
Published as a conference paper at ICLR 2019

DECOUPLED WEIGHT DECAY REGULARIZATION

Ilya Loshchilov & Frank Hutter
University of Freiburg
Freiburg, Germany,
ilya.loshchilov@gmail.com, fh@cs.uni-freiburg.de

ABSTRACT

L2 regularization and weight decay regularization are equivalent for standard
stochastic gradient descent (when rescaled by the learning rate), but as we demon-
strate this is not the case for adaptive gradient algorithms, such as Adam. While
common implementations of these algorithms employ L2 regularization (often
calling it “weight decay” in what may be misleading due to the inequivalence we
expose), we propose a simple modification to recover the original formulation of
weight decay regularization by decoupling the weight decay from the optimization
steps taken w.r.t. the loss function. We provide empirical evidence that our pro-
posed modification (i) decouples the optimal choice of weight decay factor from
the setting of the learning rate for both standard SGD and Adam and (ii) substan-
tially improves Adam’s generalization performance, allowing it to compete with
SGD with momentum on image classification datasets (on which it was previously
typically outperformed by the latter). Our proposed decoupled weight decay has
already been adopted by many researchers, and the community has implemented
it in TensorFlow and PyTorch; the complete source code for our experiments is
available at https://github.com/loshchil/AdamW-and-SGDW

1 INTRODUCTION

Adaptive gradient methods, such as AdaGrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton,
2012), Adam (Kingma & Ba, 2014) and most recently AMSGrad (Reddi et al., 2018) have become
a default method of choice for training feed-forward and recurrent neural networks (Xu et al., 2015;
Radford et al., 2015). Nevertheless, state-of-the-art results for popular image classification datasets,
such as CIFAR-10 and CIFAR-100 Krizhevsky (2009), are still obtained by applying SGD with
momentum (Gastaldi, 2017; Cubuk et al., 2018). Furthermore, Wilson et al. (2017) suggested that
adaptive gradient methods do not generalize as well as SGD with momentum when tested on a
diverse set of deep learning tasks, such as image classification, character-level language modeling
and constituency parsing. Different hypotheses about the origins of this worse generalization have
been investigated, such as the presence of sharp local minima (Keskar et al., 2016; Dinh et al.,
2017) and inherent problems of adaptive gradient methods (Wilson et al., 2017). In this paper, we
investigate whether it is better to use L2 regularization or weight decay regularization to train deep
neural networks with SGD and Adam. We show that a major factor of the poor generalization of the
most popular adaptive gradient method, Adam, is due to the fact that L2 regularization is not nearly
as effective for it as for SGD. Specifically, our analysis of Adam leads to the following observations:

L2 regularization and weight decay are not identical. Contrary to a belief which seems popular
among some practitioners, the two techniques are not equivalent. For SGD, they can be
made equivalent by a reparameterization of the weight decay factor based on the learning
rate; this is not the case for Adam. In particular, when combined with adaptive gradients,
L2 regularization leads to weights with large parameter and/or gradient amplitudes being
regularized less than they would be when using weight decay.

L2 regularization is not effective in Adam. One possible explanation why Adam and other
adaptive gradient methods might be outperformed by SGD with momentum is that common
deep learning libraries only implement L2 regularization, not the original weight decay.
Therefore, on tasks/datasets where the use of L2 regularization is beneficial for SGD (e.g.,

1

https://github.com/loshchil/AdamW-and-SGDW


Published as a conference paper at ICLR 2019

on many popular image classification datasets), Adam leads to worse results than SGD with
momentum (for which L2 regularization behaves as expected).

Weight decay is equally effective in both SGD and Adam. For SGD, it is equivalent to L2

regularization, while for Adam it is not.
Optimal weight decay depends on the total number of batch passes/weight updates. Our

empirical analysis of SGD and Adam suggests that the larger the runtime/number of batch
passes to be performed, the smaller the optimal weight decay. This effect tends to be
neglected because hyperparameters are often tuned for a fixed number of training epochs.
As a result, the values of the weight decay found to perform best for short runs do not
generalize to much longer runs.

The main contribution of this paper is to improve regularization in Adam by decoupling the weight
decay from the gradient-based update. In a comprehensive analysis, we show that Adam generalizes
substantially better with decoupled weight decay than with L2 regularization, achieving 15% relative
improvement in test error (see Figures 2 and 3); this holds true for various image recognition datasets
(CIFAR-10 and ImageNet32x32), training budgets (ranging from 100 to 1800 epochs), and learning
rate schedules (fixed, drop-step, and cosine annealing; see Figure 1). We demonstrate that our
decoupled weight decay renders the optimal settings of the learning rate and the weight decay factor
much more independent, thereby easing hyperparameter optimization (see Figure 2).

The main motivation of this paper is to improve Adam to make it competitive w.r.t. SGD with
momentum even for those problems where it did not use to be competitive. We hope that as a result,
practitioners do not need to switch between Adam and SGD anymore, which in turn should reduce
the common issue of selecting dataset/task-specific training algorithms and their hyperparameters.

