
Lessons from Contextual Bandit Learning in a Customer Support Bot

Nikos Karampatziakis 1 Sebastian Kochman 1 Jade Huang 1 Paul Mineiro 2 Kathy Osborne 3 Weizhu Chen 1

Abstract
In this work, we describe practical lessons we
have learned from successfully using contextual
bandits (CBs) to improve key business metrics of
the Microsoft Virtual Agent for customer support.
While our current use cases focus on single step
reinforcement learning (RL) and mostly in the
domain of natural language processing and infor-
mation retrieval we believe many of our findings
are generally applicable. Through this article, we
highlight certain issues that RL practitioners may
encounter in similar types of applications as well
as offer practical solutions to these challenges.

1. Introduction
Many real world systems operate in a partial information
setting, meaning that they never observe what their users
think about the actions they did not take. In recommenda-
tion systems such as those for news (Li et al., 2010) and
video (Schnabel et al., 2016; Chen et al., 2019), the industry
standard has been recently switching to contextual bandits
(CB, Langford & Zhang, 2007), a simplified reinforcement
learning paradigm which requires exploration but does not
require dealing with credit assignment. The main challenge
in many of these systems is that unlike RL with a simulator,
it is not possible to observe how good other actions would
have been if they had been tried in the same situation.

In this paper we present the lessons we have learned by
applying single step RL in real-world scenarios in the Mi-
crosoft Virtual Agent, a conversational system for customer
support. The rest of the paper is organized as follows. In
Section 2 we present two real-world scenarios in which we
have applied RL and discuss gains we have achieved so
far from successful RL policies. In Section 3 we describe
lessons we have learned from our experience with these
scenarios. In Section 4 we review some systems that can
help with applying RL to real-world problems.

1Microsoft Dynamics 365 AI 2Microsoft Research 3Microsoft.
Correspondence to: <nikosk@microsoft.com>.

Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36 th International Conference on Machine Learning, Long
Beach, California, USA, 2019. Copyright 2019 by the author(s).

2. Case studies
One of our partner teams operates the Microsoft Virtual
Agent – an interactive dialogue system providing first-line
customer support for many Microsoft products. The bot
can be accessed via multiple channels – most commonly
through the Microsoft support website 1 or the Get Help app
which comes with Windows 10.

RL is a good fit for this domain for multiple reasons:

1. Diversity of user intents and a changing environment
(new products, updates causing new issues as well as
new or updated support content) make the problem
challenging for approaches that rely solely on editorial
labels and supervised learning.

2. Microsoft products (including Xbox, Office, Windows,
Skype) have a large customer base, hence the bot’s
incoming traffic is also significant, making RL poten-
tially feasible.

3. We have access to multiple reward signals including
click behavior, escalation of the issue to a human agent,
and responses to survey questions such as “Did this
solve your problem?”. Moreover, some of the actual
business metrics are very close to some of these eas-
ily measurable quantities. On the other hand we have
found it challenging to translate traditional supervised
learning metrics (e.g. accuracy or F1 score) into busi-
ness metrics. RL provides a more direct path for opti-
mizing the final metrics.

At the same time, the application poses interesting chal-
lenges to the use of RL. Goal-oriented dialogue systems
need to not only understand the user’s original intent but
also be able to carry the state of the dialogue and guide
the user towards their goal. While our long-term plan is to
be able to have a single RL agent in charge of the whole
conversation, the requirements of such an endeavor, both
in terms of number of samples needed to learn non-trivial
policies and in terms of engineering effort, are substantial.
Therefore, we started by applying RL to the virtual agent in
isolated components first, ignoring issues of credit assign-
ment and thus working in the setting of contextual bandits.

1https://support.microsoft.com/en-us/
contactus

https://support.microsoft.com/en-us/contactus
https://support.microsoft.com/en-us/contactus


Lessons from Contextual Bandit Learning in a Customer Support Bot

Compared to most literature on CBs, our action spaces are
typically more complicated. They could be a combinatorial
set, such as a slate, and the candidate base actions are not a
fixed set but can vary based on the user’s statement. Finally,
the actions themselves have features such as title, type of
content, etc.

