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ABSTRACT

Training certifiable neural networks enables one to obtain models with robustness
guarantees against adversarial attacks. In this work, we use a linear approximation
to bound model’s output given an input adversarial budget. This allows us to
bound the adversary-free region in the data neighborhood by a polyhedral envelope
and yields finer-grained certified robustness than existing methods. We further
exploit this certifier to introduce a framework called polyhedral envelope regular-
ization (PER), which encourages larger polyhedral envelopes and thus improves
the provable robustness of the models. We demonstrate the flexibility and effec-
tiveness of our framework on standard benchmarks; it applies to networks with
general activation functions and obtains comparable or better robustness guarantees
than state-of-the-art methods, with very little cost in clean accuracy, i.e., without
over-regularizing the model.

1 INTRODUCTION

Despite their great success in many applications, modern deep learning models are vulnerable to
adversarial attacks: small but well-designed perturbations can make the state-of-the-art models predict
wrong labels with very high confidence (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2017;
Szegedy et al., 2013). The existence of such adversarial examples indicates unsatisfactory properties
of the deep learning models’ decision boundary (He et al., 2018), and poses a threat to the reliability
of modern machine learning systems.

As a consequence, studying the robustness of deep learning has attracted growing attention, from
the perspective of both attack and defense strategies. Popular attack algorithms, such as the fast
gradient method (FGM) (Goodfellow et al., 2014), the CW attack (Carlini & Wagner, 2017) and the
projected gradient descent (PGD) algorithm (Madry et al., 2017), typically exploit the gradient of
the loss w.r.t. the input to generate adversarial examples. To counteract such attacks, many defense
algorithms have been proposed (Buckman et al., 2018; Dhillon et al., 2018; Guo et al., 2017; Ma
et al., 2018; Samangouei et al., 2018; Song et al., 2017; Xie et al., 2017). However, it was shown
in Athalye et al. (2018) that most of them depend on obfuscated gradients for perceived robustness.
In other words, these methods train models to fool gradient-based attacks but do not achieve true
robustness. As a consequence, they become ineffective when subjected to stronger attacks. The
only exception is adversarial training (Madry et al., 2017), which augments the training data with
adversarial examples. Nevertheless, while adversarial training yields good empirical performance, it
still provides no guarantees of a model’s robustness.

In this work, we focus on constructing certifiers to find certified regions of the input neighborhood
where the model is guaranteed to give the correct prediction, and on using such certifiers to train
a model to be provably robust against adversarial attacks. In this context, complete certifiers can
either guarantee the absence of an adversary or construct an adversarial example given an adversarial
budget. They are typically built on either Satisfiability Modulo Theories (SMT) (Katz et al., 2017) or
mixed integer programming (MIP) (Tjeng et al., 2017; Xiao et al., 2018). The major disadvantages
of complete certifiers are their super-polynomial complexity and applicability to only piecewise
linear activation functions, such as ReLU. By contrast, incomplete certifiers are faster, more widely
applicable but more conservative in terms of certified regions because they rely on approximations.
Techniques such as linear approximation (Kolter & Wong, 2017; Wong et al., 2018; Zhang et al.,
2018; Weng et al., 2018), symbolic interval analysis (Wang et al., 2018b), abstract transformers (Gehr
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et al., 2018; Singh et al., 2018; 2019), semidefinite programming (SDP) (Raghunathan et al., 2018a;b)
and randomized smoothing (Cohen et al., 2019; Salman et al., 2019a) are exploited to offer better
certified robustness. Some of these methods enable training provably robust models (Raghunathan
et al., 2018a; Kolter & Wong, 2017; Wong et al., 2018; Cohen et al., 2019; Salman et al., 2019a) by
optimizing the parameters so as to maximize the area of the certified regions.

While effective, all the above-mentioned methods, in their vanilla version, only provide binary results
given a fixed adversarial budget. That is, if a data point is certified, it is guaranteed to be robust in
the entire given adversarial budget; otherwise no guaranteed adversary-free region is estimated. To
overcome this and search for the optimal adversarial budget that can be certified, Kolter & Wong
(2017); Weng et al. (2018); Zhang et al. (2018) use either Newton’s method or binary search. By
contrast, Croce et al. (2018) take advantage of the geometric property of ReLU networks and gives
finer-grained robustness guarantees. Given the piecewise linear ReLU function, any input is located
in a polytope where the ReLU network can be considered linear. Based on geometry, robustness
guarantees can thus be calculated using the input distance to the polytope boundary and the decision
boundary constraints. Unfortunately, in practice, the resulting certified bounds are trivial because
such polytopes are very small even for robust models. Nevertheless, Croce et al. (2018) introduce a
regularization scheme based on these bounds to effectively train provably robust models.

In this paper, we construct a stronger certifier, as well as a regularization scheme to train provably
robust models. To this end, building upon the geometry-inspired idea of Croce et al. (2018), we
estimate a linear bound of the model’s output given a predefined adversarial budget. Then, the
condition to guarantee robustness inside this budget is also linear and forms a polyhedral envelope of
the model’s decision boundary. Similar to Croce et al. (2018), the region contained in the polyhedral
envelope and the adversarial budget is certified to be adversary-free. We then further exploit this
certifier to design a regularization framework to train provably robust neural network models.

In short, our contributions are twofold. First, we design a geometric-inspired certification method
giving finer-grained one-shot bounds than its counterparts (Kolter & Wong, 2017; Weng et al., 2018;
Zhang et al., 2018) with little overhead and applies to general activation functions. More importantly,
we propose a regularization scheme to train provably robust models. Compared with existing provable
training methods, which have been found to over-regularize the model (Zhang et al., 2019), our
training framework yields competitive robustness guarantees while maintaining good performance on
clean inputs. In the remainder of the paper, we call our certification method Polyhedral Envelope
Certifier (PEC) and regularization scheme Polyhedral Envelope Regularizer (PER).

2 PRELIMINARIES

2.1 NOTATION AND TERMINOLOGY

For simplicity, we discuss our approach using a standard N -layer fully-connected network. Note,
however, that it straightforwardly extends to any network topology that can be represented by a
directed acyclic graph (DAG) in the same way as in (Liu et al., 2019). A fully-connected network
parameterized by {W(i),b(i)}N−1

i=1 can be expressed as

z(i+1) = W(i)ẑ(i) + b(i) i = 1, 2, ..., N − 1

ẑ(i) = σ(z(i)) i = 2, 3, ..., N − 1
(1)

where z(i) and ẑ(i) are the pre- & post-activations of the i-th layer, respectively, and ẑ(1) def
== x

is the input of the network. An lp norm-based adversarial budget S(p)
ε (x) is defined as the set

{x′|‖x′ − x‖p ≤ ε}. x′, z′(i) and ẑ′(i) represent the adversarial input and the corresponding pre- &
post-activations. For layer i having ni neurons, we have W(i) ∈ Rni+1×ni and b(i) ∈ Rni+1 .

Throughout this paper, underlines and bars are used to present lower and upper bounds of adversarial
activations, respectively, i.e., z(i) ≤ z′(i) ≤ z̄(i). A “+” or “−” subscript indicates the positive or
negative part of a tensor. We use [K] as the abbreviation for the set {1, 2, ...,K}.

2.2 MODEL LINEARIZATION

Given an adversarial budget S(p)
ε (x), we study the linear bound of the output logits z′(N), given by
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U(N)x′ + p(N) ≤ z′(N) ≤ V(N)x′ + q(N) (2)

The linear coefficients introduced above can be calculated by iteratively estimating the bounds
of intermediate layers and linearizing the activation functions. In Appendix A.1, we discuss this
for several activation functions, including ReLU, sigmoid, tanh and arctan. Note that our method
differs from Zhang et al. (2018) because we need the analytical form of the linear coefficients for
training, which removes numerical methods such as binary search. The bounding algorithm trades
off computational complexity and bound tightness. In this work, we study two such algorithms. One
is based on Fast-Lin / CROWN (Weng et al., 2018; Zhang et al., 2018). It has tighter bounds but
high computational complexity. Another is inspired by the interval bound propagation (IBP) (Gowal
et al., 2018), which is faster but leads to looser bounds. The details of both algorithms are provided
in Appendices A.2 and A.3. We briefly discuss the complexity of both algorithms in Section 5.

