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ABSTRACT

In this work we propose a novel end-to-end imitation learning approach which
combines natural language, vision, and motion information to produce an abstract
representation of a task, which is in turn used to synthesize specific motion con-
trollers at run-time. This multimodal approach enables generalization to a wide
variety of environmental conditions and allows an end-user to direct a robot pol-
icy through verbal communication. We empirically validate our approach with an
extensive set of simulations and show that it achieves a high task success rate over
a variety of conditions while remaining amenable to probabilistic interpretability.

1 INTRODUCTION

A significant challenge when designing robots to operate in the real world lies in the generation
of control policies that can adapt to changing environments. Programming such policies is a la-
bor and time-consuming process which requires substantial technical expertise. Imitation learn-
ing (Schaal, 1999), is an appealing methodology that aims at overcoming this challenge – instead
of complex programming, the user only provides a set of demonstrations of the intended behavior.
These demonstrations are consequently distilled into a robot control policy by learning appropriate
parameter settings of the controller. Popular approaches to imitation, such as Dynamic Motor Prim-
itives (DMPs) (Ijspeert et al., 2013) or Gaussian Mixture Regression (GMR) (Calinon, 2009) largely
focus on motion as the sole input and output modality, i.e., joint angles, forces or positions. Critical
semantic and visual information regarding the task, such as the appearance of the target object or
the type of task performed, is not taken into account during training and reproduction. The result
is often a limited generalization capability which largely revolves around adaptation to changes in
the object position. While imitation learning has been successfully applied to a wide range of tasks
including table-tennis Mülling et al. (2013), locomotion Chalodhorn et al. (2007), and human-robot
interaction Amor et al. (2014) an important question is how to incorporate language and vision into
a differentiable end-to-end system for complex robot control.

In this paper, we present an imitation learning approach that combines language, vision, and motion
in order to synthesize natural language-conditioned control policies that have strong generalization
capabilities while also capturing the semantics of the task. The main rationale of our approach is that
a teacher typically provides substantially more information than just the kind of motion to perform.
Imagine an athletic trainer that is demonstrating a tennis swing while also verbally explaining the
involved steps, the target position, or the speed. As a result of this rich collection of information, the
student can develop complex associations between (a) the observed visual features, (b) the demon-
strated arm movement, and (c) the provided verbal descriptions. We argue that such a multi-modal
teaching approach enables robots to acquire complex policies that generalize to a wide variety of
environmental conditions. To this end, we propose a neural network architecture, including several
sub-networks, that can be trained in an end-to-end fashion to capture the complex relationships be-
tween language, vision, and motion observed in the demonstrations. After training, the network can
be provided with a camera image of the current environment and a natural language description of
the intended task. The description typically corresponds to verbal commands given by the current
user. In turn, the network produces control parameters for a lower-level control policy that can be
run on a robot to synthesize the corresponding motion. The hierarchical nature of our approach, i.e.,
a high-level policy generating the parameters of a lower-level policy, allows for generalization of
the trained task to a variety of spatial, visual and contextual changes. Further, the ability to provide
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commands and instructions to the policy enables easy human-robot interaction through language.
At execution time, the user can influence the behavior of the robot by simply talking to it. Our main
contributions can be summarized as follows:

• We propose a Multimodal Policy Network (MPN), an approach that fundamentally com-
bines language, vision, and motion control in to a single differentiable neural network that
can learn the cross-modal relationships found in the data.

• We empirically show that our model is capable of generating task-specific robot controllers
given demonstrations of a task containing natural language and visual descriptors

In order to outline our problem statement, we contrast our approach to Imitation learning (Schaal,
1999) which considers the problem of learning a policy π from a given set of demonstrations D =
{d0, ..,dm}. Each demonstration spans a time horizon T and contains information about the robot
states and actions, e.g., demonstrated sensor values and control inputs at each time step. Robot states
at each time step within a demonstration are denoted by xt. In contrast to other imitation learning
approaches, we assume that we have access to the raw camera images of the robot It at teach time
step, as well as access to a verbal description of the task in natural language. This description
may provide critical information about the context, goals or objects involved in the task and is
denoted as s. Given this information, our overall objective is to learn a policy π which imitates
the demonstrated behavior, while also capturing semantics and important visual features. After
training, we can provide the policy π(s, I) with a different, new state of the robot and a new verbal
description (instruction) as parameters. The policy will then generate the control signals needed to
perform which take the new visual input and semantic context into account.

