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Abstract

We present a program synthesis-oriented dataset
consisting of human written problem statements
and solutions for these problems. The problem
statements were collected via crowdsourcing and
the program solutions were extracted from human-
written solutions in programming competitions,
accompanied by input/output examples. We pro-
pose using this dataset for the program synthesis
tasks aimed for working with real user-generated
data. As a baseline we present few models, with
best model achieving 5.6% accuracy, showcasing
both complexity of the dataset and large room for
future research

1. Introduction
The task of program synthesis is to automatically find a
program that satisfies user’s specification. It is a problem
that has been studied since the earliest days of artificial
intelligence (Waldinger & Lee, 1969; Manna & Waldinger,
1975). With the renewed popularity of neural networks
for machine learning in recent years, neural approaches to
program synthesis have correspondingly attracted greater
attention from the research community, which lead to great
interest in datasets for program synthesis.

Most of the recent work in the field has been focused on
program synthesis from examples for single domain of pro-
gramming: string transformations (RobustFill (Devlin et al.,
2017b), Neuro-Symbolic Program Synthesis (Parisotto et al.,
2016) and Deep API Programmer (Bhupatiraju et al., 2017))
or Karel (Devlin et al. (2017a), Bunel et al. (2018)). A more
domain agnostic dataset was presented in DeepCoder (Ba-
log et al., 2016) but still featured very small programs. All
of these results have crucial limitation that datasets were
synthetically generated (with exceptions for small private
test sets).

1Anonymous Institution, Anonymous City, Anonymous Region,
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Recent examples of crowdsourced natural language to
program datasets are WikiSQL (Zhong et al., 2017) and
NL2Bash (Lin et al., 2017). Both of these datasets are also
domain specific (with WikiSQL featuring only very sim-
ple version of SQL) and don’t have programming concepts
like variables and control flow. Django dataset (Oda et al.,
2015) has very limited scope and each textual description is
associated with one line of code.

Worth mentioning fully natural dataset from Magic The
Gathering (Ling et al., 2016), that has natural language from
people describing actions of cards and Java programs that
perform this actions in the Magic environment. This dataset
has very limited scope of programs, mostly requiring to
figure out complex API of the environment.

Related field to program synthesis from natural language is
semantic parsing: mapping of natural langauge into formal
representation, which can be considered as simple programs.
Recent examples of such datasets are WebQuestions (Berant
et al., 2013), Overnight (Wang et al., 2015), IFTTT (Beltagy
& Quirk, 2016). All of these datasets are limited to a specific
sub-domain and a limited set of functional intents.

Additionally, there is work on latent program induction
which does not require programs as supervision. This sim-
plifies the dataset collection, but has limitation that programs
frequently fail to generalize to different inputs (Graves et al.,
2014) and does not expose interpretable program back to the
user while having huge performance overhead at runtime
(Kaiser & Sutskever (2015), Neelakantan et al. (2016)).

In this work we presenting Natural Program Synthesis
Dataset v1.0 (NAPS), freely available at https://goo.
gl/WaBdbb, consisting of real expert programmers’ so-
lutions for complex problems and rewritten statements in
the form that is approachable at current state of technology.
Dataset contains 1592 training and 455 test examples, with
additional 16320 unlabelled examples for pretraining and
data augmentation.

To assess the difficulty of the NAPS dataset, we imple-
mented sequence-to-sequence and sequence-to-tree base-
lines. Our best model achieves accuracy of 5.6%. This
shows there is a lot of room for advancement both in model-
ing and in data augmentation on the NAPS dataset.

https://goo.gl/WaBdbb
https://goo.gl/WaBdbb
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Table 1. NAPS Dataset Structure