3 ALGORITHMS

3.1 ROBUSTNESS GUARANTEES BY POLYHEDRAL ENVELOPE

For an input point x with label c ∈ [K], a sufficient condition to guarantee robustness is that the
lower bounds of z′(N)

c − z
′(N)
i are positive for all i ∈ [K]. Here, we use a trick called elision of the

last layer (Gowal et al., 2018) to merge the subtraction of z′(N)
c and z

′(N)
i with the last linear layer

and obtain the lower bound of z′(N)
c − z

′(N)
i : z

′(N)
c − z

′(N)
i

def
== Uix

′ + pi. Then, the sufficient

condition to ensure robustness within a budget S(p)
ε (x) can be written as

z′(N)
c − z

′(N)
i = Uix

′ + pi ≥ 0 ∀i ∈ [K] . (3)

The constraint is trivial when i = c, so there areK−1 such linear constraints, corresponding toK−1
hyperplanes in the input space. Within the adversarial budget, these hyperplanes provide a polyhedral
envelope of the true decision boundary. In the remainder of the paper, we use the term dic to represent
the distance between the input and the hyperplane defined in (3) and define dc = mini∈[K],i6=c dic as
the distance between the input and the polyhedral envelope boundary. The distance can be based on
different lp norms, and dic = 0 when the input itself does not satisfy the inequality (3). Since (3)
is a sufficient condition for robustness given the adversarial budget S(p)

ε (x), there is no adversarial
examples in the intersection of S(p)

ε (x) and the polytope defined in (3).

The theorem below formalizes our robustness certification. We defer its proof to Appendix C.1.
Theorem 1 (PEC in Unconstrained Cases). Given a model f : Rn1 → [K] and an input point x with
label c, let U and p in (3) be calculated using a predefined adversarial budget S(p)

ε (x). Then, there
is no adversarial example inside an lp norm ball of radius d centered around x, with d = min {ε, dc}
where dic = max

{
0, Uix+pi

‖Ui‖q

}
. lq is the dual norm of the lp norm, i.e., 1

p + 1
q = 1.

Based on Theorem 1, when ε < dc, PEC has the same robustness guarantees as KW (Kolter & Wong,
2017), Fast-Lin (Weng et al., 2018) and CROWN (Zhang et al., 2018) if we use the same model
linearization method. When 0 < dc < ε, KW / Fast-Lin / CROWN cannot certify the data point at
all, while PEC still gives non-trivial robustness guarantees thanks to the geometric interpretability of
the polyhedral envelope. Figure 1(a) compares the certified bounds of KW / Fast-Lin and PEC on a
randomly picked input for different values of ε.

Figure 1(b) shows a 2D sketch of the two cases mentioned above. If ε is too small, as in the left
portion of the figure, the linear bounds in (3) are tight but only valid in a small region S(p)

ε (x).
Therefore, the certified robustness is ε at most. If ε is too large, the linear bounds are valid in a larger
region but more pessimistic because of linear approximation. 1 This is depicted by the right portion
of the figure, where the distances between the input and the hyperplanes are smaller and the certified
robustness is then dc. The hyperplane segments inside the adversarial budget (green lines) never
exceed the decision boundary (dark blue lines), by definition of the polyhedral envelope.

1The value of dic monotonically decreases with the increase of ε.
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(a) Certified l∞-based bound of a ran-
domly picked input by PEC and KW /
Fast-Lin for different values of ε. The
model is the ‘FC1’ on MNIST trained
by ‘MMR+at’ in Croce et al. (2018)

(b) 2D sketch of decision boundary (dark blue), hyperplane defined
by (3) (light blue), adversarial budget (red), polyhedral envelope
(green) in PEC. The distance between the input data and the hy-
perplanes is depicted by a yellow circle. The left and right portion
correspond to dc bigger and smaller than ε respectively.

Figure 1: The two phases in PEC algorithm.

To search for the optimal ε, i.e., the peak in Figure 1(a), Kolter & Wong (2017) use Newton’s method,
which is an expensive second-order method. By contrast, Weng et al. (2018); Zhang et al. (2018) use
binary search, and our PEC can accelerate their strategy. The acceleration comes from the partial
credit when 0 < dc < ε, in which case we can rule out all values of ε below dc and obtain a better
lower bound of the optimal ε. A more detailed discussion is provided in Appendix B.1.

Under many circumstances, the input is constrained in a hypercube [r(min), r(max)]n1 . For example,
for images with normalized pixel values, an attacker should not perturb the image out of the hypercube
[0, 1]n1 . Because of this constraint for the attacker, the certified regions become larger.

To obtain robustness guarantees in this scenario, we need to recalculate dic, which is now the distance
between the input and the hyperplanes in (3) within the hypercube. The value of dic then is the
minimum of the optimization problem

min
∆
‖∆‖p

s.t. a∆ + b ≤ 0, ∆(min) ≤ ∆ ≤ ∆(max)
(4)

where, to simplify the notation, we define a = Ui, b = Uix + p, ∆(min) = r(min) − x and
∆(max) = r(max) − x. When b ≤ 0, the minimum is obviously 0 as the optimal ∆ is an all-zero
vector. In this case, either we cannot certify the input at all or even the clean input is misclassified.
When b > 0, by Hölder’s inequality, a∆ + b ≥ −‖∆‖p‖a‖q + b, with equality reached when ∆p

and aq are collinear. Based on this, the optimal ∆ of minimum lp norm to satisfy a∆ + b ≤ 0 is

∆̂i = − b

‖a‖qq
sign(ai) |ai|

q
p , (5)

where sign(·) returns +1 for positive numbers and −1 for negative numbers.

To satisfy the constraint ∆(min) ≤ ∆ ≤ ∆(max), we use a greedy algorithm that approaches this
goal progressively. That is, we first calculate the optimal ∆̂ based on Equation (5) and check if the
constraint ∆(min) ≤ ∆ ≤ ∆(max) is satisfied. For the elements where it is not, we clip their values
within [∆(min),∆(max)] and keep them fixed. We then optimize the remaining elements of ∆ in the
next iteration and repeat this process until the constraint is satisfied for all elements. The pseudo-code
is provided as Algorithm 2 in Appendix B.2. The output of Algorithm 2 is the optimum of Problem
(4), i.e., dic. We provide the proof in Appendix C.2. The certified bound in this constrained case is
then min{ε, dc} just as demonstrated by Theorem 1.

3.2 GEOMETRY-INSPIRED REGULARIZATION

As in (Croce et al., 2018), we can incorporate our certification bounds in the training process so as to
obtain more robust models. To this end, we design a regularization term that encourages larger values
of dc. We first introduce the signed distance d̃ic: when dic > 0, the clean input satisfies (3) and
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d̃ic = dic; when dic = 0, the clean input does not satisfy (3) and there is no certified region; d̃ic in this
case is a negative number whose absolute value is the distance between the input and the hyperplane
defined in (3). If the input is unconstrained, we have d̃ic = Uix+pi

‖Ui‖q . Otherwise, following the notation

of (4), d̃ic = sign(b)‖∆̂‖p, where ∆̂ = arg min∆ ‖∆‖p, s.t. a∆ + b = 0,∆(min) ≤ ∆ ≤ ∆(max).
This problem can be solved by a greedy algorithm similar to the one in Section 3.1.