2 DECOUPLING THE WEIGHT DECAY FROM THE GRADIENT-BASED UPDATE

In the weight decay described by Hanson & Pratt (1988), the weights θ decay exponentially as

θt+1 = (1− λ)θt − α∇ft(θt), (1)

where λ defines the rate of the weight decay per step and ∇ft(θt) is the t-th batch gradient to be
multiplied by a learning rate α. For standard SGD, it is equivalent to standard L2 regularization:
Proposition 1 (Weight decay = L2 reg for standard SGD). Standard SGD with base learning rate α
executes the same steps on batch loss functions ft(θ) with weight decay λ (defined in Equation 1)
as it executes without weight decay on f reg

t (θ) = ft(θ) +
λ′

2 ‖θ‖
2
2, with λ′ = λ

α .

The proofs of this well-known fact, as well as our other propositions, are given in the Appendix A.

Due to this equivalence, L2 regularization is very frequently referred to as weight decay, including
in popular deep learning libraries. However, as we will demonstrate later in this section, this equiva-
lence does not hold for adaptive gradient methods. One fact that is often overlooked already for the
simple case of SGD is that in order for the equivalence to hold, the L2 regularizer λ′ has to be set to
λ
α , i.e., if there is an overall best weight decay value λ, the best value of λ′ is tightly coupled with
the learning rate α. In order to decouple the effects of these two hyperparameters, we advocate to
decouple the weight decay step as proposed by Hanson & Pratt (1988) (Equation 1).

Looking first at the case of SGD, we propose to decay the weights simultaneously with the update
of θt based on gradient information in Line 9 of Algorithm 1. This yields our proposed variant of
SGD with momentum using decoupled weight decay (SGDW). This simple modification explicitly
decouples λ and α (although some problem-dependent implicit coupling may of course remain as
for any two hyperparameters). In order to account for a possible scheduling of both α and λ, we
introduce a scaling factor ηt delivered by a user-defined procedure SetScheduleMultiplier(t).

Now, let’s turn to adaptive gradient algorithms like the popular optimizer Adam Kingma & Ba
(2014), which scale gradients by their historic magnitudes. Intuitively, when Adam is run on a loss
function f plus L2 regularization, weights that tend to have large gradients in f do not get regularized
as much as they would with decoupled weight decay, since the gradient of the regularizer gets scaled
along with the gradient of f . This leads to an inequivalence of L2 and decoupled weight decay
regularization for adaptive gradient algorithms:

2



Published as a conference paper at ICLR 2019

Algorithm 1 SGD with L2 regularization and SGD with decoupled weight decay (SGDW) , both
with momentum
1: given initial learning rate α ∈ IR, momentum factor β1 ∈ IR, weight decay/L2 regularization factor λ ∈ IR

2: initialize time step t ← 0, parameter vector θt=0 ∈ IRn, first moment vector mt=0 ← 0, schedule
multiplier ηt=0 ∈ IR

3: repeat
4: t← t+ 1
5: ∇ft(θt−1)← SelectBatch(θt−1) . select batch and return the corresponding gradient
6: gt ← ∇ft(θt−1) +λθt−1

7: ηt ← SetScheduleMultiplier(t) . can be fixed, decay, be used for warm restarts
8: mt ← β1mt−1 + ηtαgt

9: θt ← θt−1 −mt −ηtλθt−1

10: until stopping criterion is met
11: return optimized parameters θt

Algorithm 2 Adam with L2 regularization and Adam with decoupled weight decay (AdamW)

1: given α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8, λ ∈ IR
2: initialize time step t ← 0, parameter vector θt=0 ∈ IRn, first moment vector mt=0 ← 0, second moment

vector vt=0 ← 0, schedule multiplier ηt=0 ∈ IR
3: repeat
4: t← t+ 1
5: ∇ft(θt−1)← SelectBatch(θt−1) . select batch and return the corresponding gradient
6: gt ← ∇ft(θt−1) +λθt−1

7: mt ← β1mt−1 + (1− β1)gt . here and below all operations are element-wise
8: vt ← β2vt−1 + (1− β2)g2

t

9: m̂t ← mt/(1− βt
1) . β1 is taken to the power of t

10: v̂t ← vt/(1− βt
2) . β2 is taken to the power of t

11: ηt ← SetScheduleMultiplier(t) . can be fixed, decay, or also be used for warm restarts

12: θt ← θt−1 − ηt
(
αm̂t/(

√
v̂t + ε) +λθt−1

)
13: until stopping criterion is met
14: return optimized parameters θt

Proposition 2 (Weight decay 6= L2 reg for adaptive gradients). Let O denote an optimizer that has
iterates θt+1 ← θt − αMt∇ft(θt) when run on batch loss function ft(θ) without weight decay,
and θt+1 ← (1 − λ)θt − αMt∇ft(θt) when run on ft(θ) with weight decay, respectively, with
Mt 6= kI (where k ∈ R). Then, for O there exists no L2 coefficient λ′ such that running O on batch
loss f reg

t (θ) = ft(θ)+
λ′

2 ‖θ‖
2
2 without weight decay is equivalent to runningO on ft(θ) with decay

λ ∈ R+.

We decouple weight decay and loss-based gradient updates in Adam as shown in line 12 of Algo-
rithm 2; this gives rise to our variant of Adam with decoupled weight decay (AdamW).