Field Description Training A Training B Test

Solutions Full programs in UAST format solving a competitive problem
√ √ √

Partial solutions Smaller pieces of the full programs ×
√

×
IO examples Input/output examples for the full programs

√ √ √

IO schema Input/output types and argument names for the full programs
√ √ √

Statements Crowdsourced problem statements in the imperative format ×
√ √

URLs URLs to the original problem statements
√ √ √

Table 2. NAPS Dataset Metrics

Metric Training A Training B Test

Number of examples in the dataset 16320 1592 455
Number of examples that are partial solutions — 1190 —
Number of synthetic statements per solution 300 — —

Statements length, i.e. number of tokens 173 ± 113 (synthetic) 93 ± 51 (real)
Number of lines of code per solution 21.7 ± 6.4
Number of inputs/outputs per solution 7.5 ± 2

2. Dataset
The first release of the NAPS dataset is split into three
portions. The largest dataset contains 16320 competitive
problem solutions with the corresponding input/output ex-
amples and URL links to the original problem statements
from the codeforces.com website from which the problem
statements can be retrieved. We also accompany each solu-
tion with 300 synthetic problem statements that we used for
training the baseline models, see Section 3.

The second dataset contains 15921 competitive program-
ming solutions together with the partial exerts from problem
solutions. Each record in this dataset is accompanied with
a problem statement that was collected by the means of
a crowdsourcing platform, a URL to the original problem
statement, and input/output examples for non-partial solu-
tions.

The third, smallest dataset contains 455 full problem so-
lutions also accompanied with the crowdsourced problem
statements, URLs, and input/output examples.

Solutions: The solutions presented in this dataset are col-
lected from the programming competitions. We then have
converted the code written in Java into our intermediate
language, UAST, which additionally allowed us to unify
library-specific containers and algorithms. In the future this
method will also allow our models to work with solutions
across programming languages such as C++, Python, C#
and Pascal.

1We are currently actively expanding this dataset by running
a crowdsourcing platform. This number will be updated for the
camera-ready version.

Written Statements: We hosted a crowdsourcing platform
with participants from competitive programming commu-
nity, and asked them to describe the problem solution that
was presented to them in UAST. The process was moder-
ated and the participants were strongly encouraged to give
descriptions that were as high-level as possible while at the
same time using the language with the imperative structure
of the sentences. To provide a curriculum step for the mod-
els trained on this dataset, we also asked the participants to
describe smaller inner blocks of the solutions. The workers
were allowed to reuse the language used for the inner blocks
when describing the blocks enclosing them, but only if the
larger block couldn’t be described at a higher abstraction
level.

Tests: Each full solution is accompanied with 2-10 in-
puts/outputs each split into two groups. The first group
can be used in search or can be included into the problem
specification as part of the model input. The second group
can be used for the evaluation at the test time.

2.1. UAST Specification

UAST eliminates the burden of managing a runtime or hav-
ing a compilation step. The code is convertible back and
forth between UAST and Java while preserving the readabil-
ity and the ability to run the input/output examples. While
converting to UAST, we also remove all the file I/O and pass
all the input data as arguments to the main function, and
make the function return the final output. The classes are
replaced with records and the class methods are replaced
with global functions that accept the record as the first argu-
ment. The execution engine and tools for static and runtime
analysis can be found at URL.
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NAPS: Natural Program Synthesis Dataset

Table 3. UAST Specification

PROGRAM ::= {’types’: [RECORD...], ’funcs’: [FUNC...]}
Optional record ’ globals ’ declares global variables. Function ’ main ’ is the entry point and
optional function ’ globals . init ’ initializes the global variables.

RECORD ::= [’record’, name, {field name: VAR...}]
FUNC ::= [’func’ | ’ctor’, TYPE, name, [VAR...], [VAR...], [STMT...]]