Now, we sort {d̃ic}K−1
i=0,i6=c as d̃j0c ≤ d̃j1c ≤ ... ≤ d̃jK−3c ≤ d̃jK−2c and then define the Polyhedral

Envelope Regularization (PER) term, based on smallest T distances, as

PER(x, α, γ, T ) = γ

T−1∑
i=0

max

(
0, 1− d̃jic

α

)
. (6)

Note that, following Croce et al. (2018), to accelerate training, we take into account the smallest T
distances. When d̃jic ≥ α, the distance is considered big enough, so the corresponding term will not
contribute to the gradient of the model parameters. This avoids over-regularization and allows us to
maintain accuracy on clean inputs. In practice, we do not activate PER in the early training stages,
when the model is not well trained and the corresponding polyhedral envelope is meaningless. Such
‘warm up’ trick is commonly used in the deep learning practice (Gotmare et al., 2018).

Note that we can further incorporate PER with adversarial training in a similar way to Croce et al.
(2018). The only change w.r.t. the original PER consists of replacing d̃jic with d̃′jic, the distance
between the polyhedral envelope and the adversarial example generated by PGD (Madry et al., 2017)
instead of the clean input. We call the corresponding method PER+at.

Calculating the polyhedral envelope is expensive in terms of both computation and memory because
of the need to obtain linear bounds of the output logits. To prevent a prohibitive computational
and memory overhead, we use the stochastic robust approximation of Wang et al. (2018a). For
a mini-batch of size B, we only calculate the PER or PER+at regularization term for B′ < B
instances sub-sampled from this mini-batch. Moosavi-Dezfooli et al. (2017) empirically points out
the geometric correlation of high-dimensional decision boundaries near the data manifold. Thus, in
practice, a B′ much smaller than B provides a good approximation of the full-batch regularization.

4 EXPERIMENTS

To validate the theory and algorithms above, we conducted several experiments on two popular image
classification benchmarks: MNIST and CIFAR10. Each of these experiments can be completed on a
single GPU machine within hours. We will make the code and checkpoints publicly available.

4.1 TRAINING AND CERTIFYING RELU NETWORKS

As the main experiment, we first demonstrate the benefits of our approach over the state-of-the-art
training and certification methods. To this end, we use the same model architectures as in Croce et al.
(2018); Kolter & Wong (2017): FC1, which is a fully-connected network with one hidden layer of
1024 neurons; and CNN, which has two convolutional layers followed by two fully-connected layers.
For this set of experiments, all activation functions are ReLU.

We focus on training and certification method based on model linearization and compare 7 different
training schemes using 5 evaluation metrics under the same and fixed adversarial budgets. All the
certification results here are one-shot results as the binary search for optimal ε is not used. The 7
training schemes are plain training (plain), adversarial training (at) (Madry et al., 2017), KW (Kolter
& Wong, 2017), MMR (Croce et al., 2018), MMR plus adversarial training (MMR+at) (Croce et al.,
2018), and our PER and PER+at of Section 3.2. For certification, we compare Fast-Lin (Weng et al.,
2018), KW (Kolter & Wong, 2017) and our PEC introduced in Section 3.1. KW is algorithmically
equivalent to Fast-Lin with elision of the last layer (Salman et al., 2019b), so we consider them as
one certification method. Based on the discussions in Section 3.1, all three methods have the same
certified robust error, which is the proportion of the inputs whose certified regions are smaller than
the adversarial budget. Therefore, we report the clean test error (CTE), empirical robust error against
PGD (PGD), the certified robust error (CRE Lin), the average certified bound by Fast-Lin / KW (ACB
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CTE
(%)

PGD
(%)

CRE
Lin
(%)

ACB
KW

ACB
PEC

CTE
(%)

PGD
(%)

CRE
Lin
(%)

ACB
KW

ACB
PEC

MNIST - FC1, ReLU, l∞, ε = 0.1 MNIST - FC1, ReLU, l2, ε = 0.3
plain 1.99 98.37 100.00 0.0000 0.0000 1.99 9.81 40.97 0.1771 0.2300

at 1.42 9.00 97.94 0.0021 0.0099 1.35 2.99 14.85 0.2555 0.2684
KW 2.26 8.59 12.91 0.0871 0.0928 1.23 2.70 4.91 0.2853 0.2892

MMR 2.11 17.82 33.75 0.0663 0.0832 2.40 5.88 7.76 0.2767 0.2845
MMR+at 2.04 10.39 17.64 0.0824 0.0905 1.77 3.76 5.68 0.2830 0.2880

PER 1.60 7.45 11.71 0.0883 0.0935 1.26 2.44 5.35 0.2840 0.2888
PER+at 1.81 7.73 12.90 0.0871 0.0925 0.67 1.40 4.84 0.2855 0.2910

MNIST - CNN, ReLU, l∞, ε = 0.1 MNIST - CNN, ReLU, l2, ε = 0.3
plain 1.28 85.75 100.00 0.0000 0.0000 1.28 4.93 100.00 0.0000 0.0000

at 1.02 4.75 91.91 0.0081 0.0189 1.12 2.50 100.00 0.0000 0.0000
KW 1.21 3.03 4.44 0.0956 0.0971 1.11 2.05 5.84 0.2825 0.2861

MMR 1.65 6.09 11.56 0.0884 0.0928 2.57 5.49 10.03 0.2699 0.2788
MMR+at 1.19 3.35 9.49 0.0905 0.0939 1.73 3.22 9.46 0.2716 0.2780

PER 1.44 3.44 5.13 0.0949 0.0965 1.02 1.87 5.04 0.2849 0.2882
PER+at 0.50 2.02 4.85 0.0952 0.0969 0.43 0.91 5.43 0.2837 0.2878

CIFAR10 - CNN, ReLU, l∞, ε = 2/255 CIFAR10 - CNN, ReLU, l2, ε = 0.1
plain 24.62 86.29 100.00 0.0000 0.0000 23.29 47.39 100.00 0.0000 0.0000

at 27.04 48.53 85.36 0.0011 0.0015 25.84 35.81 99.96 0.0000 0.0000
KW 39.27 48.16 53.81 0.0036 0.0040 40.24 43.87 48.98 0.0510 0.0533

MMR 34.59 57.17 69.28 0.0024 0.0032 40.93 50.57 57.07 0.0429 0.0480
MMR+at 35.36 49.27 59.91 0.0031 0.0037 37.78 43.98 53.33 0.0467 0.0502

PER 39.21 50.98 57.45 0.0033 0.0038 34.10 52.54 63.42 0.0369 0.0465
PER+at 28.87 43.55 56.59 0.0034 0.0040 25.76 33.47 46.74 0.0533 0.0580

Table 1: Results for 7 training schemes and 5 evaluation schemes for ReLU networks. The best and second-best
results among robust training methods (plain and at excluded) are highlighted by dark gray and light gray.

KW) and by PEC (ACB PEC) on the test set. We do not report the certified bound by MMR (Croce
et al., 2018), because, in practice, it only gives trivial results. As a matter of fact, Croce et al. (2018)
emphasize their training method and report certification results using KW and MIP (Tjeng et al.,
2017). For methods that are not based on model linearization, such as IBP (Gowal et al., 2018) and
CROWN-IBP (Zhang et al., 2019), we put more results and discussions in Table 5 of Appendix D.2.1.

We downloaded the KW, MMR and MMR+at models from the checkpoints provided by Croce et al.
(2018). 2 To be fair, we use the same model linearization method for our method. For CNN models,
we use the warm up trick consisting of performing adversarial training before adding our PER or
PER+at regularization term. The running time overhead of pre-training is negligible compared with
computing the regularization term. We train all models for 100 epochs and provide the detailed
hyper-parameter settings in Appendix D.1.