Having shown that L2 regularization and weight decay regularization differ for adaptive gradient al-
gorithms raises the question of how they differ and how to interpret their effects. Their equivalence
for standard SGD remains very helpful for intuition: both mechanisms push weights closer to zero,
at the same rate. However, for adaptive gradient algorithms they differ: with L2 regularization, the
sums of the gradient of the loss function and the gradient of the regularizer (i.e., the L2 norm of the
weights) are adapted, whereas with weight decay, only the gradients of the loss function are adapted
(with the weight decay step separated from the adaptive gradient mechanism). With L2 regulariza-
tion both types of gradients are normalized by their typical (summed) magnitudes, and therefore
weights x with large typical gradient magnitude s are regularized by a smaller relative amount than
other weights. In contrast, weight decay regularizes all weights with the same rate λ, effectively
regularizing weights x with large s more than standard L2 regularization does. We demonstrate this
formally for a simple special case of adaptive gradient algorithm with a fixed preconditioner:

3



Published as a conference paper at ICLR 2019

Proposition 3 (Weight decay = scale-adjusted L2 reg for adaptive gradient algorithm with fixed
preconditioner). Let O denote an algorithm with the same characteristics as in Proposition 2, and
using a fixed preconditioner matrix Mt = diag(s)−1 (with si > 0 for all i). Then, O with base
learning rate α executes the same steps on batch loss functions ft(θ) with weight decay λ as it
executes without weight decay on the scale-adjusted regularized batch loss

f sreg
t (θ) = ft(θ) +

λ′

2α

∥∥θ �√s
∥∥2
2
, (2)

where � and
√
· denote element-wise multiplication and square root, respectively, and λ′ = λ

α .

3 JUSTIFICATION OF DECOUPLED WEIGHT DECAY VIA A VIEW OF
ADAPTIVE GRADIENT METHODS AS BAYESIAN FILTERING

We now discuss a justification of decoupled weight decay in the framework of Bayesian filtering for
a unified theory of adaptive gradient algorithms due to Aitchison (2018). After we posted a prelim-
inary version of our current paper on arXiv, Aitchison noted that his theory “gives us a theoretical
framework in which we can understand the superiority of this weight decay over L2 regularization,
because it is weight decay, rather thanL2 regularization that emerges through the straightforward ap-
plication of Bayesian filtering.”(Aitchison, 2018). While full credit for this theory goes to Aitchison,
we summarize it here to shed some light on why weight decay may be favored over L2 regulariza-
tion.

Aitchison (2018) views stochastic optimization of n parameters x1, . . . , xn as a Bayesian filtering
problem with the goal of inferring a distribution over the optimal values of each of the parameters xi
given the current values of the other parameters θ−i(t) at time step t. When the other parameters do
not change this is an optimization problem, but when they do change it becomes one of “tracking”
the optimizer using Bayesian filtering as follows. One is given a probability distribution P (θt |
y1:t) of the optimizer at time step t that takes into account the data y1:t from the first t mini
batches, a state transition prior P (θt+1 | θt) reflecting a (small) data-independent change in this
distribution from one step to the next, and a likelihood P (yt+1 | θt+1) derived from the mini batch
at step t + 1. The posterior distribution P (θt+1 | y1:t+1) of the optimizer at time step t + 1
can then be computed (as usual in Bayesian filtering) by marginalizing over θt to obtain the one-
step ahead predictions P (θt+1 | y1:t) and then applying Bayes’ rule to incorporate the likelihood
P (yt+1 | θt+1). Aitchison (2018) assumes a Gaussian state transition distribution P (θt+1 | θt) and
an approximate conjugate likelihood P (yt+1 | θt+1), leading to the following closed-form update
of the filtering distribution’s mean:

µpost = µprior + Σpost × g, (3)

where g is the gradient of the log likelihood of the mini batch at time t. This result implies a precon-
ditioner of the gradients that is given by the posterior uncertainty Σpost of the filtering distribution:
updates are larger for parameters we are more uncertain about and smaller for parameters we are
more certain about. Aitchison (2018) goes on to show that popular adaptive gradient methods, such
as Adam and RMSprop, as well as Kronecker-factorized methods are special cases of this frame-
work.

Decoupled weight decay very naturally fits into this unified framework can express weight decay
as part of the state-transition distribution: Aitchison (2018) assumes a slow change of the optimizer
according to the following Gaussian:

P (θt+1 | θt) = N ((I −A)θt,Q), (4)

where Q is the covariance of Gaussian perturbations of the weights, and A is a regularizer to avoid
values growing unboundedly over time. When instantiated as A = λ × I , this regularizer A plays
exactly the role of decoupled weight decay as described in Equation 1, since this leads to multiplying
the current mean estimate θt by (1 − λ) at each step. Notably, this regularization is also directly
applied to the prior and does not depend on the uncertainty in each of the parameters (which would
be required for L2 regularization).

4



Published as a conference paper at ICLR 2019

Figure 1: Adam performs better with decoupled weight decay (bottom row, AdamW) than with L2

regularization (top row, Adam). We show the final test error of a 26 2x64d ResNet on CIFAR-10
after 100 epochs of training with fixed learning rate (left column), step-drop learning rate (with drops
at epoch indexes 30, 60 and 80, middle column) and cosine annealing (right column). AdamW leads
to a more separable hyperparameter search space, especially when a learning rate schedule, such as
step-drop and cosine annealing is applied. Cosine annealing yields clearly superior results.