In the following subsection, we describe two concrete sce-
narios where we have applied real-world RL in the Mi-
crosoft Virtual Agent.

2.1. Intent Disambiguation

The domain of customer support, especially for a large com-
pany such as Microsoft, is complex, with a significant num-
ber of intents. Our intent disambiguation policy is tasked
with deciding when the user’s query is clear enough to di-
rectly trigger a solution, such as a multi-step troubleshooting
dialogue, or to ask a clarification question.

The inputs to this policy are the statement of the issue by the
user (the query), the user context, and a list of candidates.
The query can range from very short, including just key-
words, to long and complex sentences or even paragraphs.
The user context includes information like the user’s oper-
ating system and its version (e.g. Office products work on
Mac, iOS, and Android). The list of candidates is a collec-
tion of pre-authored dialogue intents or solutions related to
the user’s query pulled from the Web. Retrieval of these
candidates is currently performed by several strategies. One
of them includes a deep learning model similar to the one de-
scribed in (Huang et al., 2018). Another uses Bing Custom
Search for customized document retrieval. These retrieval
components are currently out-of-scope of RL-based opti-
mization so we will focus on the policy that operates with a
small list of retrieved candidates.

Given the input, the policy can take one of the following
actions:

• Directly trigger a single intent or a solution: this may
mean starting a troubleshooting dialogue or displaying
a rich text solution.

• Ask a yes/no question: “Here’s what I think you are
asking about: . . . . Is that correct?”.

• Ask a multiple-choice question: “Which one did you
mean?”, followed by titles of two to four intents as
well as option “None of the above”

• Give up: “I’m sorry, I didn’t understand. It helps me
when you name the product and briefly describe the
issue.”

Figure 1 presents an example of a multi-choice question
action taken by the disambiguation policy.

Figure 1. An automatically generated intent clarification dialog.

There are multiple reward signals that we currently use:

• Click: if a disambiguation question is asked, an option
selected by the user is recorded. This signal is censored
for the direct trigger and give-up actions. While useful,
it is not a metric important to the business, so we do
not optimize for it alone.

• Problem resolution: after providing a final answer to
the user, the bot asks whether the solution was helpful.
The user may respond “yes”, “no”, or decline to answer.
This response becomes our main reward signal.

• Escalation: the user can decide at any time to talk to
a human agent. This negative reward signal is directly
related to the actual cost of running a call center. The
metric is monitored but it is not being optimized.

Some reward signals may be delayed. A long conversation
may occur between the disambiguation policy’s action and
the point at which we ask the user if the proposed solution
addressed their problem. However, currently we ignore
this fact and attribute the reward to the policy’s action. All
the actions taken by the virtual agent which are not part
of the disambiguation policy are simply treated as part of
the environment outside of the RL agent’s control. This
simplified view of the problem allows us to make progress
in applying RL to a complex enterprise system while still



Lessons from Contextual Bandit Learning in a Customer Support Bot

Figure 2. Contextual recommendations for the “Printers” settings
page.

collecting data that could be used to bootstrap a multi-step
policy.

2.2. Contextual Recommendations

“Settings” is a desktop application in Windows 10, where
a user can click “Get help” from any settings page (e.g.
“Bluetooth”, “Display” etc.) and interact with the Microsoft
Virtual Agent. We are currently experimenting with using
RL for contextual recommendations, i.e. recommending a
list of solutions before the user types anything, simply based
on context information sent by the app.

Several reasons motivate us to leverage a model to con-
textually suggest recommendations. First, we do not have
enough editorial bandwidth to hand-specify dialogues for
each of the pages. Second, a large amount of traffic flows
through the app, which suggests that data-driven techniques
could do well here. Third, we log a rich user context that
includes data such as from which page the user is clicking
“Get help”, the device network type (wired, wifi), battery
status (charging, discharging), and manufacturer, which can
help with suggesting relevant solutions in certain situations.