We consider robustness in both the l∞ and l2 case, and the attackers are constrained to perturb the
images within [0, 1]n1 . Table 1 shows the results with the same adversarial budget used in Croce
et al. (2018). Consistently with Section 3.1, our geometry-inspired PEC has better average certified
bounds than Fast-Lin / KW given the same adversarial budget. For CIFAR10 model against l∞
attack, there are 10%− 20% test points not certified by Fast-Lin / KW but have non-trivial bounds
by PEC. Figure 5 of Appendix D.2.1 shows the distribution of these certified bounds. Among the
training methods, PER / PER+at give better performance in all cases than MMR / MMR+at. When
compared with KW, their certified robust error is comparable, but PER+at has better clean test
accuracy, particularly on CIFAR10. In fact, PER+at maintains a similar clean test error to adversarial
training (at) while achieving competitive certified robust error. In other words, a model trained by
PER+at is not as over-regularized as other training methods for provable robustness. Figure 6 of
Appendix D.2.1 shows the parameter value distribution of models trained by KW/MMR+at/PER+at.
It is clear that parameters of PER+at models have the largest norms and thus better preserve the
model capacity. The better performance of PER+at over PER, and of MMR+at over MMR, evidences
the benefits of augmenting the training data with adversarial examples.

2Repository: https://github.com/max-andr/provable-robustness-max-linear-regions.
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Figure 2: CTE and CRE for different val-
ues of γ in PER+at. The results of KW, for
reference, are the horizontal dashed lines.

To demonstrate the trade-off between clean test error and
certified robust error, we evaluate our approach with differ-
ent regularizer strength γ in (6). Figure 2 shows the results
of PER+at in the l2 case for CIFAR10. When γ is small,
PER+at becomes similar to adversarial training (at) and has
low clean test error but high certified robust error. As γ grows,
the model is increasingly regularized towards large polyhe-
dral envelopes, which inevitably hurts the performance on
the clean input. By contrast, the certified robust error first
decreases and then increases. This is because training is nu-
merically more difficult when γ is too large and the model is
over-regularized. The results of KW are shown as horizontal
dashed lines for comparison, which evidences that PER+at is
less over-regularized in general than KW, with much lower
clean test error for the same certified robust error.

The experimental results of PER / PER+at in Table 1 rely on the same model linearization methods
as Fast-Lin / KW. Since our framework is applicable to any linearization strategy, we present the
results using IBP-inspired linearization in Table 6 of Appendix D.2.2. Compared with Table 1, we
find IBP-inspired linearization has competitive performance during training, although it leads to a
looser polyhedral envelope. In addition, IBP-inspired linearization has less memory consumption and
computational complexity, so it is suitable for machines of limited computational resources.

4.2 TRAINING AND CERTIFYING NON-RELU NETWORKS

To validate our method’s applicability to non-ReLU networks, we replace the ReLU function in FC1
with either sigmoid, or tanh, or arctan function. While Wong et al. (2018) claim that their methods
apply to non-ReLU networks, their main contribution is rather the extension of KW to a broader set
of network architectures, and their public code 3 does not support non-ReLU activations. Instead,
we thus compare the average certified bound of CROWN (Zhang et al., 2018) (ACB CRO), which
generalizes Fast-Lin to non-ReLU functions, with our PEC (ACB PEC). Since any linearization of
activation functions can be plugged in both methods 4, we use the method in Appendix A.1.

CTE
(%)

PGD
(%)

CRE
Lin
(%)

ACB
CRO

ACB
PEC

CTE
(%)

PGD
(%)

CRE
Lin
(%)

ACB
CRO

ACB
PEC

MNIST - FC1, Sigmoid, l∞, ε = 0.1 MNIST - FC1, Sigmoid, l2, ε = 0.3
plain 2.04 97.80 100.00 0.0000 0.0000 2.01 10.25 30.78 0.2077 0.2539

at 1.78 10.05 98.52 0.0015 0.0055 1.65 3.48 7.50 0.2775 0.2839
PER 2.29 8.44 15.75 0.0843 0.0908 1.19 2.36 7.08 0.2787 0.2849

PER+at 2.46 8.14 15.00 0.0850 0.0906 0.67 1.25 6.93 0.2792 0.2868
MNIST - FC1, Tanh, l∞, ε = 0.1 MNIST - FC1, Tanh, l2, ε = 0.3

plain 2.00 99.57 100.00 0.0000 0.0000 1.94 16.46 61.66 0.1150 0.1789
at 1.28 8.89 99.98 0.0000 0.0001 1.36 3.02 12.35 0.2630 0.2735

PER 2.66 9.31 16.02 0.0840 0.0908 1.39 2.73 7.56 0.2773 0.2834
PER+at 2.73 8.45 14.99 0.0850 0.0907 0.81 1.76 11.80 0.2646 0.2745

MNIST - FC1, ArcTan, l∞, ε = 0.1 MNIST - FC1, ArcTan, l2, ε = 0.3
plain 1.95 99.83 100.00 0.0000 0.0000 2.09 23.00 62.82 0.1115 0.1869

at 1.33 8.88 99.92 0.0001 0.0005 1.56 3.04 10.10 0.2697 0.2784
PER 2.78 9.55 16.75 0.0833 0.0904 1.42 2.66 7.81 0.2766 0.2828

PER+at 2.98 8.96 15.64 0.0844 0.0901 0.83 1.61 11.38 0.2659 0.2758

Table 2: Results of FC1 models with non-ReLU activation functions on MNIST.

According to Table 2, in contrast to plain training and adversarial training, our PER / PER+at can train
provably robust models, despite a slightly lower performance on the clean test data. For certification,
PEC has better average certified bounds than CROWN given the same adversarial budget.

3Repository: https://github.com/locuslab/convex adversarial
4For certification, there is no need to require an analytical form of the linearization.
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4.3 FINDING THE OPTIMAL BUDGET

To obtain the biggest certified bound, we need to search for the optimal value of ε, i.e., the peak in
Figure 1(a). While Kolter & Wong (2017) use Newton’s method to solve a constrained optimization
problem, which is expensive, Fast-Lin / CROWN (Weng et al., 2018; Zhang et al., 2018) apply a
binary search strategy to find the optimal ε.

To validate the claim in Section 3.1 that PEC can find the optimal ε faster than Fast-Lin / CROWN, we
compare the average number of iterations needed to find the optimal value given a required precision
ε∆. Using ε and ε̄ to define the initial lower and upper estimates of the optimal value, then we need
dlog2

ε̄−ε
ε∆
e steps of bound calculation to obtain the optimal value by binary search in Fast-Lin /

CROWN. By contrast, the number of iterations needed by PEC depends on the model to certify. The
pseudo-code of the search algorithm is provided in Appendix B.1.

We briefly discuss the experimental results here, and defer their details to Appendix D.2.3. Note
that, because PEC has almost no computational overhead compared with Fast-Lin and CROWN, the
number of iterations reflects the running time to obtain the optimal certified bounds. Altogether, our
results show that PEC can save on average 25% of the running time for FC1 models with ReLU, 15%
for FC1 models with non-ReLU activations and 10% for CNN models.