4 EXPERIMENTAL VALIDATION

We now evaluate the performance of decoupled weight decay under various training budgets
and learning rate schedules. Our experimental setup follows that of Gastaldi (2017), who pro-
posed, in addition to L2 regularization, to apply the new Shake-Shake regularization to a 3-branch
residual DNN that allowed to achieve new state-of-the-art results of 2.86% on the CIFAR-10
dataset (Krizhevsky, 2009). We always used a batch size of 128. The regular data augmentation
procedure used for the CIFAR datasets was applied. We used the same model/source code based on
fb.resnet.torch 1. The base networks are a 26 2x64d ResNet (i.e. the network has a depth of 26, 2
residual branches and the first residual block has a width of 64) and a 26 2x96d ResNet with 11.6M
and 25.6M parameters, respectively. For a detailed description of the network and the Shake-Shake
method, we refer the interested reader to Gastaldi (2017). We also perform experiments on the Im-
ageNet32x32 dataset (Chrabaszcz et al., 2017), a downsampled version of the original ImageNet
dataset with 1.2 million 32×32 pixels images.

4.1 EVALUATING DECOUPLED WEIGHT DECAY WITH DIFFERENT LEARNING RATE
SCHEDULES

In our first experiment, we compare Adam with L2 regularization to Adam with decoupled weight
decay (AdamW), using three different learning rate schedules: a fixed learning rate, a drop-step
schedule, and a cosine annealing schedule (Loshchilov & Hutter, 2016). For each learning rate
schedule and weight decay variant, we trained a 2x64d ResNet for 100 epochs, using different set-
tings of the initial learning rate α and the weight decay factor λ. Figure 1 shows that decoupled
weight decay outperforms L2 regularization for all learning rate schedules, with larger differences
for better learning rate schedules. We also note that decoupled weight decay leads to a more sepa-
rable hyperparameter search space, especially when a learning rate schedule, such as step-drop and

1https://github.com/xgastaldi/shake-shake

5



Published as a conference paper at ICLR 2019

Figure 2: The Top-1 test error of a 26 2x64d ResNet on CIFAR-10 measured after 100 epochs. The
proposed SGDW and AdamW (right column) have a more separable hyperparameter space.

Figure 3: Learning curves (top row) and generalization results (bottom row) obtained by a 26
2x96d ResNet trained with Adam and AdamW on CIFAR-10. See text for details. SuppFigure 4 in
the Appendix shows the same qualitative results for ImageNet32x32.

cosine annealing is applied. The figure also shows that cosine annealing clearly outperforms the
other learning rate schedules; we thus used cosine annealing for the remainder of the experiments.

6



Published as a conference paper at ICLR 2019

4.2 DECOUPLING THE WEIGHT DECAY AND INITIAL LEARNING RATE PARAMETERS

In order to verify our hypothesis about the coupling of α and λ, in Figure 2 we compare the perfor-
mance of L2 regularization vs. decoupled weight decay in SGD (SGD vs. SGDW, top row) and in
Adam (Adam vs. AdamW, bottom row). In SGD (Figure 2, top left), L2 regularization is not decou-
pled from the learning rate (the common way as described in Algorithm 1), and the figure clearly
shows that the basin of best hyperparameter settings (depicted by color and top-10 hyperparameter
settings by black circles) is not aligned with the x-axis or y-axis but lies on the diagonal. This sug-
gests that the two hyperparameters are interdependent and need to be changed simultaneously, while
only changing one of them might substantially worsen results. Consider, e.g., the setting at the top
left black circle (α = 1/2, λ = 1/8 ∗ 0.001); only changing either α or λ by itself would worsen
results, while changing both of them could still yield clear improvements. We note that this coupling
of initial learning rate and L2 regularization factor might have contributed to SGD’s reputation of
being very sensitive to its hyperparameter settings.

In contrast, the results for SGD with decoupled weight decay (SGDW) in Figure 2 (top right) show
that weight decay and initial learning rate are decoupled. The proposed approach renders the two
hyperparameters more separable: even if the learning rate is not well tuned yet (e.g., consider the
value of 1/1024 in Figure 2, top right), leaving it fixed and only optimizing the weight decay factor
would yield a good value (of 1/4*0.001). This is not the case for SGD with L2 regularization (see
Figure 2, top left).

The results for Adam with L2 regularization are given in Figure 2 (bottom left). Adam’s best hy-
perparameter settings performed clearly worse than SGD’s best ones (compare Figure 2, top left).
While both methods used L2 regularization, Adam did not benefit from it at all: its best results ob-
tained for non-zero L2 regularization factors were comparable to the best ones obtained without the
L2 regularization, i.e., when λ = 0. Similarly to the original SGD, the shape of the hyperparameter
landscape suggests that the two hyperparameters are coupled.

In contrast, the results for our new variant of Adam with decoupled weight decay (AdamW) in
Figure 2 (bottom right) show that AdamW largely decouples weight decay and learning rate. The
results for the best hyperparameter settings were substantially better than the best ones of Adam
with L2 regularization and rivaled those of SGD and SGDW.

In summary, the results in Figure 2 support our hypothesis that the weight decay and learning rate
hyperparameters can be decoupled, and that this in turn simplifies the problem of hyperparameter
tuning in SGD and improves Adam’s performance to be competitive w.r.t. SGD with momentum.

4.3 BETTER GENERALIZATION OF ADAMW

While the previous experiment suggested that the basin of optimal hyperparameters of AdamW is
broader and deeper than the one of Adam, we next investigated the results for much longer runs of
1800 epochs to compare the generalization capabilities of AdamW and Adam.