2 BACKGROUND

A fundamental challenge in imitation learning is the extraction of policies that do not only cover the
trained scenarios, but also generalize to a wide range of other situations. A large body of literature
has addressed the problem of learning robot motor skills by imitation (Argall et al., 2009). The
majority of these approaches focus on learning functional (Ijspeert et al., 2013) or probabilistic rep-
resentations (Maeda et al., 2014) of motion trajectories. Once such a model is learned, an input state
vector is used to adapt the original motion to changes in position, orientation, or force. However,
the state vector has to be carefully designed in order to ensure that all necessary information for
adaptation is available. Neural approaches to imitation learning Pomerleau (1989) circumvent this
problem by learning feature representations that are best suited for the task. Extracting feature in-
formation from rich data sources such as natural language and visual data for motion control has an
extensive history. The work presented in (Arumugam et al., 2019; Burke et al., 2019; Hristov et al.,
2019; Misra et al., 2018) focuses on sequencing manipulation tasks or choosing when to switch skill
based on language and/or vision input from the environment. However, these approaches assume
that underlying motion primitives are available that actuate the robot in the form of a motion planner
or goal-directed controller. Fine grained robot control has been learned from high-level task descrip-
tions in recent work presented by Chang et al. which utilizes robot trajectories from demonstrations
by learning a parameterized neural policy from visual perception of the environment. While not
using natural language to specify the target, this work outlines the importance of combining robot
motions with other modalities. The work presented in Sung et al. (2015) combines natural language,
point-cloud perceptions of the environment and trajectories into a joint embedding that locates tasks
and trajectory representations in close proximity to each other in the latent space. At inference time,
a control trajectory is generated by locating the task in the latent space and selecting an appropriate
control policy.

Modern variants of this line of research leverage recent progress in training convolutional neural net-
works in order to train increasingly complex policies from raw (visual) sensor inputs. Building upon
the same basic framework, the work in Finn et al. (2017) investigates how meta-learning can be used
to learn rapidly adaptable policies. More specifically, meta-learning aims at learning policy param-
eters that can quickly be fine-tuned to new tasks. While very successful in dealing with visual and
spatial information, these approaches do not incorporate any semantic or linguistic component into
the learning process. Creating policies that can be conditioned on natural language is one potential
pathway to overcome this limitation. Several works have investigated the idea of combining natural
language and imitation learning: Nicolescu & Mataric (2003); Gemignani et al. (2015); Cederborg
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Figure 1: Description of the network architecture and compositons.

& Oudeyer (2013); Mericli et al. (2014); Sugita & Tani (2005). However, many of these approaches
assume that either a sufficiently large set of motion primitives is already available or that a taxonomy
of the task is available, i.e., language and motion are not trained in conjunction.

Our work is most closely related to the framework introduced in Tellex et al. (2014), which also
focuses on the symbol grounding problem. More specifically, the work in Tellex et al. (2014) aims
at mapping perceptual features in the external world to constituents in an expert-provided natural
language instruction. Our work approaches the problem of generating dynamic robot policies by
fundamentally combining language, vision, and motion control in to a single differentiable neural
network that can learn the cross-modal relationships found in the data with minimal human feature
engineering. Unlike previous work, our proposed model is capable of directly generating complex
low-level control policies from language and vision that reassemble robot motions demonstrated
during training.

3 MULTIMODAL POLICY GENERATION VIA IMITATION

We motivate our approach with a simple example: consider a binning task in which a robot has to
drop an object into one of several differently shaped and colored bowls on a table. A human expert
can teach the task to the robot providing a kinesthetic demonstration, i.e., physically maneuvering
the robot through the necessary motion trajectory. However, in this example, it is critical to place
the object in the correct bowl rather than only reproducing the control trajectories from the demon-
strations. To this end, the human demonstrator may provide a verbal command, e.g., “Move towards
the blue bowl” during teaching. The trajectory generation would then have to be conditioned on the
blue bowl’s position which, however, has to be extracted from visual sensing. Our approach auto-
matically detects and extracts these relationships between vision, language, and motion modalities
during learning. The result is a neural network representation that integrates all available information
in order to make best usage of contextual information for better generalization and disambiguation.