5 DISCUSSION

Let us consider an N -layer neural network model with k-dimensional output and m-dimensional
input. For simplicity, let each hidden layer have n neurons and n� max{k,m}. In this context, the
bounding algorithm based on Fast-Lin / CROWN need O(N2n3) FLOPs to obtain linear bounds of
output logits. However, the complexity can be reduced to O(Nn2m) at the cost of bound tightness
when we use the IBP-inspired algorithm. In MMR (Croce et al., 2018), the complexity to calculate
the expression of the input’s linear region is also O(Nn2m). On the training side, KW needs a
back-propagation to calculate the bound, which costs O(Nn2). MMR needs to calculate the distance
between the input and O(Nn) hyper-planes, costing O(Nnm) FLOPs, while PER only calculates
O(k) hyperplanes, thus requiring O(km) FLOPs. Overall, we can see that the estimation of the
output logits or decision boundary dominates the complexity of all training algorithms and is the
main barrier towards scalable provably robust training. The complexity of PER is similar to Fast-Lin
/ CROWN if we use the same model linearization method as theirs. When we use an IBP-inspired
algorithm instead, the complexity of PER is similar to MMR. Note that the FLOP complexity of PGD
with h iterations is O(Nn2h) and typically h� min{m,n}, so the overhead of the warm up phase
is negligible for PER training.

No matter which linearization method we use, the bounds of the output logits inevitably become
looser for deeper networks, which can be a problem for large models. Furthermore, the linear
approximation implicitly favors the l∞ norm over other lp norms because the intermediate bounds
are calculated in an elementwise manner (Liu et al., 2019). As a result, our method performs better in
l∞ cases than in l2 cases. Designing a training algorithm with scalable and tight certified robustness
is highly non-trivial and worth further exploration.

6 CONCLUSION

In this paper, we have studied the robustness of neural networks from a geometric perspective. In our
framework, linear bounds are estimated for the model’s output under an adversarial budget. Then,
the polyhedral envelope resulting from the linear bounds allows us to obtain quantitative robustness
guarantees. Our certification method can give non-trivial robustness guarantees to more data points
than existing methods. Furthermore, we have shown that our certified bounds can be turned into a
geometry-inspired regularization scheme that enables training provably robust models. Compared
with existing methods, our proposed framework can be applied to neural networks with general
activation functions. Unlike many over-regularized methods, it can achieve provable robustness at
very little loss in clean accuracy. Extending this framework to larger networks will be the focus of
our future research.
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A MODEL LINEARIZATION

A.1 LINEARIZATION OF ACTIVATION FUNCTIONS

In this section, we discuss the choice of d, l and h in the linear approximation dx+l ≤ σ(x) ≤ dx+h
for activation function σ when x ∈ [x, x̄]. Method used here is slightly different from Zhang et al.
(2018). First, the slope of the linear upper and lower bound is the same for simplicity. Second, all
coefficients need to have analytical form because we need to calculate the gradient based on them
during training. Note that Zhang et al. (2018) use binary search for optimal d, l, h.

A.1.1 RELU

As Figure 3 shows, the linear approximation for ReLU σ(x) = max(0, x), which is convex, is:

d =


0 x ≤ x̄ ≤ 0

x̄

x̄− x x < 0 < x̄

1 0 ≤ x ≤ x̄

, l = 0, h =


0 x ≤ x̄ ≤ 0

− xx̄

x̄− x x < 0 < x̄

0 0 ≤ x ≤ x̄

(7)

−6 −3 0 3 6−3

0

3

6

(a) x ≤ x̄ ≤ 0

−6 −3 0 3 6−3

0

3

6

(b) x < 0 < x̄

−6 −3 0 3 6−3

0

3

6

(c) 0 ≤ x ≤ x̄

Figure 3: The linearization of ReLU function in all scenarios.

A.1.2 SIGMOID, TANH, ARCTAN

Unlike ReLU function, Tanh function σ(x) = e2x−1
e2x+1 , Sigmoid function σ(x) = 1

1+e−x and Arctan
function σ(x) = arctan(x) are not convex. However, these three functions are convex when x < 0
and concave when x > 0. (Left and right sub-figures of Figure 4) Therefore, when x ≤ x̄ ≤ 0 or
0 ≤ x ≤ x̄, we can easily obtain the tight linear approximation. When x ≤ 0 ≤ x̄, we do not use the
binary research to obtain the tight linear approximation like Zhang et al. (2018), because the results
would not have an analytical form in this way. Instead, we first calculate the slope between the two
ends i.e. d = σ(x̄)−σ(x)

x̄−x . Then, we bound the function by two tangent lines of the same slope as d
(middle sub-figure of Figure 4).

−6 −3 0 3 6−0.5

0.0

0.5

1.0

1.5

(a) x ≤ x̄ ≤ 0

−6 −3 0 3 6−0.5

0.0

0.5

1.0

1.5

(b) x < 0 < x̄

−6 −3 0 3 6−0.5

0.0

0.5

1.0

1.5

(c) 0 ≤ x ≤ x̄

Figure 4: The linearization of Sigmoid function in all scenarios.
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For Tanh, Sigmoid and Arctan, we can calculate the coefficient of the linear approximation.

d =
σ(x̄)− σ(x)

x̄− x , l =


σ(t1)− t1d x < 0

x̄σ(x)− xσ(x̄)

x̄− x 0 ≤ x ≤ x̄ , h =


x̄σ(x)− xσ(x̄)

x̄− x x ≤ x̄ ≤ 0

σ(t2)− t2d 0 < x̄

(8)

The coefficient t1 < 0 < t2 are the position of tangent points on both sides of origin. The definitions
of t1 and t2 for different activation functions provided in Table 3.

σ Tanh Sigmoid Arctan

t1
1
2 log −(d−2)−2

√
1−d

d − log −(2d−1)+
√

1−4d
2d −

√
1
d − 1

t2
1
2 log −(d−2)+2

√
1−d

d − log −(2d−1)−
√

1−4d
2d

√
1
d − 1

Table 3: Definition of t1 and t2 for different activation functions.

A.2 BOUNDS BASED ON FAST-LIN / CROWN

Based on the linear approximation of activation functions above, we have D(i)z′(i)+l(i) ≤ σ(z′(i)) ≤
D(i)z′(i) + u(i) where D(i) is a diagonal matrix and l(i), u(i) are vectors. We can re-write this
formulation as follows:

∃D(i), l(i),u(i) : ∀z′(i) ∈ [z(i), z̄(i)], ∃m(i) ∈ [l(i),u(i)] s.t.σ(z′(i)) = D(i)z′(i) + m(i) (9)

We plug (9) into (1) and the expression of z′(i) can be rewritten as

z′(i) = W(i−1)(σ(W(i−2)(...σ(W(1)ẑ′(1) + b(1))...) + b(i−2))) + b(i−1)

= W(i−1)(D(i−1)(W(i−2)(...D(2)(W(1)x′ + b(1)) + m(2)...) + b(i−2)) + m(i−1)) + b(i−1)

=

(
i−1∏
k=1

W(k)D(k)

)
W(1)x′ +

i−1∑
j=1

 i−1∏
k=j+1

W(k)D(k)

b(j) +

i−1∑
j=2

 i−1∏
k=j+1

W(k)D(k)

W(j)m(j) .

(10)

This is a linear function w.r.t x′ and {m(j)}i−1
j=2. Once given the perturbation budget S(p)

ε (x) and the
bounds of {m(j)}i−1

j=2, we can calculate the bounds of z′(i) and the bias term in (10). This process can
be repeated until we obtain the bound of output logits (2). The derivation here is the same as Weng
et al. (2018); Liu et al. (2019), we encourage interested readers to check these works for details.

A.3 BOUNDS INSPIRED BY INTERVAL BOUND PROPAGATION

Interval Bound Propagation (IBP) introduced in Gowal et al. (2018) is a simple and scalable method
to estimate the bounds of each layer in neural networks. IBP is much faster than algorithm introduced
in Appendix A.2 because the bounds of any intermediate layer are calculated only based on the
information of its immediate previous layer. Therefore, the bounds are propagated just like the
inference of network models, which cost only O(N) matrix-vector multiplications for a N -layer
network defined in (1).

