
Machine Learning at Microsoft with ML.NET

Matteo Interlandi
Microsoft

Redmond, WA
mainterl@microsoft.com

Sergiy Matusevych
Microsoft

Redmond, WA
sergiym@microsoft.com

Saeed Amizadeh
Microsoft

Redmond, WA
saamizad@microsoft.com

Shauheen Zahirazami
Microsoft

Redmond, WA
shzahira@microsoft.com

Markus Weimer
Microsoft

Redmond, WA
mweimer@microsoft.com

Abstract

We are witnessing an explosion of new frameworks for building Machine Learning (ML) mod-
els [14, 17, 7, 24, 13, 11, 18, 23, 10, 15, 4]. This profusion is motivated by the transition from
machine learning as an art and science into a set of technologies readily available to every developer.
An outcome of this transition is the abundance of applications that rely on trained models for function-
alities that evade traditional programming due to their complex statistical nature. Speech recognition
and image classification are only the most prominent such cases. This unfolding future, where most
applications make use of at least one model, profoundly differs from the current practice in which data
science and software engineering are performed in separate and different processes and sometimes
even organizations. Furthermore, in current practice, models are routinely deployed and managed in
ways that are very different from those of other software artifacts. While typical software packages
are seamlessly compiled and ran on a myriad of heterogeneous devices, machine learning models are
often relegated as services in relatively inefficient containers [6, 19, 5, 22, 12]. This pattern not only
severely limits the kinds of applications one can build with machine learning capabilities, but also
discourages developers from embracing ML as a core component of applications.

At Microsoft we have encountered this phenomenon across a wide spectrum of applications and
devices, ranging from services and server software to mobile and desktop applications running on PCs,
Servers, Data Centers, Phones, Game Consoles and IoT devices. A machine learning toolkit for such
diverse use cases, frequently deeply embedded in applications, must satisfy additional constraints
compared to other available toolkits. For example, it has to limit library dependencies that are
uncommon for applications; it must cope with datasets too large to fit in RAM; it has to be portable
across many target platforms; it has to be model class agnostic, as different ML problems lend
themselves to different model classes; and, most importantly, it has to capture the entire end-to-end
prediction pipeline that takes a test example from a given domain (e.g., an email with headers and
body) and produces a prediction that can often be structured and domain-specific (e.g., a collection
of likely short responses). The requirement to encapsulate predictive pipelines is of paramount
importance because it allows for effectively decoupling application logic from model development.
Carrying the complete train-time pipeline into production provides a dependable way for building
efficient, reproducible, production-ready models [26].

The need for ML pipelines has been recognized previously. Python libraries such as Scikit-learn [23]
provide the ability to author complex machine learning cascades. Python has become the most
popular language for data science thanks to its simplicity, interactive nature (e.g., notebooks [8, 16])
and breadth of libraries (e.g., numpy [25], pandas [21], matplotlib [9]). However, Python-based
libraries inherit many syntactic idiosyncrasies and language constraints (e.g. interpreted execution,
dynamic typing, global interpreter lock that restrict parallelization, etc.), making them suboptimal for
high-performance applications targeting wide range of devices.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



In this paper we introduce ML.NET: a recently open-sourced [2] machine learning framework
allowing developers to author and deploy in their applications complex ML pipelines composed of
data featurizers and state of the art machine learning models. Pipelines implemented and trained in
ML.NET can be seamlessly surfaced for prediction without any modification: training and prediction,
in fact, share the same code paths, and adding a model into an application is as easy as importing
ML.NET runtime and binding the inputs/output data sources. ML.NET’s ability to capture full,
end-to-end pipelines has been demonstrated by the fact that thousands of Microsoft’s data scientists
and developers have been using ML.NET over the past decade, infusing 100s of products and
services with machine learning models used by hundreds of millions of users worldwide.

ML.NET supports large scale machine learning thanks to an internal design borrowing ideas from
relational database management systems and embodied in its main abstraction: DataView. DataView
provides compositional processing of schematized data while being able to gracefully and efficiently
handle high dimensional data in datasets larger than main memory. Like views in relational databases,
a DataView is the result of computations over one or more base tables or views, and is generally
immutable and lazily evaluated (unless forced to be materialized, e.g., when multiple passes over the
data are requested). Under the hood, DataView provides streaming access to data so that working
sets can exceed main memory. ML.NET is open source and publicly available [2]; a recent demo
showcasing ML.NET capabilities can be found at [1], while we refer readers to [3] for example
pipelines.