Figure 1 (left) provides an overview of our method. Our goal is to train a deep neural network that
can take as input a task description s and and image I and consequently generates robot controls.
In the remainder of this paper, we will refer to our network as the MPN. Rather than immediately
producing control signals, the MPN will generate the parameters for a lower-level controller. This
distinction allows us to build upon well-established control schemes in robotics and optimal control.
In our specific case, we use the widely used Dynamic Motor Primitives (Ijspeert et al., 2013) as a
lower-level controller for control signal generation.

Given an image and a task description as input, first a so-called semantic network is utilized to
combine the information from natural language with the visual perception of the robot in order
to produce a joint task embedding. The joint embedding is created by converting words into a
sentence embedding, which is in turn concatenated as a fourth channel to the input image. Images
are provided to the network as difference images between an empty environment and the current
raw camera image, resulting in an image that highlights the objects located in the environment.
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This step is performed as a simple background substraction process to improve learning speed. The
joint task embedding serves as a robot-independent description of the desired task. The embedding is
forwarded to a sub-network, called the Policy Translation network, which synthesizes the parameters
needed to fully define a low-level control policy. The resulting parameter vector can be used to
execute the DMP and actuate the robot. While the MPN is activated only once per task to yield
the DMP parameters, the synthesized low-level controller is continuously utilized at every time step
during task execution. The following sections will introduce each part of the MPN in more detail.
An in-depth overview of our architecture can be found in Figure 1.

3.1 SEMANTIC NETWORK

In order to extract salient information from a natural language sentence, we tokenize the sentence
into a vector of words s. The vector s is modified to have length ls; sentences with fewer than
ls words are zero-padded and sentences with greater than ls words are truncated. Each word
is transformed into a lw-dimensional word representation via the pre-trained GloVe model (Pen-
nington et al., 2014) such that we produce a word representation matrix W ∈ Rls×lw = fW (s)
. We then extract the relevant n-grams relating to the task at hand through the use of a CNN
as in Yang et al. (2015). In this method, the filters of the CNN are used to extract individual
n-grams, such that a filter with dimension n × lw produces a gram of size n. In order to de-
termine which of these n-grams is relevant, we concatenate all of the convolved feature maps
resulting from all filters, mc = [mc,1,mc,2, , ...,mc,ls−c+1], then apply max pooling such that
m′c = max0≤i≤ls−c+1(mc,1,mc,2, ...,mi). The final n-gram representation is built by concate-
nating the feature maps s′ = m′c∀c ∈ C. However, the relationship between the n-grams is still
unknown; in contrast to prior work we leverage this information by further passing the n-gram map
s′ through a two-layer fully-connected network: es = ReLU(K1ReLU(K2s

′ + b2) + b1) where
Ki and bi represent the kernel and bias for each of the two layers. The process of converting W
into es is denoted fL(W ) in Figure 1. We expand the input image I with a fourth channel, com-
posed of the sentence embedding es. To this end, we stack the sentence embedding to match the
size of one input channel of the image e′s = [e′s, ..., e

′
s]. The resulting image Iin is used as an input

for fI(Iin) to generate the task embedding e, which is produced with three blocks of convolutional
layers, composed of two convolutions, followed by a residual convolution each. The use of residual
convolutions as proposed in He et al. (2015) allows the network to utilize possible accuracy gains
from increased depth without increasing the complexity of the network significantly, while main-
taining the property of being easily optimized. The goal of the image network fI() is to generate a
joint task representation from language and environmental perception that can be further utilized to
generate low-level policies.

3.2 POLICY TRANSLATION NETWORK

The objective of the Policy Translation network is to produce the control parameters for a low-level
controller. Hence, it can be seen as a function that maps task embeddings to control parameters.
Since in our case the controller is a DMP, we will first formally introduce the basics of this con-
trol framework. A DMP is fundamentally a damped spring dynamical system which produces a
trajectory of joint configurations, y ∈ Rdr , for dr actuated robot DoFs,