Inputs to the model are a subset of the user context and a list

of candidate solutions. The model is trained to maximize
similarity between a given user context and content that
corresponds to queries the users type.

Given the inputs, the model can take one of the following
actions:

1. Suggest up to six solutions out of about 3000 candi-
dates. A filtering step, using the same model, first
reduces the number of candidates to up to 182, before
performing exploration.

2. Choose to fallback to default behavior of recommend-
ing six fixed options chosen by editors in the case the
model does not have enough confidence.

Reward signals are similar to the ones described in section
2.1.

3. Lessons
This section highlights certain factors of a real-world RL
system which we found crucial to the final outcome of the
project. They are presented in the form of concise lessons
which we believe RL practitioners may find useful.

3.1. Use and Extend Existing Systems

Our design borrows many ideas behind the Decision Ser-
vice (DS Agarwal et al., 2016) system. In particular, unlike
many simulator-backed RL applications, which train with
on-policy data, we optimize using off-policy data. Updates
to the policy under which we act and collect data (the log-
ging policy) happen in a regular schedule such as once a
day. In between these updates, the logging policy is fixed.
Collected data (including the features, the chosen action, the
probability of the chosen action, and the observed reward)
from the current and past logging policies are used to train
and evaluate the next iteration of the logging policy. We
deliberately do not prescribe exact criteria for how often to
train, how much historical data to use, and when to replace
the current champion policy. These should be decided on
the basis of each application.

Our work has been greatly simplified by using parts of the
DS system. We had to do very little work to get logging and
exploration working inside our codebase. This allowed us
to focus on extending the parts that Decision Service only
covered for linear models. We therefore focused on training,
evaluation, and deployment of deep learning models, in
either automated or ad-hoc fashion. We have extended the
DS with the following capabilities:

2Six solutions must be shown and 18 is the minimum number
needed so that after executing business rules, in the worst case, six
solutions will be left.



Lessons from Contextual Bandit Learning in a Customer Support Bot

Ability to use a custom model: In many application do-
mains, it is common to have an established architecture for
state-of-the-art results given supervised data. Examples in-
clude ResNets (He et al., 2016) in object recognition and
LSTMs (Hochreiter & Schmidhuber, 1997) in handwriting
recognition. It is therefore important to allow domain ex-
perts to seamlessly use their own model architecture for
their policy. Recent efforts such as Core ML (Apple) and
ONNX (ONNX) have facilitated the standardization of in-
ference APIs. In our applications we assume the model can
be expressed as an ONNX graph.

Ability to log different kinds of reward signals: In many
cases there are multiple reward signals that could be used
in lieu of the actual reward. For example, in recommenda-
tion systems, clicks and dwell times have long been used
as implicit ratings. But the exact way to combine these
into a final reward might require many iterations of reward
shaping/engineering. It is therefore important to be able
to experiment with different definitions offline by having
access to all available reward signals.

Support for deployment with guard rails: We maintain
a dashboard with counterfactual evaluation results for dif-
ferent rewards and recently trained models. Deployment
can be automatic, depending on prespecified conditions, or
manual based on a human operator’s decision.

3.2. Pay Attention to Effective Sample Size

Since we are typically learning from off-policy data, many
ideas and diagnostics developed in the importance sampling
literature (Owen, 2013) can be used to help debug compu-
tational and statistical problems. One popular diagnostic
is the effective sample size which can be thought of as the
number of full-information examples we can extract from
our off-policy data. The effective sample size is only a
function of the importance weights wi =

πθ(ai|xi)
µ(ai|xi) where

π is the policy under consideration (parameterized by θ),
assigning a probability to each action, given an input xi,
ai is the logged action and µ(ai|xi) is the probability of ai
given xi under the logging policy. For the effective sample
size we use the form

ne =
(
∑n
i=1 wi)

2∑n
i=1 w

2
i

as in Chapter 9 of (Owen, 2013). A small effective sample
size makes it difficult to know how good π really is. There
are two things one can do to improve such situation: make
E[µ(a)−2] small and make πθ(a) large. We describe how to
achieve this in sections 3.3 and 3.4. Some other diagnostics
are covered in the context of section 3.6.