We fixed the initial learning rate to 0.001 which represents both the default learning rate for Adam
and the one which showed reasonably good results in our experiments. Figure 3 shows the results
for 12 settings of the L2 regularization of Adam and 7 settings of the normalized weight decay of
AdamW (the normalized weight decay represents a rescaling formally defined in the Appendix B.1,
it amounts to a multiplicative factor which depends on the number of bath passes). Interestingly,
while the dynamics of the learning curves of Adam and AdamW often coincided for the first half
of the training run, AdamW often led to lower training loss and test errors (see Figure 3 top left
and top right, respectively). Importantly, the use of weight decay in Adam did not yield as good
results as in AdamW (see also Figure 3, bottom left). Next, we investigated whether AdamW’s
better results were only due to better convergence or due to better generalization. The results in
Figure 3 (bottom right) for the best settings of Adam and AdamW suggest that AdamW did not only
yield better training loss but also yielded better generalization performance for similar training
loss values. The results on ImageNet32x32 (see SuppFigure 4 in the Appendix) lead to the same
conclusion of substantially improved generalization performance.

7



Published as a conference paper at ICLR 2019

Figure 4: Top-1 test error on CIFAR-10 (left) and Top-5 test error on ImageNet32x32 (right).
For a better resolution and with training loss curves, see SuppFigure 5 and SuppFigure 6 in the
supplementary material.

4.4 ADAMWR WITH WARM RESTARTS FOR BETTER ANYTIME PERFORMANCE

In order to improve anytime performance of SGDW and AdamW we extended them with warm
restarts of (Loshchilov & Hutter, 2016) to obtain SGDWR and AdamWR, respectively (see section
B.2 in the Appendix). As Figure 4 shows, AdamWR greatly sped up AdamW on CIFAR-10 and
ImageNet32x32, up to a factor of 10 (see the results at the first restart). For the default learning
rate of 0.001, AdamW achieved 15% relative improvement in test errors compared to Adam both on
CIFAR-10 (also see Figure 3) and ImageNet32x32 (also see SuppFigure 5). AdamWR achieved the
same improved results but with a much better anytime performance. These improvements closed
most of the gap between Adam and SGDWR on CIFAR-10 and yielded comparable performance on
ImageNet32x32.

4.5 USE OF ADAMW ON OTHER DATASETS AND ARCHITECTURES

Several other research groups have already successfully applied AdamW in citable works. For exam-
ple, Wang et al. (2018) used AdamW to train a novel architecture for face detection on the standard
WIDER FACE dataset (Yang et al., 2016), obtaining almost 10x faster predictions than the previous
state of the art algorithms while achieving comparable performance. Völker et al. (2018) employed
AdamW with cosine annealing to train convolutional neural networks to classify and characterize
error-related brain signals measured from intracranial electroencephalography (EEG) recordings.
While their paper does not provide a comparison to Adam, they kindly provided us with a direct
comparison of the two on their best-performing problem-specific network architecture Deep4Net
and a variant of ResNet. AdamW with the same hyperparameter setting as Adam yielded higher
test set accuracy on Deep4Net (73.68% versus 71.37%) and statistically significantly higher test
set accuracy on ResNet (72.04% versus 61.34%). Radford et al. (2018) employed AdamW to train
Transformer (Vaswani et al., 2017) architectures to obtain new state-of-the-art results on a wide
range of benchmarks for natural language understanding. Zhang et al. (2018) compared L2 reg-
ularization vs. weight decay for SGD, Adam and the Kronecker-Factored Approximate Curvature
(K-FAC) optimizer (Martens & Grosse, 2015) on the CIFAR datasets with ResNet and VGG archi-
tectures, reporting that decoupled weight decay consistently outperformed L2 regularization in cases
where they differ.

5 CONCLUSION AND FUTURE WORK

Following suggestions that adaptive gradient methods such as Adam might lead to worse generaliza-
tion than SGD with momentum (Wilson et al., 2017), we identified and exposed the inequivalence
of L2 regularization and weight decay for Adam. We empirically showed that our version of Adam
with decoupled weight decay yields substantially better generalization performance than the com-
mon implementation of Adam with L2 regularization. We also proposed to use warm restarts for
Adam to improve its anytime performance.

8



Published as a conference paper at ICLR 2019

Our results obtained on image classification datasets must be verified on a wider range of tasks,
especially ones where the use of regularization is expected to be important. It would be interesting
to integrate our findings on weight decay into other methods which attempt to improve Adam, e.g,
normalized direction-preserving Adam (Zhang et al., 2017). While we focused our experimental
analysis on Adam, we believe that similar results also hold for other adaptive gradient methods,
such as AdaGrad (Duchi et al., 2011) and AMSGrad (Reddi et al., 2018).

6 ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant no. 716721, by the German Re-
search Foundation (DFG), under the BrainLinksBrainTools Cluster of Excellence (grant number
EXC 1086) and through grant no. INST 37/935-1 FUGG, and by the German state of Baden-
Württemberg through bwHPC. We thank Patryk Chrabaszcz for helping running experiments with
ImageNet32x32. We thank Matthias Feurer and Robin Schirrmeister for providing valuable feed-
back on this paper in several iterations. We thank Martin Völker, Robin Schirrmeister, and Tonio
Ball for providing us with a comparison of AdamW and Adam on their EEG data.