τ ÿ = αy (βy (g − y)− ẏ) + f (x;Θ) , τ ẋ = −αxx, (1)

attracted to the point g ∈ Rdr according to the phase x, with constant coefficients αy , βy , and αx

and the temporal scaling factor τ . The forcing function f determines the shape of the trajectory
produced by the dynamical system, which we define as a linear combination of nonlinear Gaussian
basis functions, Ψ:

f(x;Θ) =

∑b
i=1 Ψi(x)θi∑b
i=1 Ψi(x)

x(g − y0), (2)

in which Θ ∈ Rdr×b is a set of b weight coefficients for dr DoFs and y0 is the initial state. Most
applications of DMPs for imitation learning (Schaal, 1999) directly learn a static set of weights for
the forcing function from the demonstration data. At runtime these weights Θ and a goal position
can be used to synthesize robot control signals. However, this assumes that a goal position has
been generated by some other means, e.g., vision, kinematics, etc. In our approach, both the weight
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coefficients Θ as well as the goal position g are generated by the Policy Translation network. Given
the task embedding e, the policy translation network generates the hyper-parameters Θ ∈ R7×15

and g ∈ R7 for the low-level DMP. The generation of the hyper-parameters is defined as

Θ, g = fT (e) = fG (ReLU (WGe+ bG)) , fH (ReLU (WGe+ bG)) (3)

where fG() and fH() are multilayer-perceptrons that generate g and Θ respectively after having
processed e in a single perceptron with weight WG and bias bG. One interesting advantage of
using DMPs is the fact that we can leverage a large body of research regarding their behavior and
stability, while also allowing other extensions of DMPs (Amor et al., 2014; Paraschos et al., 2013;
Khansari-Zadeh & Billard, 2011) to be incorporated to our framework.

3.3 TRAINING

The MPN, including all of its sub-networks, is trained in an end-to-end fashion and uses a single
Adam (Kingma & Ba, 2015) optimizer OL for the entire network. Due to the used Rectified Linear
Unit activation throughout the entire network, it does not suffer from the vanishing gradient problem
and allows the use of a single, combined loss function, defined as follows:

LC = λc ∗MSE(T ,J) +MSE(T−1,:,J−1,:) (4)

where MSE() denotes the Mean Squared Error loss function. The goal of the low-level controller
is to re-create the shape of each trajectory d during training as well as predict the target joint config-
uration g. Both of these objectives are summed in the loss function and weighted by λc to maintain
an equal contribution of both objectives to the overall loss. To allow the model for better generaliza-
tion capabilities, we add Dropout at each stage of the network as well as a small amount of random
Gaussian noise on the input image and demonstrated trajectory.

3.4 DETECTION OF INVALID TASKS

In its current state, the proposed model is forced to act in every possible scenario and language
combination presented to the MPN. Situations that are not possible, e.g. moving towards an object
that is not present in the current environment, may lead to dangerous behaviour of the robot. In
order to address this problem, we extended the current model with an additional 3-layered MLP
v = fV (e) that predicts whether or not the requested task is possible. This function is based
on the embedding e and performs a binary-classification regarding the validity of the task. This
extension requires three additions to the previously described network structure. First, we add an
adversary sentence sa to each demonstration d that requests a task that is not possible given the
current environment. We also introduce an additional loss LV (v) that calculates the classification
capabilities of the entire semantic network fE() and fV (), since the ability to distinguish tasks needs
to be propagated through the entire network up until this point. The optimizer utilizes sparse softmax
cross entropy for exclusive single class classification. The third addition is an additional optimizer
OE that optimizes the embedding network utilizing the following loss:

LE = LC + λvLV (5)

We combine the controller and embedding network losses with an additional weight hyper-parameter
λv .The addition of LC to LE is necessary to maintain the ability of the semantic network to generate
useful embeddings for the translation network. This is also reflected in the choice of λv which leaves
a strong weight onLC . As a last step, the former optimizer is reduced to only optimize the translation
network instead of the entire network, as described in the previous section.

4 EXPERIMENTS

In this section, we describe our experimental setup and conduct and extensive set of experiments to
verify the capabilities of our proposed model. We evaluate our model in a simulated environment on
a binning task in which the goal is drop a cube in one of randomly placed multiple bins. An image
sequence of the task can be seen in Figure 2.

Data Collection: For data collection, we automatically generate random binning scenarios in which
we present the robot with three to five different bowl of different color, shape and size. In total, we
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Environment Difference

Possible Sentences:

Trajectory

- "Move to the beryl dish"
- "Advance to the green bowl"
- "Proceed to the jade pot"
- "Go to the olive basin"

Figure 2: Overview of the experiment setup: (left) 3D environment with all possible objects with
five colors, two sizes and two shapes. (middle) Example trajectory for going towards the green bowl.
(right) Collected image and voice data for the given trajectory.