Figure 3. Real data from offline counterfactual policy evaluation
results coming from two production systems in the same domain,
with 90% bootstrap confidence intervals. System A used ε-greedy
exploration. Refactored system B used a more informed explo-
ration approach, producing more actionable estimates. The y-axis
shows the reward difference from production policy.

A (ε-greedy) B (informed exploration)

0.00

0.05

R
ew

ar
d

D
iff

er
en

ce

3.3. Avoid ε-greedy

When using logged bandit data, it is important to enable
exploration on top of the existing policy. Among exploration
strategies, ε-greedy is perhaps the simplest. It is also the one
that can work with an existing rule-based system. However,
ε-greedy treats all actions that the underlying policy does not
prefer as equally plausible, sampling each of them with an
equal probability when it chooses to explore. Furthermore,
the choice of whether or not to explore is oblivious to any
notion of uncertainty. For example, even with as few as 20
actions and an ε = 0.1, the effective sample size of a dataset
of size n for a policy that agrees with the logging policy
50% of the time and otherwise acts randomly is 0.01n. This
leads to problems in both training and evaluation as the
variance of standard estimators starts dominating (see figure
3.3). When confidence intervals are very large, one can
consider evaluation (and even training) with estimators that
cap the importance weights and trade some bias for reduced
variance. This should be considered a temporary fix and the
long-term solution is to have exploration that randomizes
among plausible alternatives.

Once we realized the seriousness of this problem in our
existing system A (cf. Figure 3.3), we invested in engineer-
ing work to enable better exploration methods inside our
application. However, our current best policy was a mix
of rules and ML models. It was created to return a single
“best” action, not score all plausible candidates. We did have
access to some scores coming from retrieval modules, but
each retrieval strategy produced its score on a different scale
and none of them was calibrated. Hence, it was hard to use
the raw scores in exploration.

Given these constraints, we decided to try a more informed
approach. First, we order candidate actions according to
a heuristic transformation of their scores, with the action



Lessons from Contextual Bandit Learning in a Customer Support Bot

chosen by the rule-based deterministic policy always at
the top position. Then we assigned manually-configured
weights uk that depended only on the initial rank k of each
solution. We use u1 ≥ u2 ≥ . . . ≥ uj = uj+1 = . . . =
un for some j when there are n actions. The exploration
distribution is obtained by normalizing these weights among
the available actions (i.e. when three actions are available,
the second action is chosen with probability u2

u1+u2+u3
).

Even this simple and perhaps naı̈ve strategy, which does
not incorporate any notion of uncertainty, results in much
more robust offline estimates than ε-greedy (see system B
on Figure 3.3).

After promoting the first model-based policy as a default
policy, we recommend to discard such heuristics and use
the newly promoted policy to drive exploration, e.g. via
softmax (Boltzmann) exploration.

3.4. Regularize Towards the Logging Policy

When training a new policy, it is important to regularize the
policy towards the logging policy. This is definitely not a
new piece of advice and is motivated by (Schulman et al.,
2015). The rationale is simple: making the model agree
more with the logging policy increases the effective sample
size, resulting in shorter confidence intervals and reduced
overfitting. Empirically, we have found that regularization
can increase the effective sample size by 5x (thus reducing
the width of the confidence interval by

√
5) without substan-

tial impact on the mean reward. The functional form of the
regularizer has not been as important; either direction of KL
divergence between new and old policy has worked well
and also other kinds of divergences such as total variation
distance.

3.5. Design an Architecture Suited to RL

Enterprise systems typically use machine learning only in-
side isolated components in conjunction with a number of
rules, controlled by code and manual configuration. It is
common to call a model only in limited scenarios or over-
ride a model’s decision afterwards. For instance, in the
Microsoft Virtual Agent’s original architecture, numerous
manually configured rules took precedence in execution.
The intent disambiguation module, which we wanted to
optimize, was either called with limited number of candi-
dates, not called at all, or its decision was overridden by
downstream components.