In our work, we need linear bounds of output logits in addition to general numeric bounds, so the
linearization of activation functions defined in (9) is necessary. We define linear bounds U(i)x′ +
p(i) ≤ z′(i) ≤ U(i)x′ + q(i), Û(i)x′ + p̂(i) ≤ ẑ′(i) ≤ Û(i)x′ + q̂(i). According to Section A.1, we
use the same slope to linearize activation functions, so the slopes of both bounds here are the same.
Plug (9) into this formulation, we have:

Û(i) = D(i)U(i), p̂(i) = D(i)p(i) + l(i), q̂(i) = D(i)q(i) + u(i) (11)
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Here, we assume activation functions are monotonic increasing, so elements in D(i) are non-negative.
Similarity, compare the linear bounds of ẑ′(i) and z′(i+1), we have:

U(i+1) = W(i)Û(i), p(i+1) = W
(i)
+ p̂(i) + W

(i)
− q̂(i) + b(i), q(i+1) = W

(i)
+ q̂(i) + W

(i)
− p̂(i) + b(i)

(12)

By definition, we have Û(1) = I and p̂(1) = q̂(1) = 0. Apply (11) and (12) iteratively, we can obtain
the values of coefficients U(N), V(N), p(N) and q(N) in (2).

B ALGORITHMS

B.1 ALGORITHMS FOR SEARCH OPTIMAL ε

The pseudo code for finding optimal ε is demonstrated as Algorithm 1 below.M, x, ε∆, ε, ε̄ represent
the classification model, the input point, precision requirement, predefined estimate of lower bound
and upper bound respectively. Typically, ε is set 0 and ε̄ is set a large value to which degree the image
perturbation is perceptible. f is a function mapping a model, an input point and a value of ε to a
certified bound. f is a generalization form of algorithm Fast-Lin, CROWN, PEC etc.

During the search for optimal ε, the lower bound is updated by current certified bound, while the
upper bound is updated only when current certified bound is smaller than the choice of ε. In Fast-Lin
and CROWN, we update either lower or upper bound in one iteration since the certified bound is
either 0 or current choice of ε. However, it is possible for PEC to update both lower and upper bound
in one iteration, which leads to a faster convergence of ε.

Algorithm 1: Search for optimal value of ε
Input: x, ε, ε̄, ε∆, f ,M
Set the bounds of ε: εup = ε̄, εlow = ε;
while εup − εlow > ε∆ do

εtry = 1
2 (εlow + εup);

εcert = f(M,x, εtry);
Update lower bound: εlow = max{εlow, εcert};
if εtry > εcert then

Update upper bound: ε̄ = εtry;
end

end
Output: 1

2 (εlow + εup)

B.2 GREEDY ALGORITHM IN CONSTRAINED CASES

We provide the pseudo code of greedy algorithm to solve problem (4) as Algorithm 2 below.

To prevent prohibitive computational overhead, we set the maximum iteration number I(max) of the
while-loop. If this maximum number is met and the iteration is broken, then the output is a lower
bound of the solution in problem (4) and thus still a valid but suboptimal robustness guarantee. In
practice, we set the maximum iteration number to be 20, although the while-loop breaks within 5
iterations in almost all cases.

C PROOFS

C.1 PROOF OF THEOREM 1

Proof. We let x′ = x + ∆ be a point to break the condition (3).
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Algorithm 2: Greedy algorithm to solve Problem (4).

Input: x, a, b, ∆(min), ∆(max) in (4) and maximum iteration I(max)

Set of fixed elements S(f) = ∅;
Iteration number i = 0;
Calculate ∆̂ according to (5);
while ∆(min) ≤ ∆̂ ≤ ∆(max) not satisfied and i < I(max) do

Set of violated elements S(v) = {i|∆̂i < ∆
(min)
i or ∆̂i > ∆

(max)
i };

∆̂i = clip(∆̂i,min = ∆
(min)
i ,max = ∆

(max)
i ), i ∈ S(v);

S(f) = S(f) ∪ S(v);
Update ∆̂ according to (5) with elements in S(f) fixed;
Update i = i+ 1;

end
Output: ‖∆̂‖p

Ui(x + ∆) + pi < 0

⇐⇒ Ui∆ < −Uix− pi

=⇒ − ‖Ui‖q‖∆‖p < −Uix− pi

⇐⇒ ‖∆‖p >
Uix + pi
‖Ui‖q

(13)

The =⇒ comes from the Hölder’s inequality. (13) indicates a perturbation of lp norm over dic =

max
{

0, Uix+pi

‖Ui‖q

}
is needed to break the sufficient condition of z′(N)

c − z
′(N)
i ≥ 0. Based on the

assumption of adversarial budget S(p)
ε (x) when linearizing the model, so the lp norm of a perturbation

to produce an adversarial example is at least min {ε, dc}.

C.2 PROOF OF THE OPTIMALITY OF GEEDY ALGORITHM

Proof. We use primal-dual method to solve the optimization problem (4), which is a convex opti-
mization problem with linear constraints.

It is clear that there exists an image inside the allowable pixel space which makes the model predict
wrong label. That is to say, the constrained problem (4) is strictly feasible:

∃∆ s.t. a∆ + b < 0,∆(min) < ∆ < ∆(max) (14)

Thus, this convex optimization problem satisfies Slater’s Condition i.e. strong duality holds. We then
rewrite the primal problem as:

min
∆(min)≤∆≤∆(max)

‖∆‖pp
s.t. a∆ + b ≤ 0

(15)

We minimize ‖∆‖pp instead of directly ‖∆‖p in order to decouple all elements in vector ∆. In addition,
we consider ∆(min) ≤ ∆ ≤ ∆(max) as the domain of ∆ instead of constraints for simplicity. We
write the dual problem of (15) by introducing a coefficient of relaxation λ ∈ R+.

max
λ≥0

min
∆(min)≤∆≤∆(max)

g(∆, λ)
def
== ‖∆‖pp + λ(a∆ + b) (16)
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To solve the inner minimization problem, we let the gradient ∂g(∆,λ)
∂∆i

= sign(∆i)p|∆i|p−1 + λai to

be zero and obtain ∆i = −sign(ai)
∣∣∣λai

p

∣∣∣ 1
p−1

. Based on the convexity of function g(∆, λ) w.r.t. ∆,

we can obtain the optimal ∆̃i in the domain.

∆̃i = clip

(
−sign(ai)

∣∣∣∣λaip
∣∣∣∣ 1
p−1

,min = ∆
(min)
i ,max = ∆

(max)
i

)
(17)

Based on the strong duality, we can say the optimal ∆̃ is chosen by setting a proper value of λ.
Fortunately, ‖∆̃‖p increases monotonically with λ, so the smallest λ corresponds to the optimum.

As we can see, the expression of ∆̂ in (5) is consistent with ∆̃i in (17) if λ is set properly. 5 Greedy
algorithm in Algorithm 2 is the process to gradually increase λ to find the smallest value satisfying
constraint a∆ + b ≤ 0. With the increase of λ, elements in vector ∆ remain unchanged when they
reach either ∆(min) or ∆(max), so we keep such elements fixed and optimize the others.

D ADDITIONAL EXPERIMENTS

D.1 DETAILS OF EXPERIMENTS

D.1.1 MODEL ARCHITECTURE

FC1 and CNN network used in this paper is identical to ones used in Croce et al. (2018). FC1
network is a fully-connected network with one hidden layer of 1024 neurons. CNN network has
two convolutional layers and one additional hidden layer before the output layer. Both convolutional
layers have a kernel size of 4, stride of 2 and padding of 1 on both sides, so the height and width of
feature maps are halved after each convolutional layer. The first convolutional layer has 32 channels
while the second one has 16. The hidden layer following convolutional layers has 100 neurons.