utilize five colors (yellow, red, green, blue and pink), two sizes (small and large) and two shapes
(round and squared). This procedure provides us with 20 different objects and the ability to test
different levels of ambiguity regarding the required amount of features needed to uniquely identify
an object. As an example, when all four red objects are in the scene, a unique description of an
object is only possible when all three features (color, size and shape) are used at the same time to
describe the task. In order to generate a larger variety of different possible sentences, we conducted
an IRB approved human subject study in which we presented multiple colored objects to participants
and asked them to explain verbally how they are interacting with these objects in a pick-and-place
task. This allowed us to extract multiple sentence templates for going towards objects, as well as
multiple synonyms for actions, colors, containers and reference points. In our study, we did not
restrict participants in any way, such that each individual was able to choose a description that is
most natural to them. In addition, we expanded the list of synonyms by gathering additional words
from publicly available synonym databases. The combination of the data from the IRB study and
synonym database allows us to generate a large variety of natural task explanations for arbitrarily
generated scenarios. A detailed description of the template generation can be found in Appendix
A. The visual perception of the robot is provided as a top-down image from above to robot, see
Figure 2. To use the images in our model, we scale them to a resolution of 96 × 96 × 3 where
the last three channel refer to the RGB values of each pixel. After generating a task and scenario,
kinesthetic demonstrations are generated with a physics based simulation of a UR5 robot arm, taking
into account inertia, weights and other properties of the robot and environment, allowing us to collect
realistic movements in the simulated environment. The simulator is running with 20Hz to collect
a reasonable amount of samples for each trajectory. In total, we collected over 20000 generated
demonstrations as described above.

4.1 GENERALIZATION

Table 1: Comparison of successfully completing
the binning task by using a single feature over
500 attempts.

Required Feature Binning Success
None (Single Object) 96.4%

Color 97.6%
Size 96.0%

Shape 79.0%

Table 2: Accuracy of detecting valid actions in
random environments based on ambiguity. Low:
Separation based on a single feature High: Only
combinations of features separate the targets.

Correctly:
Ambiguity Accepted Rejected

Low 99.3% 96.6%
High 70% 66.6%

In our binning scenario, the robot needs to stop its movement above the bowl outlined in the experi-
ment within a radius of the bowl’s center such that the dropped object from the gripper is successfully
placed inside the bowl. We utilized two different bowl sizes in these experiments, large and small,
with a 17.5 cm and 12.5 cm diameter respectively. The object that is to be delivered, a cube, has
an edge length of 5 cm. All experiments were conducted by generating new random scenarios with
new environments, images, and sentences corresponding to the generated task.
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"advance to the cardinal dish"
"carry it to the maroon object"

"move to the red bowl"
"go to the ruby basin"

"move to the blue bowl"
"transport it to the azure pot"
"transfer it to the cobalt dish"
"advance to the indigo basin"

(a) Generalization to different locations (blue) and
generalization with different sentences (red).

0.525
0.450
0.375
0.300
0.225
0.150
0.075
0.000[m]

(b) Predicted goal error in meters depending on
the target position. The area highlighted in red
shows the area from which training data were
sampled.

Figure 3: Generalization capabilities (Figure 3a) and positioning error (Figure 3b).

In our first experiment, we evaluated the success rate of the object delivery by using only a single
necessary feature. The results of this set of experiments can be seen in Table 1. Each test was
conducted on an equal amount of small and large bowl with 250 attempts each, resulting in 500
attempts for each shown feature. Except from the first row, all features were tested in scenarios with
3 bowls, one being the target and two serving as distraction. Based on the reported success rate,
the robot is capable of successfully achieving a task with at least 96% probability except from when
the only distinguishing feature is the shape (round or square), in which the success rate drops to
79%. This drop in successful task completion in these cases is due to the chosen image resolution
of the environment in which distinguishing small round from small squared bowl is a particularly
challenging task that was chosen on purpose to test the limits of our approach.