We call this type of architecture “rules-driven”. It may
contain ML components, but they are treated just as utility
functions which can be called (or not) whenever needed and
their result can be overridden without consequences. This is
perhaps a natural way of designing an enterprise system and
it may also work well enough with ML components based
on supervised learning.

However, applying RL to a rules-driven architecture poses
a real challenge. E.g. in our case, rules filtering candidates
limited the RL agent’s ability to make significant impact to
the end-to-end system. In cases when the agent’s component
was not called at all, we missed valuable logs in our RL
platform which we could have used in training or at least in
offline analysis. Overriding the policy’s decision is perhaps
the worst of all, as it introduces additional noise to data
logged by the agent (even if you design the system such that
the final overridden outcome is logged, it is much harder to
find the correct probability of such action).

Of course, one cannot simply replace all the rules with an
RL agent backed by a deep learning model – especially
in a mature enterprise application. Many of the rules in
place are crucial and should not be broken. One of the most
important rules in the Microsoft Virtual Agent is that if the
user expresses a desire to talk to a human support agent, the
systems needs to respect it – no other action is allowed. We
call such important regulations “business rules”.

On the other hand, most other rules in our system were
not really important from a business perspective. They
were just assumptions made by developers of the initial
version of the application, mainly due to a lack of data which
could be used to build a more accurate model. For instance,
one such rule in our system was favoring multi-step dialog
scripts over support articles. While this is a reasonable
assumption in general, it definitely does not apply to all
queries and contexts (e.g. we may not have a dialog script
troubleshooting some uncommon issues, but it’s very likely
we have a web article covering it). Without having access to
data coming from real traffic with exploration, basing a cold-
start policy on some hypothesis is a reasonable practice.

These observations motivated us to refactor the system to a
design pattern that we call an “RL-driven architecture” (see
Figure 4) where business rules are separated from the policy
component. The policy can be populated with cold-start
rules at first. The RL agent is allowed to explore around
the current policy, but it is never allowed to take an action
breaking any of the business rules. In this setting, the RL
agent can be called on every request, without the risk of
breaking any important business scenarios (like talking to a
human agent) and without missing any data in its logs. Only
a subset of our legacy rules graduated into business rules,
opening up a whole new space of actions for the agent to
explore. Finally, the cold-start assumptions can be proven
or rejected with real data, and the policy has a chance of
improving the end-to-end system in more significant ways
which were impossible before. As an additional benefit,
an RL-driven architecture brings clarity to the system’s
implementation, as well as makes it easier to test.



Lessons from Contextual Bandit Learning in a Customer Support Bot

Request w/
context x

Retrieve potential
actions AP

Define legal
actions AL ⊆ AP

Call busi-
ness rules β

Score legal actions
AL to obtains
probabilities p

Call policy
π; may be:

1. ML model

2. Rules

3. Mix of bothExplore, pick
action ai

Log x, AP , AL,
ai, pi, version

of β and π

Take action
a, respond

Figure 4. RL-driven architecture. All traffic flows through an RL
agent. Business rules ensure safety of exploration for every context.
Logging not only legal actions AL but also their superset AP

allows data scientists to reason about changes to business rules in
offline analysis.

3.6. Balance Randomness with Predictability

Another problem we have encountered when adding explo-
ration to our application is that randomization of the pro-
duction policy conflicts with typical users’ expectation of
getting reproducible results. For instance, the user may want
to repeat their query for the second time to try a different
result from suggested options.

To balance these two conflicting requirements, our sampling
code first sets the random seed based on the user’s unique
identifier concatenated with their query. Similar ideas have
been proposed in (Li et al., 2015).

