important to detect and address
these problems in a real-time feedback loop.
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A DIFFRANET SIMULATION PROCEDURE

The exact procedure used to generate DiffraNet is described here. First, the atomic structure of
photosystem II (Protein Data Bank ID: 4rvy, doi: 10.2210/pdb4RVY/pdb) was downloaded from
the Protein Data Bank (Berman et al. (2002)). The deposited coordinate files in the PDB do not
explicitly contain a representation for the disordered solvent that floods the gaps between protein
molecules inside the crystal, and neglecting this material in the diffraction pattern calculation leads
to unrealistically strong spots at low deflection angles. The disordered solvent was therefore mod-
eled as described by Tronrud (1997) using the program phenix.fmodel (Adams et al. (2010)) to
create a list of "structure factors": F(h).

Structure factors are the coefficients of a Fourier transform of the map of electron density within a
single unit cell of the crystal. These coefficients form a 3D array of floating-point values indexed by
the 3-vector "h". It’s integer-value components (h,k,l) are called the "Miller indices" in crystallogra-
phy (Miller (1839)) and each corresponds to a potential x-ray spot on the detector. The definition of
a structure factor (Hartree (1923)) is the ratio between the amplitude of the wave of light scattered
by an object of interest to that scattered by a single electron located at the origin. In this case the
"object of interest" is the unit cell of the photosystem II crystal. The absolute intensity of the spot
on the detector is then obtained by multiplying this unit-cell structure factor by the classical Thom-
son scattering of a single electron and by the structure factor of the crystal lattice itself, which is
obtained from the classic Fraunhofer grating equation described by Kirian et al. (2010). The inten-
sity at a given pixel on the detector is proportional to the square of the structure factor, and directly
proportional to the incident x-ray beam intensity.

In this simulation, the incident X-ray beam was given a mean pulse fluence of 1e12 photons focused
into a 30 micron wide square spot at the crystal position. This intensity varied from shot-to-shot
with a Gaussian distribution and the RMS fluctuation of the X-ray pulses was made to be equal to
the mean. Any values that randomly fell below zero were made to be zero intensity, mimicking
the stochastic nature of the X-ray Free Electron Laser (XFEL) beam in Self-Amplified Spontaneous
Emission (SASE) mode. The X-ray wavelength was also given a Gaussian distribution with RMS
variation 0.5% about the mean of 1.5 Angstrom. The crystal was made to be 30 microns wide,
and imperfections within it were simulated by breaking it up into 300 smaller crystals or "mosaic
domains" Darwin (1922) that were miss-oriented relative to each other randomly using a top-hat dis-
tribution 0.5 degree in diameter. From shot to shot, the overall crystal orientation was also random-
ized to be equally likely in any direction. Background X-ray scattering, such as inelastic Compton
scattering, elastic diffuse scattering from disorder in the crystal lattice, as well as 5 mm of air and
10 microns of liquid water were calculated with "nonBragg" using the equations described in the
supplementary materials of Holton et al. (2014).

The sum of all these effects was taken as the expectation value (mean number) of X-ray photons
falling on each pixel of the simulated X-ray detector, which was given 512 x 512 square pixels 172
microns wide and positioned 80 mm down-range from the crystal position. The expected mean
number of photons on each pixel was fed through a Poisson distribution to obtain an "observed"
number of photon hits, reflecting the random nature of X-ray photon arrivals. From here on pixel
values were stored as unsigned integers and a single pixel level change was made to equal a single X-
ray photon. The detector point-spread function of a fiber-coupled CCD X-ray detector was simulated
as described by Holton et al. (2012), and each pixel was also given a Gaussian calibration error of
RMS 4%, an additional "read-out noise" equivalent to RMS 3x the signal of a single photon hit, and
an offset of 10 pixel units to keep the signal from going negative. Any counts that exceeded the
16-bit dynamic range of this simulated detector were clipped at 65025 and then the dynamic range
was compressed to 8 bits by taking the square root of the photon count. This has the elegant property
of placing the standard error of every pixel value to unity because the error in counting N photons is
sqrt(N). The resulting 8-bit image was then stored in Portable Greymap format.