The generated parameters of the low-level DMP controller – the weights and goal position – must be
sufficiently accurate in order to successfully deliver the object to the specified bin. A set of weights
for the first four dimensions of a DMP controller can be seen in Figure 4b. The figure shows the
generated weights for the movement to two different objects, one of which is closer to the robot
than the other as well as being on different sides of the robots. We quantify the accuracy of the
parameter generation by computing the Euclidean distance between the ground truth target location
and the end effector position of the robot, based on the predicted joint configuration. For this, we
generated 6000 positions on a grid that were equally distributed inside the physically reachable work
space of the UR5 robot. The comparison between the end effector position, calculated with forward
kinematics, and the target position can be seen in figure 3b. Within the area used to generate train-
ing data, the robot predicts the correct position with well under 5cm error, which is precise enough
for the tested binning task. Additionally, the model is able to accurately generalize to target posi-
tions located outside of the training area, with the error increasing as the distance from the training
area increases. The proposed addition of classifying if a requested task is possible was evaluated
on random environments with low and high ambiguity regarding the number of separating features.
In an environment with low ambiguity, a single feature is enough to tell targets apart, where as in
environments with high ambiguity, multiple features are needed for each object to tell them apart.
The results of this test are shown in Table 2. In addition to generalizing to different bowl locations,
the model is also capable of generalizing to changes in the verbal task description. This is important
when interacting with different users that may describe the same task with different words. In Fig-
ure 3a we show the spatial and verbal generalization capability of our model. Since color is a key
component of our verbal task descriptions, we expect that the robot is able to generalize to different
color shades, something that can be caused by variations in illumination. In this experiment, we
changed the colors of our green objects to different shades of green. Additionally, we also change
the color components towards other bowls by increasing the red and/or green component. We em-
pirically evaluated the MPNs ability to incorporate these changes in the selection of a target object.
An example of the changes we made can be seen in Figure 5. In that scenario the robot chooses the
dark green object over an object that added a blue component. However, when tasked with going to
the large green object, it also moves towards the larger object with increase blue component. This
experiment shows that our network can combine information from multiple modalities to disam-
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(a) Stochastic Forward Passes: Certainty of the
predicted goal position for an existing object at
different locations (red) and an object that is not
existing (referred to as green, but is central red).
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(b) Generated DMP weights for two different
controllers approaching objects located on oppo-
site sides of the robot

Figure 4: Effects of language and environment on generated controllers and target prediction.

"Move to the green bowl""Move to the large green bowl"
Training Color Darker ToneIncreased Blue Component

Figure 5: Sensitivity to different shades of green. During training, colors were fixed as well as the
illumination. Here we show the robot’s ability to account for small color changes.

biguate a situation, i.e., the greener object is chosen when no size is defined, while the slightly bluer,
larger object is chosen when a size is part of the verbal description.

4.2 UNCERTAINTY

We leverage recent theoretical insights in order to generate uncertainties via probabilistic outputs
from our trained MPN. In particular, it was shown in Gal & Ghahramani (2015) that neural net-
work learning using the Dropout method is equivalent to a Bayesian approximation of a Gaussian
Process modeling the training data. In each of the forward passes, we randomly drop neurons from
the network as done in the Dropout algorithm. However, in this case, the neurons are dropped at
inference time and not at training time. The generated samples form a possibly complex distribution
represented as a set of outputs of the neural network. By analyzing this set we can glean impor-
tant information about the uncertainty in our networks outputs. Figure 4a shows the application of
stochastic forward passes on the predicted goal position in Cartesian space generated by using a
forward kinematics on the predicted goal configuration of the robot. As can be seen in the picture,
the network is certain about the position of five red objects on the table in five different tasks. The
variance of all forward passes is below 5cm, which allows for a successful binning task. However,
when only providing a red object in the environment and asking the robot to move to a green object,
the uncertainty drastically increases. This can be seen in the green scatter plot, which shows posi-
tions of the green bowl over 100 stochastic passes. Based on the distribution of the predicted goals,
it becomes apparent that the green object is not available in the current environment. These types of
analyses allow for granular decisions regarding task execution success to be made.

4.3 DYNAMIC ENVIRONMENTS

It is desirable for robots to be able to cope with dynamically changing environments, particularly
when a human is in the loop. In this experiment, we evaluate the robot’s ability to adapt its generated
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(a) Dynamic Environment: Changing bowl
location while reaching target
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(b) Following a learned trajectory: Demonstrated (Blue), DMP
control (Green), Proportional control (Red)

Figure 6: Evaluation of our approach for dynamically changing environments (a) and the ability to
adhere to demonstrated trajectory shapes during interaction (b)

Table 3: Average success rate for placing the object in 250 randomly generated environments.