The function entries are: the return type, the name, the arguments, the local variables, and the body.
VAR ::= [’var’, TYPE, name]
STMT ::= EXPR | IF | FOREACH | WHILE | BREAK | CONTINUE | RETURN | NOOP
EXPR ::= ASSIGN | VAR | FIELD | CONSTANT | INVOKE | TERNARY | CAST

ASSIGN ::= [’assign’, TYPE, LHS, EXPR]
LHS ::= VAR | FIELD | INVOKE
IF ::= [’if’, TYPE, EXPR, [STMT...], [STMT...]]

FOREACH ::= [’foreach’, TYPE, VAR, EXPR, [STMT...]]
WHILE ::= [’while’, TYPE, EXPR, [STMT...], [STMT...]]
BREAK ::= [’break’, TYPE]

CONTINUE ::= [’continue’, TYPE]
RETURN ::= [’return’, TYPE, EXPR]

NOOP ::= [’noop’]
FIELD ::= [’field’, TYPE, EXPR, field name]

CONSTANT ::= [’val’, TYPE, value]
INVOKE ::= [’invoke’, TYPE, function name, [EXPR...]]

TERNARY ::= [’?:’, TYPE, EXPR, EXPR, EXPR]
CAST ::= [’cast’, TYPE, EXPR]
TYPE ::= bool | char | int | real | TYPE* | TYPE% | <TYPE|TYPE> | record name#

The last four types correspond to an array, a set, a map, and a record type.

The language allows several redundancies that simplify the
code analysis and the implementation of the executor and
the tools. For instance, each expression has a TYPE as the
second entry which eliminates the need of deducing the
types. Functions require declaring local variables in ad-
vance, see Table 3. We have also introduced FOREACH and
TERNARY which can be expressed through other control-
flow constructs but their introduction has greatly reduced the
size of the code. In addition the language is accompanied
with a short library of basic functions like ’map keys’,
’string find’, etc. Full documentation on UAST can
be found here URL to be provided.

3. Experimental Results
In this section we present some of our results on applying

sequence-to-sequence and sequence-to-tree models for syn-
thesizing programs from problem statements. In addition
we present the data-structure that we used to perform the
decoding in the sequence-to-tree model.

We train on a weighed combination of datasets A and B,
with weight 10 on sampling from later to expose model to
both datasets proportionally. For the dataset A we generated
synthetic problem statements using a rule-based randomized
method where the rules were selected to match the stylistics
of the crowdsource workers as close as possible. The syn-
thetic statements were regenerated anew at the beginning
of each epoch and we include 300 synthetic statements for

each solution in the dataset A which corresponds to the
number of epochs we trained our baseline models for. The
evaluation was performed on the holdout dataset that did
not share solutions with the training datasets.

Our sequence-to-sequence model consists of the text en-
coder and the program decoder mediated through the stan-
dard multiplicative attention mechanism (Luong et al.,
2015). The encoder is the the bidirectional RNN with GRU
cells stacked in two layers (Cho et al., 2014). The decoder
is a single RNN with GRU cells augmented with a pointer
mechanism (Vinyals et al., 2015). In addition to using the
pointer mechanism for copying out-of-vocabulary constants
and string literals from problem statements to the synthe-
sized code, we also use it for copying in-vocabulary tokens
like arithmetic operations and variable names. For this rea-
son we preferred the soft-switch design described in See
et al. (2017), which is suitable for in-vocabulary copying,
over the hard-switch design described in Gülçehre et al.
(2016).

3.1. Sequence to Tree

The sequence-to-tree model shares the same encoder and the
attention mechanism with the sequence-to-sequence model
but the decoding step accounts for the hierarchical nature
of the program. It is done by first implementing a gen-
eral purpose persistent tree data-structure (Sarnak & Tarjan,
1986) that allows storing and extending multiple UASTs
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simultaneously, similarly to how it is done in Polosukhin
& Skidanov (2018). The data-structure and the specific im-
plementation of the decoder then work together where the
decoder provides the nodes to extend and the data-structure
extends them by forking a new tree and placing it in the
priority queue based on the tree’s priority, e.g. the likeli-
hood of the entire tree defined by the logits returned from
the decoder.