Care needs to be taken to verify that the components that
make the random seed are themselves diverse. In a previous
iteration, we used a supposedly unique ID from a front-
end system. When this ID suddenly started being empty
for a large fraction of our data, our offline results no longer
matched our online results. Since then we have implemented
statistical tests such as those described in (Li et al., 2015) to
at least detect when such problems occur.

3.7. Consider Starting with Imitation Learning

While it is tempting to work on a policy that can solve the
whole task end-to-end, in early stages it is typically more
efficient to work on simplified aspects of the problem whose
solutions can create stepping stones for addressing the end-
to-end task.

For example, it may be worth investing in a model that just
imitates the production policy on instances where the pro-
duction policy received large reward. This can be done by
simple supervised learning which is much better understood.
The resulting policy can still be evaluated using held-out
off-policy data and multiple iterations of modeling can be
performed until a satisfactory model is obtained. Even if
this initial model is only on par with the existing system, it
is already a substantial improvement as it can be used for
regularizing future policies and more informed exploration.

3.8. Consider Simplified Action Spaces

Another possibility for starting simple is to solve certain
tasks in isolation. For example, instead of putting together
a combinatorial bandit that recommends a whole slate of
items in response to a user’s query, it might be worth the
effort to work only on the decision for the first slot. The
first slot offers two distinct advantages: it typically receives
more interaction (more people click on it) and counterfactual
evaluation is simpler because we do not need to worry about
the impact the new policy is having on previous slots.

3.9. Don’t be Afraid of Principled Exploration

A common worry is metric degradation when exploration
is first introduced. While it is certainly possible, and even
easy, to degrade business metrics via random and unsafe
exploration, in our experience we have found that when
exploration is done in a safe and controlled way it is in-
distinguishable from statistical fluctuations. If the actions
already have scores (e.g. from a model learned by super-
vised learning) these can be used to prioritize the candidates
and/or limit the number candidate actions over which we
explore. If the actions do not have scores, it might be worth
putting together a simple model for the purposes of informed
exploration (cf. Section 3.7).

3.10. Try to Support Changes in Environment

One of the reasons why reinforcement learning is an appeal-
ing alternative to supervised learning is its ability to react
to changes in the environment. However, the traditional
approach is based just on frequent model updates and letting
the agent to adapt to changes step-by-step. Counterfactual
policy evaluation cannot predict environment changes.

What we have found though is that in a typical enterprise



Lessons from Contextual Bandit Learning in a Customer Support Bot

application, a large part of the environment is controlled by
the application itself: its business rules and various settings
controlling these rules (see section 3.5) as well as content
that it serves. So even though these are parameters techni-
cally outside the RL agent’s control, we may still be able to
reason about these factors and use tools like counterfactual
policy evaluation to manage them in some ways.

The first step we took in this regard was logging not only all
legal actions for each context, but also the superset contain-
ing top N candidates provided by the retrieval components
(see figure 4). Secondly, we decoupled our business rules
component such that it could also be evaluated offline based
on logged data (similarly to the policy). Now, whenever
we plan to introduce some changes to business rules (which
happens regularly in a typical enterprise setting), we can
run certain validation steps offline. E.g. if a new version of
business rules shrinks the number of legal actions in certain
contexts, we can use counterfactual evaluation to estimate
the impact. If new adjustments expand the space of legal
actions, then, thanks to the logged superset of candidate
actions, we can at least detect contexts in which expansion
happens. We cannot use formal counterfactual evaluation
in the latter case but with additional human-labeling we
can at least estimate the risk of introducing such changes to
business rules. We can also compute offline what probabil-
ity such new actions would have, according to the current
policy, which may further affect our risk assessment.

To manage business rules well, we found it useful to version
them clearly and maintain a factory component which is
able to produce any desired version. It may be also useful to
stamp a trained model with the last version of business rules
it has seen in the training data. For example, this may be
used to ensure safer deployment of new business rules. At
runtime, we can easily spawn two versions of the business
rules component (current version and version which the
model was trained on). During model inference, we can
compare legal actions produced by both versions of business
rules. For all actions that were previously illegal and have
been legalized by new business rules, it may be safer to cap
their probability to some low value. This way, we do not
over exploit actions the model did not see in the training
data, but allow the system to collect sufficient amount of
exploration data. The next version of the model, after seeing
enough examples of the newly legalized actions, will be
allowed to use them without restrictions.