Finally, we thank the following members of the deep learning community for implementing decou-
pled weight decay in various deep learning libraries:

• Jingwei Zhang, Lei Tai, Robin Schirrmeister, and Kashif Rasul for their implementations
in PyTorch (see https://github.com/pytorch/pytorch/pull/4429)

• Phil Jund for his implementation in TensorFlow described at
https://www.tensorflow.org/api_docs/python/tf/contrib/opt/
DecoupledWeightDecayExtension

• Sylvain Gugger, Anand Saha, Jeremy Howard and other members of fast.ai for their imple-
mentation available at https://github.com/sgugger/Adam-experiments

• Guillaume Lambard for his implementation in Keras available at https://github.
com/GLambard/AdamW_Keras

• Yagami Lin for his implementation in Caffe available at https://github.com/
Yagami123/Caffe-AdamW-AdamWR

REFERENCES

Laurence Aitchison. A unified theory of adaptive stochastic gradient descent as Bayesian filtering.
arXiv:1507.02030, 2018.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of ImageNet as an
alternative to the CIFAR datasets. arXiv:1707.08819, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. arXiv:1703.04933, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

Xavier Gastaldi. Shake-Shake regularization. arXiv preprint arXiv:1705.07485, 2017.

Stephen José Hanson and Lorien Y Pratt. Comparing biases for minimal network construction with
back-propagation. In Proceedings of the 1st International Conference on Neural Information
Processing Systems, pp. 177–185, 1988.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv:1704.00109, 2017.

9

https://github.com/pytorch/pytorch/pull/4429
https://www.tensorflow.org/api_docs/python/tf/contrib/opt/DecoupledWeightDecayExtension
https://www.tensorflow.org/api_docs/python/tf/contrib/opt/DecoupledWeightDecayExtension
https://github.com/sgugger/Adam-experiments
 https://github.com/GLambard/AdamW_Keras 
 https://github.com/GLambard/AdamW_Keras 
 https://github.com/Yagami123/Caffe-AdamW-AdamWR 
 https://github.com/Yagami123/Caffe-AdamW-AdamWR 


Published as a conference paper at ICLR 2019

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv:1609.04836, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets.
arXiv preprint arXiv:1712.09913, 2017.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts.
arXiv:1608.03983, 2016.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417, 2015.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv:1511.06434, 2015.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/research-covers/language-unsupervised/language understanding paper. pdf, 2018.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. Inter-
national Conference on Learning Representations, 2018.

Leslie N Smith. Cyclical learning rates for training neural networks. arXiv:1506.01186v3, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Martin Völker, Jiřı́ Hammer, Robin T Schirrmeister, Joos Behncke, Lukas DJ Fiederer, Andreas
Schulze-Bonhage, Petr Marusič, Wolfram Burgard, and Tonio Ball. Intracranial error detection
via deep learning. arXiv preprint arXiv:1805.01667, 2018.

Jianfeng Wang, Ye Yuan, Gang Yu, and Sun Jian. Sface: An efficient network for face detection in
large scale variations. arXiv preprint arXiv:1804.06559, 2018.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. arXiv:1705.08292, 2017.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International Conference on Machine Learning, pp. 2048–2057, 2015.

Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang. Wider face: A face detection bench-
mark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5525–5533, 2016.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281, 2018.

Zijun Zhang, Lin Ma, Zongpeng Li, and Chuan Wu. Normalized direction-preserving adam.
arXiv:1709.04546, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In arXiv:1707.07012 [cs.CV], 2017.

10



Published as a conference paper at ICLR 2019

Appendix

A FORMAL ANALYSIS OF WEIGHT DECAY VS L2 REGULARIZATION

Proof of Proposition 1
The proof for this well-known fact is straight-forward. SGD without weight decay has the following
iterates on f reg

t (θ) = ft(θ) +
λ′

2 ‖θ‖
2
2:

θt+1 ← θt − α∇f reg
t (θt) = θt − α∇ft(θt)− αλ′θt. (5)

SGD with weight decay has the following iterates on ft(θ):

θt+1 ← (1− λ)θt − α∇ft(θt). (6)

These iterates are identical since λ′ = λ
α .

Proof of Proposition 2
Similarly to the Proof of Proposition 1, the iterates of O without weight decay on f reg

t (θ) = ft(θ)+
1
2λ
′ ‖θ‖22 and O with weight decay λ on ft are, respectively:

θt+1 ← θt − αλ′Mtθt − αMt∇ft(θt). (7)
θt+1 ← (1− λ)θt − αMt∇ft(θt). (8)

The equality of these iterates for all θt would imply λθt = αλ′Mtθt. This can only hold for all θt
if Mt = kI, with k ∈ R, which is not the case for O. Therefore, no L2 regularizer λ′ ‖θ‖22 exists
that makes the iterates equivalent.

Proof of Proposition 3
O without weight decay has the following iterates on f sreg

t (θ) = ft(θ) +
λ′

2

∥∥θ �√s
∥∥2
2
:

θt+1 ← θt − α∇f sreg
t (θt)/s (9)

= θt − α∇ft(θt)/s− αλ′θt � s/s (10)
= θt − α∇ft(θt)/s− αλ′θt, (11)

where the division by s is element-wise. O with weight decay has the following iterates on ft(θ):

θt+1 ← (1− λ)θt − α∇f(θt)/s (12)
= θt − α∇f(θt)/s− λθt, (13)

These iterates are identical since λ′ = λ
α .

B ADDITIONAL PRACTICAL IMPROVEMENTS OF ADAM

Having discussed decoupled weight decay for improving Adam’s generalization, in this section we
introduce two additional components to improve Adam’s performance in practice.