Dataset Size Syn No Syn
Objects Required Features 20000 10000 5000 1000 20000 20000

1 Small 92.8% 93.6% 45.0% 54.8% 92.8% 100.0%
1 Large 100.0% 96.8% 61.6% 69.2% 91.2% 100.0%
3 Color, Small 96.4% 91.6% 33.2% 20.8% 22.0% 99.6%
3 Color, Large 98.8% 98.0% 50.8% 29.2% 26.0% 100.0%
3 Size, Small 92.8% 40.0% 6.8% 4.0% 77.2% 99.6%
3 Size, Large 99.2% 37.6% 23.6% 21.2% 15.6% 100.0%
3 Shape, Small 70.0% 8.0% 14.4% 6.8% 56.0% 82.4%
3 Shape, Large 88.0% 20.4% 24.4% 9.6% 64.0% 72.0%

policy to a dynamically changing environment by asking the robot to drop an object in a constantly
moving bowl. During data collection and training, the robot was only provided with examples
from static environments, such that it was enough to generate a DMP once at the beginning of each
interaction. However, to adapt to a changing environment, a new DMP needs to be generated for
each time step. Figure 6a shows such a scenario, in which the red bowl is moving on an arc from left
to right around the robot by moving 1.5 cm in each step. For this experiment, we utilize the same
model as for previous experiments without having trained it for dynamically changing environments.
At each time step, the same sentence s is combined with the new environment image I, generating
a new policy by providing the parameters for an updated DMP. As can be seen from the image
sequence in Figure 6a (a), the robot is successfully able to adapt to the changed bowl position.

4.4 TRAJECTORY RECONSTRUCTION

In our work, we chose a DMP as a low-level controller for the MPN model to give the robot the
ability to not just learn to approach a predicted goal position, but to also reassemble the shape
of demonstrated trajectories. This ability is essential in scenarios in which the trajectory shape
encodes additional information, e.g. object avoidance or a certain way in which an object needs to
be approached. Figure 6b (b) shows the MPN’s ability to generate trajectories that are similar to what
was shown during training. The dashed blue line shows the position of the tool center point (in x,
y, z coordinates) of a demonstrated trajectory from the test set, the green line shows the respectively
generated trajectory, executed by the DMP controller and the red line demonstrates the executed
trajectory when using a proportional controller. The movement along the Z-axis of the trajectory
clearly shows a different behaviour of the robot when using a proportional controller. On average,
the difference between the tool center point position and the demonstrated trajectory is 1.6cm and
19.1cm when using the DMP and proportional controller, respectively.

4.5 ABLATION STUDY

Dataset Size Even though we are able to generate a large amount of artificial demonstrations in
simulation, the ability of the MPN to train on fewer data is desirable. For this purpose we looked
at the performance of the MPN when being trained with less than 20000 demonstrations, see Table
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Table 4: Ablation over network structure. Average success rate for placing 250 objects using n-
grams of size 2, 3, 4 and 5. The last demonstrates the influence of using residual layers in the image
processing pipeline.

Network Changes
Objects Required Features Original NG 2 NG 3 NG 4 NG 5 NRes

1 Small 92.8% 31.6% 30.0% 32.8% 15.2% 56.6%
1 Large 100.0% 52.4% 40.4% 56.8% 22.8% 74.4%
3 Color, Small 96.4% 32.4% 21.2% 29.2% 18.0% 59.2%
3 Color, Large 98.8% 56.8% 43.2% 59.2% 26.8% 74.4%
3 Size, Small 92.8% 31.2% 26.0% 4.4% 14.0% 56.8%
3 Size, Large 99.2% 53.2% 44.0% 19.2% 26.0% 71.6%
3 Shape, Small 70.0% 4.8% 8.4% 5.2% 14.4% 45.2%
3 Shape, Large 88.0% 22.4% 42.0% 10.8% 24.4% 68.4%

3. As when testing the spatial generalization capability of the network in section 4.1, we conducted
experiments with various combinations of features, separated by their success rate with regards to
the object size. The trained MPN seems to be working better with larger objects, which again, might
be related to the chosen image size. However, the experiments showed that when identifying the
location of a single object or a scenario in which the color is sufficient to distinguish targets, it does
not significantly benefit from more than 10000 training data. In addition to the amount of training
data, we also trained a model without augmenting the the training data with synonyms, which is
shown in the last two columns. This model was tested on data using synonyms (2nd last column)
and data not using synonyms (last column). As expected the problem becomes easier when no
synonyms are used. However, this model shows the ability of the Glove word embeddings to embed
words with a similar meaning closer to each other, resulting in a partially usable model.