To enhance the speed of these calculations the Fraunhofer grating sinc function was replaced by a
much quicker step function with the same full-width-at-half-max (FWHM) and volume (-tophat_-
spots option in nanoBragg). This much faster calculation preserved the spot shape and intensity
without calculating subsidiary maxima that are obscured by the background intensity in this case
anyway. An additional speed enhancement was attained by calculating the scattering of an 0.1
micron wide crystal and scaling up the resulting intensity by a factor of 2.7e7 to match that of a 30
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Table 8: Search space for the feature extractors and the RF/SVM classifiers hyperparameter search.

Hyperparameter Type Values Default

SVM
C Ordinal 1 or 2x for x in {-5, -3, ..., 13, 15} 1
γ Ordinal 0 or 2x for x in {-15, -13, ..., 1, 3} 0
Class weights Categorical None None

Balanced
[0.35, 0.35, 0.1, 0.1, 0.1]

[0.3, 0.3, 0.133, 0.133, 0.133]
[0.25, 0.25, 0.166, 0.166, 0.166]

RF

Number of trees Ordinal {10, 100, 1000} 10
Max features Ordinal {

√
features, 0.25, 0.5, 0.75}

√
features

Max depth Ordinal {None, 2, 4, 6, 8, 10, 20} None
Class weights Categorical None None

Balanced
[0.35, 0.35, 0.1, 0.1, 0.1]

[0.3, 0.3, 0.133, 0.133, 0.133]
[0.25, 0.25, 0.166, 0.166, 0.166]

GLCM Distances Categorical Any combination of {1, 2, 4, 5, 8} 5
Angles Categorical Any combination of {0, 45, 90, 135} 0

LBP Points Ordinal {4, 8, 16, 24} 24
Radius Ordinal {0, 1, 2, 3} 3

SIFT Clusters Ordinal {10, 25, 50, 100, 250, 500, 1000, 5000} 100

micron crystal. The reason for this size reduction and scale-up is because the spots from a perfect
30 micron crystal are very much smaller than a pixel, and in the simulation they are unlikely to
land in the exact center of a pixel, leading to large aliasing errors. This can be alleviated by heavily
over-sampling the pixels, but for our purposes equivalent results are obtained by reducing the crystal
size down to the point where the spot size is roughly equal to that of a single pixel, and then only 2x
over-sampling was needed for accurate capturing of the integrated spot intensities.

B SEARCH SPACE SVM AND RF WITH FEATURE EXTRACTORS

SVM and RF search spaces with the feature extractors are summarized in Table 8. The search space
of the feature extractors includes the hyperparameters mentioned in Section 4.1. SVM search space
includes the cost of misclassification parameter (C) and the γ parameter for the RBF kernel. RF
search space comprises the number of trees in the forest, the maximum number of features used by
the trees to find the best split, and the maximum depth of trees. The search spaces for both classifiers
also include a “class weight” hyperparameter that assigns different weights to the entries classes. In
the class weights, None indicates all classes have the same weight, Balanced shows all classes are
weighted according to their number of samples, and the value arrays mean the weight given to each
class of DiffraNet (from blank to strong).

C DEEPFREAK SEARCH SPACE

Our search space for DeepFreak includes some topologies and learning hyperparameters (Tables 9
and 10). The topologies we have designed for DeepFreak seek to increase the network downsam-
pling, reducing training times and improving accuracy. Likewise, we search for the mix of initial
learning rate, momentum, weight decay, and batch size that maximizes accuracy.

D DEEPFREAK BEST CONFIGURATIONS

Table 11 shows the three best topologies found by BOHB for DeepFreak.
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Table 9: Possible topology adaptations for ResNet.

Name of Variant Default 1 2 3 4 5 6
Number of Filters 64 64 64 64 64 64 64
1st convolution size 7 7 7 7 7 7 7
1st convolution stride 2 2 2 2 4 2 2
1st pool size 3 3 3 3 3 3 3
1st pool stride 2 2 2 2 2 2 2
2nd pool size 7 9 13 7 7 7 15
2nd pool stride 1 2 2 1 1 2 2
block strides 1, 2, 2, 2 1, 2, 2, 2 1, 2, 2, 2 2, 2, 2, 2 1, 2, 2, 2 2, 2, 2, 2 1, 2, 2, 2
Name of Variant 7 8 9 10 11 12 13
Number of Filters 64 64 8 8 64 16 16
1st convolution size 7 7 7 7 7 7 7
1st convolution stride 2 2 2 2 2 2 2
1st pool size 3 3 3 3 3 3 3
1st pool stride 2 2 2 2 2 2 2
2nd pool size 8 7 7 7 9 9 7
2nd pool stride 1 1 1 2 2 2 2
block strides 2, 2, 2, 2 1, 2, 3, 3 1, 2, 2, 2 1, 2, 2, 2 1, 2, 2, 3 1, 2, 2, 2 1, 2, 2, 2