B.1 NORMALIZED WEIGHT DECAY

Our preliminary experiments showed that different weight decay factors are optimal for different
computational budgets (defined in terms of the number of batch passes). Relatedly, Li et al. (2017)
demonstrated that a smaller batch size (for the same total number of epochs) leads to the shrinking
effect of weight decay being more pronounced. Here, we propose to reduce this dependence by nor-
malizing the values of weight decay. Specifically, we replace the hyperparameter λ by a new (more

robust) normalized weight decay hyperparameter λnorm, and use this to set λ as λ = λnorm

√
b
BT ,

where b is the batch size, B is the total number of training points and T is the total number of
epochs.2 Thus, λnorm can be interpreted as the weight decay used if only one batch pass is al-
lowed. We emphasize that our choice of normalization is merely one possibility informed by few
experiments; a more lasting conclusion we draw is that using some normalization can substantially
improve results.

2In the context of our AdamWR variant discussed in Section B.2, T is the total number of epochs in the
current restart.

1



Published as a conference paper at ICLR 2019

B.2 ADAM WITH COSINE ANNEALING AND WARM RESTARTS

We now apply cosine annealing and warm restarts to Adam, following the recent work of Loshchilov
& Hutter (2016). There, the authors proposed Stochastic Gradient Descent with Warm Restarts
(SGDR) to improve anytime performance of SGD by quickly cooling down the learning rate ac-
cording to a cosine schedule and periodically increasing it. SGDR has been successfully adopted to
lead to new state-of-the-art results for popular image classification benchmarks (Huang et al., 2017;
Gastaldi, 2017; Zoph et al., 2017), and we therefore tried extending it to Adam. However, while our
initial version of Adam with warm restarts had better anytime performance than Adam, it was not
competitive with SGD with warm restarts, precisely because L2 regularization was not working as
well as in SGD. Now, having fixed this issue by means of the original weight decay regularization
(Section 2) and also having introduced normalized weight decay (Section B.1), the original work on
cosine annealing and warm restarts by Loshchilov & Hutter (2016) directly carries over to Adam.

In the interest of keeping the presentation self-contained, we briefly describe how SGDR schedules
the change of the effective learning rate in order to accelerate the training of DNNs. Here, we
decouple the initial learning rate α and its multiplier ηt used to obtain the actual learning rate at
iteration t (see, e.g., line 8 in Algorithm 1). In SGDR, we simulate a new warm-started run/restart of
SGD once Ti epochs are performed, where i is the index of the run. Importantly, the restarts are not
performed from scratch but emulated by increasing ηt while the old value of θt is used as an initial
solution. The amount by which ηt is increased controls to which extent the previously acquired
information (e.g., momentum) is used. Within the i-th run, the value of ηt decays according to a
cosine annealing (Loshchilov & Hutter, 2016) learning rate for each batch as follows:

ηt = η
(i)
min + 0.5(η(i)max − η

(i)
min)(1 + cos(πTcur/Ti)), (14)

where η(i)min and η(i)max are ranges for the multiplier and Tcur accounts for how many epochs have
been performed since the last restart. Tcur is updated at each batch iteration t and is thus not
constrained to integer values. Adjusting (e.g., decreasing) η(i)min and η(i)max at every i-th restart (see
also Smith (2016)) could potentially improve performance, but we do not consider that option here
because it would involve additional hyperparameters. For η(i)max = 1 and η(i)min = 0, one can simplify
Eq. (14) to

ηt = 0.5 + 0.5 cos(πTcur/Ti). (15)

In order to achieve good anytime performance, one can start with an initially small Ti (e.g., from
1% to 10% of the expected total budget) and multiply it by a factor of Tmult (e.g., Tmult = 2) at
every restart. The (i + 1)-th restart is triggered when Tcur = Ti by setting Tcur to 0. An example
setting of the schedule multiplier is given in C.

Our proposed AdamWR algorithm represents AdamW (see Algorithm 2) with ηt following Eq. (15)
and λ computed at each iteration using normalized weight decay described in the previous section.
We note that normalized weight decay allowed us to use a constant parameter setting across short
and long runs performed within AdamWR and SGDWR (SGDW with warm restarts).

C AN EXAMPLE SETTING OF THE SCHEDULE MULTIPLIER

An example schedule of the schedule multiplier ηt is given in SuppFigure 1 for Ti=0 = 100 and
Tmult = 2. After the initial 100 epochs the learning rate will reach 0 because ηt=100 = 0. Then,
since Tcur = Ti=0, we restart by resetting Tcur = 0, causing the multiplier ηt to be reset to 1 due
to Eq. (15). This multiplier will then decrease again from 1 to 0, but now over the course of 200
epochs because Ti=1 = Ti=0Tmult = 200. Solutions obtained right before the restarts, when ηt = 0
(e.g., at epoch indexes 100, 300, 700 and 1500 as shown in SuppFigure 1) are recommended by the
optimizer as the solutions, with more recent solutions prioritized.

D ADDITIONAL RESULTS

We investigated whether the use of much longer runs (1800 epochs) of “standard Adam” (Adam
with L2 regularization and a fixed learning rate) makes the use of cosine annealing unnecessary.