Network Structure In addition to the size and variety of the dataset, the structure of the network is
an important component of our approach. In this section, we compare different choices with regards
to the network structure. Table 4 analyzes the performance of different n-gram sizes as compared
to the original model. As expected, using a single n-gram size performs significantly worse across
all tested sizes as compared to our original model using n-gram sizes of 1, 2, 3 and 5 concurrently.
However, the results suggest that smaller n-gram sizes are better at capturing cases in which a single
feature is enough to uniquely describe an object where as large n-grams seem to loose the ability to
focus on the important part of the sentence.

In addition to process language, our approach is able to ground sentences with the current envi-
ronment perception. ResNet is a common model for tasks related to computer vision (He et al.,
2015) and achieved its performance by introducing residual layers in the CNN structure. In the
right-most column of table 4 we analyzed the influence of the residual sections of our network by
replacing them with max-pooling layers to maintain a similar output structure. As can be seen form
the results, the residual units have a significant influence on the overall performance of the network.

5 CONCLUSION

In this work, we presented an imitation learning approach combining language, vision, and motion.
A neural network architecture called Multimodal Policy Network was introduced which is able to
learn the cross-modal relationships in the training data and achieve high generalization and disam-
biguation performance as a result. Our experiments showed that the model is able to generalize
towards different locations and sentences while maintaining a high success rate of delivering an ob-
ject to a desired bowl. In addition, we discussed two extensions of the method that allow us to obtain
uncertainty information from the model by either learning a separate classifier or utilizing stochastic
network outputs to get a distribution over the belief.

Finally, we hope to further expand the verbal fidelity of our model by adding the ability to utilize
relational object descriptions to parameterize the task. Using the full range of natural language
descriptions will give us the ability to ground additional constraints into robot control.
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To train our neural network, we require a large amount of training data D of sentences s, images
I and respective sensor readings xt∀t ∈ T from the respective robot movement. While generating
random scenarios and actuating the robot in a simulator can easily be done, generating sentences for
random scenarios is a more challenging task. Not only do sentences need to describe a target object
uniquely given all other objects in the scene, but they also need to reflect grammatically correct and
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Table 5: Words gathered from the human-subject study witch their common synonyms.

Base Word Used Synonyms
round round circular
square square rectangular
small small tiny smallest petite meager
large large largest big biggest giant grand
red red ruby cardinal crimson maroon carmine

green green aquamarine olive jade chartreuse beryl
blue blue azure cobalt indigo turquoise

yellow yellow amber bisque blond gold sand
pink pink salmon coral rose blush
cube cube object piece dice die
place place put down deposit lay down set down

plant release
goto go to move to advance to progress to carry to

transport to transfer to
bowl bowl basin dish pot
left left port

right right starboard
<target> <color> <size> <shape> <bowl>
<source> <cube>

realistic sentences. To achieve the generation of sentences for random scenarios, we conducted a
human-subject study in which we presented multiple differently colored objects to the participant
with the task to assemble them together while describing their actions. To prevent any bias towards
certain explanations, we only showed the participants the initial state as well as the final result of
the assembly task without further explanations. Participants were given a few tries to assemble the
objects correctly before starting the experiments. The goal of the study was to collect sentences
from different participants that describe common tasks like reaching, pushing, grasping, placing and
insertion for a variety of differently shaped and colored objects. As a result, we received two general
sentence templates for the reaching task as well as set of synonyms for colors, shapes and objects.
The two basic templates are as follows: (1) “<place> the<source> in<target>” and (2) “<goto>
to <target>”. The placeholders as well as the respective words used to replace them are shown in
Table 5.

Sentence generation Each random scenario contains between three and five objects. One of these
objects is chosen at random as the target for the reaching task. Before being able to generate a
sentence, the unique properties of the object need to be extracted. Unique properties can be related
to their global position, color, size, shape or combinations of these features. Using color, size and
shape to describe an object will always result in a unique object description. However, results
from the human-subject study showed that participants used the smallest set of features necessary to
uniquely describe and object. Given the type and location of all objects in the scene, we identify the
smallest set of features necessary to describe the object. In case multiple sets qualify as the smallest
set of features, a random selection is made. The selection of features as well as an object description
is used as the <target> placeholder while replacing features as needed. Taking the different feature
sets into account, we are able to generate 180,000 different sentences of which we are using 20,000
for training. Depending on the randomly generated environment, the same sentence may be used
multiple times for different scenarios.
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