Table 10: Search space for DeepFreak hyperparameter search

Hyperparameter Type Values Default
Topology Categorical [1, 13] 3
Learning rate Log Real [1e-4, 10] 0.1
Momentum Real [0.5, 1] 0.9
Weight decay Real [0.00001, 0.00005] 0.00001
Batch size Categorical {4, 8, 16, 32, 64} 8

E SVM AND RF CONFUSION MATRICES

Tables 12 and 13 show the confusion matrices for SVM and RF respectively.

F BEST CONFIGURATIONS FOR THE REAL DATASET

Tables 14 and 15 show the best configurations found for our classifiers for the raw real dataset.
Tables 16 and 17 show the best configurations found for our classifiers for the preprocessed real
dataset.

Table 11: Three best configurations found by BOHB.

Topology Learning rate Momentum Weight Decay Batch Size
A 6 8.6673e-04 0.7770 2.5380e-05 1
B 8 8.4474e-04 0.56168 3.4855e-05 1
C 1 5.9409e-03 0.70739 3.0193e-05 2
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Table 12: Confusion matrix of SVM for the test set.

Predicted class
blank no-crystal weak good strong Recall (%)

True class

blank 2069 0 0 0 0 100
no-crystal 0 3266 1 0 1 99.93
weak 1 160 3142 44 0 93.90
good 0 0 40 2377 27 97.26
strong 0 0 0 22 1450 98.51

Precision (%) 100 95.33 98.71 97.3 98.11

Table 13: Confusion matrix of RF for the test set.

Predicted class
blank no-crystal weak good strong Recall (%)

True class

blank 2069 0 0 0 0 100
no-crystal 0 3266 2 0 0 99.94
weak 0 53 3254 39 0 97.25
good 0 0 45 2368 31 96.89
strong 0 0 0 25 1447 98.30

Precision (%) 100 98.4 98.58 97.37 97.9

Table 14: Best configuration of RF (left) and SVM (right) for the raw real validation set.

Hyperparameter Values
LBP radius 1
LBP points 16
Max Depth 20
Max Features 0.5
Number of Trees 10
Class Weights [0.35, 0.35, 0.1, 0.1, 0.1]

Hyperparameter Values
LBP radius 1
LBP points 24
C 1
γ 2−9

Class Weights Balanced

Table 15: Best configuration of DeepFreak for the raw real validation set.

Hyperparameter Value
Number of filters 64
1st convolution kernel 7
1st convolution stride 2
1st pool size 3
1st pool stride 2
2nd pool size 9
2nd pool stride 2
Number of blocks 3, 4, 6, 3
Block strides 1, 2, 2, 3

Hyperparameter Value
Learning rate 1.4542×10−4

Momentum 0.99589
Weight decay 1.8555×10−5

Batch size 1

Table 16: Best configuration of RF (left) and SVM (right) for the preprocessed real validation set.

Hyperparameter Values
LBP points 2
LBP radius 24
Max Depth 4
Max Features 0.75
Number of Trees 100
Class Weights Balanced

Hyperparameter Values
LBP points 1
LBP radius 24
C 215

γ 2−7

Class Weights None
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Table 17: Best configuration of DeepFreak for the preprocessed real validation set.

Hyperparameter Value
Number of filters 8
1st convolution kernel 7
1st convolution stride 2
1st pool size 3
1st pool stride 2
2nd pool size 7
2nd pool stride 2
Number of blocks 3, 4, 6, 3
Block strides 1, 2, 2, 2

Hyperparameter Value
Learning rate 4.8311×10−3

Momentum 0.88172
Weight decay 2.1462×10−5

Batch size 8
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