Each node in UAST has an access to its siblings and the
parent. For each tree we store the global state of the entire
tree and for each node we store two states: for its siblings
and for its children. The data-structure then passes these
states to the decoder which decides which of the incomplete
nodes to extend based on the given states. The data-structure
then handles multiple extension options for each node which
is used in the search. In this paper we only provide results
for the decoder that always extends the left-most incomplete
node based on the global state of the tree. However this
design can also easily adopt decoders from other papers, e.g.
decoders described in Polosukhin & Skidanov (2018) and
in Parisotto et al. (2016).

Dataset B and the Test dataset contain problem statements
written by real users which poses a challenge since personal
writing style varies a lot even though we tried to incentivize
the consistency. The biggest challenge is the variance in
the verbosity and the usage of rare words. Rules for the
synthetic problem statements attempt to mimic the variance
in the style but nevertheless the resulting model is still very
sensitive to verbosity. Specifically, the model learns to
assign a higher significance to out-of-vocabulary tokens
during training than what is optimal for the test dataset.

For the sequence-to-sequence model the evaluation was per-
formed using the beam search with the beam size equal 64.
For the sequence-to-tree model the queue capacity was 64
and at each step the decoder would expand the left-most
incomplete node with 64 most probable tokens yielding 64
new trees which would utilize the memory saving properties
of the persistent trees. At the end we would search through
the resulting 64 programs and pick the one that passed the
input/output tests. The accuracy is then measured by count-
ing the synthesized programs that pass all the input/output
tests that were not used in the search. We also define 50%ac-
curacy metric which counts the programs that pass at least
50% of the test input/output examples, see Table 4.

Interestingly, even when the model does mistakes during the
inference those mistakes might be benign and it will still be
passing the tests. For instance, Table 5 shows the inference
example for the following problem statement:

You are given a number var0. You have to set var2 to 2. If
var0-2 is divisible by 3 you have to set var1 to 1, otherwise
you have to set var1 to zero. For each var3 between 1 and

Table 4. Accuracy of vanilla and pointer models with and without
out-of-vocabulary copying

MODEL ACCURACY 50%ACCURACY

VANILLA SEQ2SEQ 0% 0%
SEQ2SEQ WIHOUT OOV 3.5% 5.9%
SEQ2SEQ WITH OOV 4.7% 7%
SEQ2TREE WITH OOV 5.6% 7.7%

Table 5. Example of the inferred program and the tests

int main (int var0)
vars: int var1, int var2, int var3
var2 = 2
if (((var0 - 2) % 3) == 0)

var1 = 1
else

var1 = 0
var3 = 1
for(; (var3 < var0); var3 = (var3 + 1))

if (var2 < var0)
var2 = (var2 + ((var3 * 3) + 2))
if (((var0 - var2) ≥ 0) & ((var0 - var2) ≤ 0))

var1 = (var1 + 1)
else

if (((var0 - var2) ≥ 0) & (((var0 - var2) % 3) == 0))
var1 = (var1 + 1)

else
break

return var1

Search Input 157 1312861 6
Search Output 3 312 0

Test Input 26 152 158 4 71 3 155
Test Output 2 3 4 0 2 0 4

var0-1, if var2 is less than var0 you have to, add var3*3+2
to var2, if var0-var2 is greater than or equal to zero and
var0-var2 is divisible by 3 add 1 to var1; otherwise you
have to break from the enclosing loop. You have to return
var1.

Note that if var0-var2 ≥ 0 & var0-var2 ≤ 0 then var0-var2
≥ 0 & (var0-var2)% 3 == 0. Even though the model has
inferred a redundant if-clause it did not break the program’s
logic.

4. Future Work
NAPS dataset enables the program synthesis research on
real-life non-trivial programs and problem statements writ-
ten in a general-purpose language. The baseline metrics
however demonstrate a large room for the improvement.
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