3.11. Cautiously Close the Loop

The great thing about a reinforcement learning system is
that you can, in principle, set it and forget it. It can run in
a closed training loop automatically on its own past data.
In practice however, it may be prudent to at least initially
manually close the loop by using a reinforcement learned

model as one of the treatments in a classic A/B test. This can
help iron out potential issues such as a mismatch between
offline evaluation and reality. Once there is no cause of
concern with single reinforcement learned models, the next
step is to perform an A/B test on the closed loop model
updating itself. Such a test can reveal stability of closed-
loop dynamics with the model being very different after
each update. Regularization towards the logging policy (cf.
Section 3.4) can mitigate this issue. Finally, while running
the loop as a treatment in an A/B test, it is advised to train
only on the portion of the traffic that is actually allocated
to the loop treatment, as these will be the conditions that
the loop will be operating under when it graduates from the
A/B test.

3.12. Consider Reward Engineering and Shaping

It is often the case that the reward signal we care most about
is the one that is most sparsely provided. In our case, the
majority of the users do not respond when asked whether
they were able to solve their problem. While it is not clear
whether the missing responses are missing at random, we
can still try to predict them in a causally sound way. For
example, in intent disambiguation we used features such
as whether we directly triggered a solution or whether the
user clicked the “None of the above” option. An example
of a causally dubious feature would be whether the user
escalated to a human agent. Even though this would predict
the reward well, escalation is thought to be caused by a
bad user experience. We then fit a model on held-out data
where users have provided responses and use it to impute
the missing reward for cases where the users did not provide
a response. We have found that training on this imputed
reward leads to better results on held out data than training
directly on the reward used for evaluation.

3.13. Use a Separate Logging Channel

It might be tempting to reuse logging infrastructure that
your current application already has, to log your RL agent’s
decisions with their probabilities. This may be an acceptable
short-term solution, but we recommend to quickly separate
the logging channel and format used by RL training from the
system’s typical diagnostic logs. The requirements for these
logging channels are usually different. Other developers
of the application, who may not be familiar with all the
details of the RL infrastructure, may assume that changing
some property in the logged data is a low-impact change.
However, in case of RL logs, it may impact or completely
break model training, correctness of offline counterfactual
evaluation etc. Thus, it is advisable to keep it separated.



Lessons from Contextual Bandit Learning in a Customer Support Bot

4. Related Work
While there exist many high-quality open source implemen-
tations of RL algorithms such as OpenAI baselines (Dhari-
wal et al., 2017) and dopamine (Castro et al., 2018), our
focus is not on setups where the environment is a simula-
tor, but rather the real world. The projects that are close to
our goals are the Decision Service (Agarwal et al., 2016),
Horizon (Gauci et al., 2018), and RLlib (Liang et al., 2017).

The Decision Service is the basis of our system. It provides
a very simple interface for any developer to use RL (Con-
textual Bandits) by simply specifying features, actions, and
rewards. Everything else is handled automatically. Policies
are constrained to be expressible by Vowpal Wabbit which
is used for training new iterations of the policy. Deployment
of new policies happens automatically on a regular schedule,
depending on how quickly data becomes out of date (e.g. as
fast as every 15 minutes in a news app).

Horizon is based on the same principles as the Decision
Service but has added the flexibility of optimizing any kind
of ONNX model. It is close to our extension of the DS.
To the best of our knowledge, Horizon does not set up a
distributed logging service for reliable logging, while the
DS uses capabilities built in Azure (Event Hubs).

RLlib has very recently added extensions to support RL
from offline data. The original motivation of RLlib was to
perform RL in a simulated environment with very easy to
use abstractions that can seamlessly scale the computation
without the user having to worry about details of distributed
systems. We find that RLlib is very focused on training
while multiple other components, including logging, explo-
ration, diagnostics, and counterfactual evaluation, need to
come together in a real-word RL application.