Next we will give an overview of ML.NET main concepts using a simple pipeline.

ML.NET: An Overview

ML.NET is a .NET machine learning library that allows developers to build complex machine
learning pipelines, evaluate them, and seamlessly deploy them for prediction. Pipelines are often
composed of multiple transformation steps that featurize and transform the raw input data, followed
by one or more ML models that can be stacked or form ensembles. Below we illustrate how these
tasks can be accomplished in ML.NET on a short but realistic example. We will also exploit this
example to introduce the main concepts of ML.NET.

1 var loader = new TextLoader().From<SentimentData>();
2 var featurizer = new TextFeaturizer("Features", "Text");
3 var learner = new FastTreeBinaryClassifier() { /* Some parameters */ };
4
5 var pipeline = new LearningPipeline()
6 .Add(loader)
7 .Add(featurizer)
8 .Add(learner);

Figure 1: A text analysis pipeline whereby sentences are classified according to their sentiment.

Figure 1 introduces a Sentiment Analysis pipeline (SA). The first item required for building a pipeline
is a Loader (line 1) which specifies the raw data input parameters and its schema. In the example
pipeline, the input schema (SentimentData) is specified explicitly with a call to From, but in
other situations (e.g., CSV files with headers) schemas can be automatically inferred by the loader.
Loader produces a DataView object, which is the core data abstraction of ML.NET. DataView
provides a fully schematized non-materialized view of the data, and gets subsequently transformed by
pipeline components. The second step is feature extraction from the input column Text (line 2). To
achieve this, we use the TextFeaturizer transform. Transforms are the main ML.NET operators
for manipulating data. Transforms accept a DataView as input and produce another DataView.
TextFeaturizer is actually a complex transform built off a composition of nine base transforms
that perform common tasks for feature extraction from natural text. Specifically, the input text is
first normalized and tokenized. For each token, both char- and word-based ngrams are extracted
and translated into vectors of numerical values. These vectors are subsequently normalized and
concatenated to form the final Features column. Some of the above transforms (e.g., normalizer)
are trainable: i.e. before producing an output DataView, they are required to scan the whole dataset
to determine internal parameters (e.g., scalers). Subsequently, in line 3 we create a learner (i.e. a
trainable model)— in this case, a binary classifier called FastTree: an efficient implementation of
the MART gradient boosting algorithm [20]. Once the pipeline is assembled (line 8), we can train
it by calling the homonym method on the pipeline object with the expected output prediction type

2



(Figure 2). ML.NET evaluation is lazy: no computation is actually run until the train method (or
other methods triggering pipeline execution) is called. This allows ML.NET to (1) properly validate
that the pipeline is well-formed before computation; and (2) deliver state of the art performance by
devising efficient execution plan.

var model = pipeline.Train<SentimentPrediction>();

Figure 2: Training of the sentiment analysis pipeline. Up to here no execution is actually triggered.

Once a pipeline is trained, a model object containing all training information is created. The model
can be saved to a file (in this case, the information of all trained operators as well as the pipeline
structure are serialized into a compressed file) or evaluated against a test dataset (Figure 3), or used
directly for prediction serving (Figure 4). To evaluate model performance, ML.NET provides specific
components called evaluators. An evaluator accepts a previously trained model as input alongside test
datasets and produces a set of metrics. In the specific case of the BinaryClassifierEvaluator
used in Figure 3, relevant metrics are those used for binary classifiers, such as accuracy, Area Under
the Curve (AUC), log-loss, etc.

var evaluator = new BinaryClassifierEvaluator();
var metrics = evaluator.Evaluate(model, testData);

Figure 3: Evaluating mode accuracy using a test dataset.

Finally, serving the model for prediction is achieved by calling the Predict method with a list
of SentimentData objects. Predictions can be served natively in any OS (e.g. Linux, Windows,
Android, MacOS) or device (x86/x64 and ARM processors) supported by the .NET Core framework.

var predictions = model.Predict(PredictionData);

Figure 4: Serving predictions using the trained model.