2



Published as a conference paper at ICLR 2019

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Epochs

Le
ar

ni
ng

 r
at

e 
m

ul
tip

lie
r 
η

T
0
=100, T

mult
=2

SuppFigure 1: An example schedule of the learning rate multiplier as a function of epoch index.
The first run is scheduled to converge at epoch Ti=0 = 100, then the budget for the next run is
doubled as Ti=1 = Ti=0Tmult = 200, etc.

SuppFigure 2 shows the results of standard Adam for a 4 by 4 logarithmic grid of hyperparame-
ter settings (the coarseness of the grid is due to the high computational expense of runs for 1800
epochs). Even after taking the low resolution of the grid into account, the results appear to be at best
comparable to the ones obtained with AdamW with 18 times less epochs and a smaller network (see
SuppFigure 3, top row, middle). These results are not very surprising given Figure 2 in the main
paper (which demonstrates the effectiveness of AdamW) and SuppFigure 1 (which demonstrates the
necessity to use some learning rate schedule such as cosine annealing).

Our experimental results with Adam and SGD suggested that the total runtime in terms of the num-
ber of epochs affect the basin of optimal hyperparameters (see SuppFigure 3). More specifically, the
greater the total number of epochs the smaller the values of the weight decay should be. SuppFigure
4 shows that our remedy for this problem, the normalized weight decay defined in Eq. (15), sim-
plifies hyperparameter selection because the optimal values observed for short runs are similar to
the ones for much longer runs. We used our initial experiments on CIFAR-10 to suggest the square
root normalization we proposed in Eq. (15) and double-checked that this is not a coincidence on the
ImageNet32x32 dataset (Chrabaszcz et al., 2017), a downsampled version of the original ImageNet
dataset with 1.2 million 32×32 pixels images, where an epoch is 24 times longer than on CIFAR-10.
This experiment also supported the square root scaling: the best values of the normalized weight de-
cay observed on CIFAR-10 represented nearly optimal values for ImageNet32x32 (see SuppFigure
3). In contrast, had we used the same raw weight decay values λ for ImageNet32x32 as for CIFAR-
10 and for the same number of epochs, without the proposed normalization, λ would have been
roughly 5 times too large for ImageNet32x32, leading to much worse performance. The optimal
normalized weight decay values were also very similar (e.g., λnorm = 0.025 and λnorm = 0.05)
across SGDW and AdamW.

SuppFigure 4 is the equivalent of Figure 3 in the main paper, but for ImageNet32x32 instead of for
CIFAR-10. The qualitative results are identical: weight decay leads to better training loss (cross-
entropy) than L2 regularization, and to an even greater improvement of test error.

SuppFigure 5 and SuppFigure 6 are the equivalents of Figure 4 in the main paper but supplemented
with training loss curves in its bottom row. The results show that Adam and its variants with decou-
pled weight decay converge faster (in terms of training loss) on CIFAR-10 than the corresponding
SGD variants (the difference for ImageNet32x32 is small). As is discussed in the main paper, when
the same values of training loss are considered, AdamW demonstrates better values of test error
than Adam. Interestingly, SuppFigure 5 and SuppFigure 6 show that restart variants AdamWR and
SGDWR also demonstrate better generalization than AdamW and SGDW, respectively.

3



Published as a conference paper at ICLR 2019

SuppFigure 2: Performance of “standard Adam”: Adam with L2 regularization and a fixed learning
rate. We show the final test error of a 26 2x96d ResNet on CIFAR-10 after 1800 epochs of the
original Adam for different settings of learning rate and weight decay used for L2 regularization.

4



Published as a conference paper at ICLR 2019

SuppFigure 3: Effect of normalized weight decay. We show the final test Top-1 error on CIFAR-
10 (first two rows for AdamW without and with normalized weight decay) and Top-5 error on
ImageNet32x32 (last two rows for AdamW and SGDW, both with normalized weight decay) of a
26 2x64d ResNet after different numbers of epochs (see columns). While the optimal settings of the
raw weight decay change significantly for different runtime budgets (see the first row), the values
of the normalized weight decay remain very similar for different budgets (see the second row) and
different datasets (here, CIFAR-10 and ImageNet32x32), and even across AdamW and SGDW.

5



Published as a conference paper at ICLR 2019

SuppFigure 4: Learning curves (top row) and generalization results (Top-5 errors in bottom row)
obtained by a 26 2x96d ResNet trained with Adam and AdamW on ImageNet32x32.

6



Published as a conference paper at ICLR 2019

SuppFigure 5: Test error curves (top row) and training loss curves (bottom row) for CIFAR-10.

7



Published as a conference paper at ICLR 2019

SuppFigure 6: Test error curves (top row) and training loss curves (bottom row) for Ima-
geNet32x32.

8


	Introduction
	Decoupling the Weight Decay from the Gradient-based Update
	Justification of Decoupled Weight Decay via a View of Adaptive Gradient Methods as Bayesian Filtering
	Experimental Validation
	Evaluating Decoupled Weight Decay With Different Learning Rate Schedules
	Decoupling the Weight Decay and Initial Learning Rate Parameters
	Better Generalization of AdamW
	AdamWR with Warm Restarts for Better Anytime Performance
	Use of AdamW on other datasets and architectures

	Conclusion and Future Work
	Acknowledgments
	Formal Analysis of Weight Decay vs L2 Regularization
	Additional Practical Improvements of Adam
	Normalized Weight Decay
	Adam with Cosine Annealing and Warm Restarts

	An Example Setting of the Schedule Multiplier
	Additional Results