5. Conclusions and Future Work
We have described two applications of single step RL in
the Microsoft Virtual Agent along with practical issues that
arise in real world Contextual Bandit and RL applications.
We hope the practical lessons we have learned in our domain
can help other RL practitioners and perhaps even guide RL
and systems researchers in the development of better tools
for solving real world RL problems.

In the future we will move towards short episodic RL where
it is important to do proper credit assignment. For this we
plan to rely on a reduction approach (Daumé III et al., 2018)
which can operate well with the rest of our existing system.

Acknowledgements
We thank Markus Cozowicz, Marco Rossi, Rafah Hosn, and
John Langford for help with extending the DS system, Brian

Bilodeau, and the Customer Care Intelligence Team, for
their support with the Intent Disambiguation use case and
Mary Buck and the Digital Customer Support team for their
help with the Contextual Recommendation scenario.

References
Agarwal, A., Bird, S., Cozowicz, M., Hoang, L., Langford,

J., Lee, S., Li, J., Melamed, D., Oshri, G., Ribas, O.,
et al. Making contextual decisions with low technical
debt. arXiv preprint arXiv:1606.03966, 2016.

Apple. Core ml. https://developer.apple.com/
documentation/coreml. [Online; accessed 1-May-
2019].

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A Research Framework for
Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F.,
and Chi, E. H. Top-k off-policy correction for a rein-
force recommender system. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining, pp. 456–464. ACM, 2019.

Daumé III, H., Langford, J., and Sharaf, A. Residual Loss
Prediction: Reinforcement Learning With No Incremen-
tal Feedback. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=HJNMYceCW.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines. https://github.
com/openai/baselines, 2017.

Gauci, J., Conti, E., Liang, Y., Virochsiri, K., Chen, Z.,
He, Y., Kaden, Z., Narayanan, V., and Ye, X. Horizon:
Facebook’s open source applied reinforcement learning
platform. arXiv preprint arXiv:1811.00260, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Huang, H.-Y., Zhu, C., Shen, Y., and Chen, W. Fusion-
net: Fusing via fully-aware attention with application
to machine comprehension. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BJIgi_eCZ.

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://openreview.net/forum?id=HJNMYceCW
https://openreview.net/forum?id=HJNMYceCW
https://github.com/openai/baselines
https://github.com/openai/baselines
https://openreview.net/forum?id=BJIgi_eCZ
https://openreview.net/forum?id=BJIgi_eCZ


Lessons from Contextual Bandit Learning in a Customer Support Bot

Langford, J. and Zhang, T. The epoch-greedy algorithm
for contextual multi-armed bandits. In Proceedings of
the 20th International Conference on Neural Information
Processing Systems, pp. 817–824. Citeseer, 2007.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th interna-
tional conference on World wide web, pp. 661–670. ACM,
2010.

Li, L., Chen, S., Kleban, J., and Gupta, A. Counterfactual
estimation and optimization of click metrics in search
engines: A case study. In Proceedings of the 24th Inter-
national Conference on World Wide Web, pp. 929–934.
ACM, 2015.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R.,
Gonzalez, J., Goldberg, K., and Stoica, I. Ray rllib:
A composable and scalable reinforcement learning li-
brary. CoRR, abs/1712.09381, 2017. URL http:
//arxiv.org/abs/1712.09381.

ONNX. Open neural network exchange. https://
github.com/onnx/onnx. [Online; accessed 1-May-
2019].

Owen, A. B. Monte Carlo theory, methods and examples.
2013.

Schnabel, T., Swaminathan, A., Singh, A., Chandak, N.,
and Joachims, T. Recommendations as treatments:
Debiasing learning and evaluation. arXiv preprint
arXiv:1602.05352, 2016.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381
https://github.com/onnx/onnx
https://github.com/onnx/onnx