System Requirements and Implementation

ML.NET is the solution Microsoft developed to empower developers with a machine learning
framework to author, test, and deploy ML pipelines. ML.NET is implemented with the following
goals in mind:

1. Unification: ML.NET must act as a unifying framework that can host a variety of models
and components (with related idiosyncrasies). Once ML pipelines are trained, the same
pipeline must be deployable into any production environment (from data centers to IoT
devices) with close to zero engineering cost. In the last decade 100s of products and services
have employed ML.NET, validating its success as a unifying platform.

2. Extensibility: Data scientists are interested in experimenting with different models and
features with the goal of obtaining the best accuracy. Therefore, it should be possible to
add new components and algorithms with minimal reasonable effort via a general API
that supports a variety of data types and formats. Since its inception, ML.NET has been
extended with many components. In fact, a large fraction of the built-in operators started
life as extensions shared between data scientists.

3. Scalability and Performance: ML.NET must be scalable and allow maximum hardware
utilization—i.e., be fast and provide high throughput. Because production-grade datasets
are often very large and do not fit in RAM, scalability implies the ability to run pipelines
in out-of-memory mode, with data paged in and processed incrementally. In our internal
benchmarks ML.NET achieves impressive scalability and performance (up to several
orders-of-magnitude) when compared to other publicly available toolkits.

In its current implementation, ML.NET comprises of 2773K lines of C# code, and about 74K lines
of C++ code; the latter used mostly for high-performance linear algebra operations employing SIMD
instructions. ML.NET provides more then 80 featurizers and 40 machine learning models.

3



References
[1] ML.NET Demo. https://www.youtube.com/watch?v=zXn10vy8F6E.

[2] ML.NET Github Repository. https://github.com/dotnet/machinelearning.

[3] ML.NET Samples. https://github.com/dotnet/machinelearning-samples.

[4] H2O Algorithms Roadmap. https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/
product/flow/images/H2O-Algorithms-Road-Map.pdf, 2015.

[5] TensorFlow serving. https://www.tensorflow.org/serving, 2016.

[6] Clipper. http://clipper.ai/, 2018.

[7] CNTK. https://docs.microsoft.com/en-us/cognitive-toolkit/, 2018.

[8] Jupyter. http://jupyter.org/, 2018.

[9] Matplotlib. https://matplotlib.org/, 2018.

[10] Michelangelo. http://eng.uber.com/michelangelo/, 2018.

[11] MXNet. https://mxnet.apache.org/, 2018.

[12] MXNet Model Server (MMS). https://github.com/awslabs/mxnet-model-server, 2018.

[13] PyTorch. https://pytorch.org/, 2018.

[14] TensorFlow. https://www.tensorflow.org, 2018.

[15] TransmogrifAI. https://transmogrif.ai/, 2018.

[16] Zeppelin. https://zeppelin.apache.org/, 2018.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[18] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flex-
ible and efficient machine learning library for heterogeneous distributed systems. CoRR, abs/1512.01274,
2015.

[19] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica. Clipper: A low-latency
online prediction serving system. 2017.

[20] J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29:1189–1232, 2000.

[21] W. Mckinney. pandas: a foundational python library for data analysis and statistics. 01 2011.

[22] C. Olston, F. Li, J. Harmsen, J. Soyke, K. Gorovoy, L. Lao, N. Fiedel, S. Ramesh, and V. Rajashekhar.
Tensorflow-serving: Flexible, high-performance ml serving. In Workshop on ML Systems at NIPS, 2017.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:2825–2830, Nov. 2011.

[24] F. Seide and A. Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
2135–2135, New York, NY, USA, 2016. ACM.

[25] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: A structure for efficient numerical
computation. Computing in Science Engineering, 13(2):22–30, March 2011.

[26] M. Zinkevich. Rules of machine learning: Best practices for ML engineering.
https://developers.google.com/machine-learning/rules-of-ml.

4

https://www.youtube.com/watch?v=zXn10vy8F6E
https://github.com/dotnet/machinelearning
https://github.com/dotnet/machinelearning-samples
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/flow/images/H2O-Algorithms-Road-Map.pdf
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/flow/images/H2O-Algorithms-Road-Map.pdf
https://www.tensorflow.org/serving
http://clipper.ai/
https://docs.microsoft.com/en-us/cognitive-toolkit/
http://jupyter.org/
https://matplotlib.org/
http://eng.uber.com/michelangelo/
https://mxnet.apache.org/
https://github.com/awslabs/mxnet-model-server
https://pytorch.org/
https://www.tensorflow.org
https://transmogrif.ai/
https://zeppelin.apache.org/