D.1.2 HYPER-PARAMETER SETTINGS

In all experiments, we use Adam optimizer (Kingma & Ba, 2014) with the initial learning rate
10−3 and train all models for 100 epochs with a mini-batch of 100 instances. For CNN models, we
decrease the learning rate to 10−4 for last 10 epochs. When we train CNN models on MNIST, we
only calculate the polyhedral envelope of 20 instances subsampled from each mini-batch. When we
train CNN models on CIFAR10, this subsampling number is 10. For PER and PER+at, the value of
T is always 4. We search in the logarithmic scale for the value of γ and in the linear scale for the
value of α. For the value of ε, we ensure its final values are close to the ones used in the adversarial
budget S(p)

ε (x). We compare the constant values with exponential growth scheme for ε but always
use constant values for α and γ. The optimal value we find for different settings are provided as
Table 4 below.

D.2 ADDITIONAL EXPERIMENTAL RESULTS

D.2.1 ADDITIONAL RESULTS OF THE MAIN EXPERIMENT

We show additional results including IBP (Gowal et al., 2018) and CROWN-IBP (C-IBP) (Zhang
et al., 2019) in Table 5. We also report the certified robust error obtained by IBP (CRE IBP) and the
corresponding average certified bound (ACB IBP). Consistent with Zhang et al. (2019), we find IBP
has non-trivial certification results only on models that are trained by IBP or CROWN-IBP. For these
models, IBP can have even better certification results than Fast-Lin / KW / PEC, whose complexity
are significantly higher. As mentioned in Liu et al. (2019), IBP and Fast-Lin are complementary. Our
PER and PER+at algorithms still outperform IBP and CROWN-IBP.

5The power term q
p

= 1
p−1

when 1
p

+ 1
q

= 1
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α ε γ

MNIST - FC1, l∞ constant, 0.15
initial value 0.0064 constant, 0.1×2 every 20 epochs

MNIST - CNN, l∞ constant, 0.15 constant, 0.1
constant, 0.3 for PER

constant, 0.03 for PER+at

CIFAR10 - CNN, l∞ constant, 0.1 constant, 0.008
constant, 3× 10−4 for PER

constant, 1× 10−3 for PER+at

MNIST - FC1, l2 constant, 0.45
initial value 0.02 constant, 1.0×2 every 20 epochs

MNIST - CNN, l2 constant, 0.45 constant, 0.3 constant, 1.0

CIFAR10 - CNN, l2 constant, 0.15 constant, 0.1
constant, 0.3 for PER

constant, 1.0 for PER+at

Table 4: Values of α, ε and γ for different experiments.

CTE
(%)

PGD
(%)

CRE
Lin
(%)

CRE
IBP
(%)

ACB
KW

ACB
IBP

ACB
PEC

CTE
(%)

PGD
(%)

CRE
Lin
(%)

CRE
IBP
(%)

ACB
KW

ACB
IBP

ACB
PEC

MNIST - FC1, ReLU, l∞, ε = 0.1 MNIST - FC1, ReLU, l2, ε = 0.3
plain 1.99 98.37 100.00 100.00 0.0000 0.0000 0.0000 1.99 9.81 40.97 99.30 0.1771 0.0021 0.2300

at 1.42 9.00 97.94 100.00 0.0021 0.0000 0.0099 1.35 2.99 14.85 99.23 0.2555 0.0023 0.2684
KW 2.26 8.59 12.91 69.20 0.0871 0.0308 0.0928 1.23 2.70 4.91 41.55 0.2853 0.1754 0.2892
IBP 1.65 9.67 87.27 15.20 0.0127 0.0848 0.0705 1.36 2.90 6.87 9.01 0.2794 0.2730 0.2876

C-IBP 1.98 9.50 67.39 14.45 0.0326 0.0855 0.0800 1.26 2.80 6.36 8.73 0.2809 0.2738 0.2884
MMR 2.11 17.82 33.75 99.88 0.0663 0.0001 0.0832 2.40 5.88 7.76 99.55 0.2767 0.0013 0.2845

MMR+at 2.04 10.39 17.64 95.09 0.0824 0.0049 0.0905 1.77 3.76 5.68 99.86 0.2830 0.0004 0.2880
PER 1.60 7.45 11.71 92.89 0.0883 0.0071 0.0935 1.26 2.44 5.35 59.17 0.2840 0.1225 0.2888

PER+at 1.81 7.73 12.90 99.90 0.0871 0.0001 0.0925 0.67 1.40 4.84 64.79 0.2855 0.1056 0.2910

MNIST - CNN, ReLU, l∞, ε = 0.1 MNIST - CNN, ReLU, l2, ε = 0.3
plain 1.28 85.75 100.00 100.00 0.0000 0.0000 0.0000 1.28 4.93 100.00 100.00 0.0000 0.0000 0.0000

at 1.02 4.75 91.91 100.00 0.0081 0.0000 0.0189 1.12 2.50 100.00 100.00 0.0000 0.0000 0.0000
KW 1.21 3.03 4.44 100.00 0.0956 0.0000 0.0971 1.11 2.05 5.84 100.00 0.2825 0.0000 0.2861
IBP 1.51 4.43 23.89 8.13 0.0761 0.0919 0.0872 2.37 3.85 51.12 11.73 0.1534 0.2648 0.1669

C-IBP 1.85 4.28 10.72 6.91 0.0893 0.0931 0.0928 2.89 4.44 31.62 12.29 0.2051 0.2631 0.2178
MMR 1.65 6.09 11.56 100.00 0.0884 0.0000 0.0928 2.57 5.49 10.03 100.00 0.2699 0.0000 0.2788

MMR+at 1.19 3.35 9.49 100.00 0.0905 0.0000 0.0939 1.73 3.22 9.46 100.00 0.2716 0.0000 0.2780
PER 1.44 3.44 5.13 100.00 0.0949 0.0000 0.0965 1.02 1.87 5.04 100.00 0.2849 0.0000 0.2882

PER+at 0.50 2.02 4.85 100.00 0.0952 0.0000 0.0969 0.43 0.91 5.43 100.00 0.2837 0.0000 0.2878

CIFAR10 - CNN, ReLU, l∞, ε = 2/255 CIFAR10 - CNN, ReLU, l2, ε = 0.1
plain 24.62 86.29 100.00 100.00 0.0000 0.0000 0.0000 23.29 47.39 100.00 100.00 0.0000 0.0000 0.0000

at 27.04 48.53 85.36 100.00 0.0011 0.0000 0.0015 25.84 35.81 99.96 100.00 0.0000 0.0000 0.0000
KW 39.27 48.16 53.81 99.98 0.0036 0.0000 0.0040 40.24 43.87 48.98 100.00 0.0510 0.0000 0.0533
IBP 46.74 56.38 61.81 67.58 0.0030 0.0025 0.0034 57.90 60.03 64.78 78.13 0.0352 0.0219 0.0366

C-IBP 58.32 63.56 66.28 69.10 0.0026 0.0024 0.0029 71.21 72.51 76.23 80.97 0.0238 0.0190 0.0256
MMR 34.59 57.17 69.28 100.00 0.0024 0.0000 0.0032 40.93 50.57 57.07 100.00 0.0429 0.0000 0.0480

MMR+at 35.36 49.27 59.91 100.00 0.0031 0.0000 0.0037 37.78 43.98 53.33 100.00 0.0467 0.0000 0.0502
PER 39.21 50.98 57.45 99.98 0.0033 0.0000 0.0038 34.10 52.54 63.42 100.00 0.0369 0.0000 0.0465

PER+at 28.87 43.55 56.59 100.00 0.0034 0.0000 0.0040 25.76 33.47 46.74 100.00 0.0533 0.0000 0.0580

Table 5: Full results of 9 training schemes and 7 evaluation schemes for ReLU networks.

The distribution of certified bounds of CIFAR10 model against l∞ attack are shown in Figure 6.
We only consider the certified bounds strictly larger than 0 but smaller than ε, which are non-trivial
bounds not obtained by one-shot Fast-Lin / KW. For the CIFAR10 test set, there are 10%− 20% of
such points, and their certified bounds are close to being uniformly distributed between 0 and ε.

We show the histogram of parameter values for CIFAR10 models trained by KW, MMR+at and
PER+at. It is clear that the parameter values of KW models are much more concentrated around 0
than those of PER+at models. For both l∞ and l2 attacks, the PER+at model has the biggest norms,
evidencing that it better uses the model capacity.

As we can see in Equation 6, our proposed hinge-loss based PER is a constant and does not contribute
to the parameter update when d̃jic is greater than α, which is usually ε. It means that when a data
point is robust enough against the adversarial attack, PER will not push the decision boundary further
away from it. However, KW has a cross-entropy based loss. It will always further push the output
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Figure 5: Distributions of certified bounds in (0, ε) for CIFAR10 models trained against l∞ attacks. The total
numbers of such test points are 1045, 2162, 1396, 1122, 1489 for KW, MMR, MMR+at, PER, PER+at models,
respectively.
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Figure 6: Parameter value distributions of CIFAR10 models trained against l∞ and l2 attacks. The Euclidiean
norm of parameter for KW, MMR+at, PER+at model against l∞ attack is 18.08, 38.36 and 94.63 respectively.
For models against l2 attack, the corresponding Euclidiean norm is 71.34, 62.97 and 141.77 respectively.
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Figure 7: The distribution of optimal certified bounds of CIFAR10 models trained against l∞ and l2 attacks.
The target bounds are marked as a red vertical line. (2/255 for l∞ cases and 0.1 for l2 cases.)

logits of the true label bigger and the others smaller. Figure 7 shows the distribution of optimal ε
found by Algorithm 1 for CIFAR10 models against l∞ and l2 attacks. Table 1 shows that KW and
PER+at have similar certified robust error, which is the area on the right of the vertical red line in
Figure 7. Because of the property of cross-entropy loss, KW pushes too many points far beyond the
robustness target we set. This is unnecessary and causes the loss of clean accuracy.

D.2.2 TRAINING BY IBP-INSPIRED MODEL LINEARIZATION

We use ReLU networks to compare the performance of IBP-inspired model linearization with the ones
used in Fast-Lin / CROWN. We observed that the hyper-parameter settings in Table 4 are ill-suited
here. Specifically, since the estimation bounds of the output logits is looser, the gradient of the PER
term based on IBP-inspired linearization is larger than in the main experiments. As a result, we used
a value γ of 3 or 10 times smaller than those in Table 4. Furthermore, starting with a large ε might
not work, because the bounds will be even looser under a big adversarial budget. So, we adopt a
‘warm up’ scheme consisting of increasing the value of ε linearly until it reaches the desired value.

We provide the results in Table 6 below. Note that we still use the tighter linearization method of
Fast-Lin / CROWN when we run our certification method (PEC). Despite the looser polyhedral
envelope during training, the IBP-inspired model linearization achieves competitive performance
with the ones in Fast-Lin / CROWN. In some cases, it has even better performance on the test set.
Because of the lower computational complexity and smaller memory consumption, the IBP-inspired
method is suitable for machines with limited computational resources.

D.2.3 SEARCHING FOR THE OPTIMAL VALUE OF ε

Tables 7 and 8 show the number of bound calculations in the binary search for the optimal ε in PEC
and Fast-Lin / CROWN. In l∞ cases, the original interval [ε, ε̄] is [0, 0.4] for MNIST and [0, 0.1]
for CIFAR10. In l2 cases, the original interval [ε, ε̄] is [0, 1.2] for MNIST and [0, 0.4] for CIFAR10.
The bound of the number calculation does not depend on the model in Fast-Lin / CROWN and is
model-dependent in PEC as discussed in Section 4.3.
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CTE
(%)

PGD
(%)

Change
(%)

CRE
(%)

Change
(%)

ACB
KW

Change ACB
PEC

Change

MNIST - FC1, ReLU, l∞. ε = 0.1
PER 1.60 6.28 -1.17 11.96 +0.25 0.0880 -0.0003 0.0934 -0.0001

PER+at 1.54 7.15 -0.58 13.19 +0.29 0.0868 -0.0003 0.0927 +0.0002
MNIST - CNN, ReLU, l∞. ε = 0.1

PER 1.03 2.40 -1.04 4.64 -0.49 0.0954 +0.0005 0.0967 +0.0002
PER+at 0.48 1.29 -0.73 4.61 -0.24 0.0954 +0.0002 0.0971 +0.0001

CIFAR10 - CNN, ReLU, l∞. ε = 2/255
PER 29.34 51.54 +0.56 64.34 +7.11 0.0028 -0.0005 0.0036 -0.0002

PER+at 26.66 43.35 -0.20 57.72 +1.13 0.0033 -0.0001 0.0040 0.0000
MNIST - FC1, ReLU, l2, ε = 0.3

PER 1.21 2.59 +0.15 5.34 -0.01 0.2840 0.0000 0.2888 0.0000
PER+at 0.74 1.46 +0.06 7.81 +2.97 0.2766 -0.0089 0.2860 -0.0050

MNIST - CNN, ReLU, l2, ε = 0.3
PER 1.11 2.16 +0.29 6.37 +1.33 0.2809 -0.0040 0.2851 -0.0031

PER+at 0.52 1.12 +0.21 7.89 +2.48 0.2763 -0.0074 0.2812 -0.0066
CIFAR10 - CNN, ReLU, l2, ε = 0.1

PER 33.94 43.06 -9.48 56.80 -6.62 0.0432 +0.0063 0.0484 +0.0019
PER+at 24.85 31.32 -2.15 47.28 +0.52 0.0528 -0.0005 0.0572 -0.0008

Table 6: Results when using IBP-inspired model linearization. The color green, red and gray indicate better,
worse and same results compared to those in Table 1

TLin TPEC
TPEC
TLin

TLin TPEC
TPEC
TLin

TLin TPEC
TPEC
TLin

MNIST - FC1, ReLU, l∞ MNIST - CNN, ReLU, l∞ CIFAR10 - CNN, ReLU, l∞
plain

12

9.85 0.8207

12

10.56 0.8804

10

9.33 0.9331
at 10.77 0.8972 11.39 0.9489 9.12 0.9128

KW 8.48 0.7066 11.61 0.9674 8.43 0.8432
MMR 8.04 0.6703 10.68 0.8897 8.05 0.8053

MMR+at 7.68 0.6402 11.22 0.9351 8.45 0.8450
PER 9.34 0.7780 11.17 0.9305 8.61 0.8606

PER+at 9.38 0.7816 11.74 0.9784 8.68 0.8681
MNIST - FC1, ReLU, l2 MNIST - CNN, ReLU, l2 CIFAR10 - CNN, ReLU, l2

plain

14

9.68 0.6914

14

13.64 0.9742

12

11.73 0.9775
at 10.44 0.7457 13.76 0.9829 11.67 0.9725

KW 7.72 0.5514 12.63 0.9021 10.23 0.8525
MMR 5.86 0.4186 8.52 0.6086 9.05 0.7542

MMR+at 5.91 0.4221 12.13 0.8664 10.33 0.8608
PER 11.47 0.8194 13.75 0.9819 9.13 0.7609

PER+at 11.34 0.8100 13.72 0.9796 10.71 0.8926

Table 7: Number of steps of bound calculation for the optimal ε in Fast-Lin (TLin) and PEC (TPEC) for ReLU
networks. Note that TLin is a constant for different models given the original interval [ε, ε̄].

TCRO TPEC
TPEC
TCRO

TCRO TPEC
TPEC
TCRO

TCRO TPEC
TPEC
TCRO

MNIST - FC1, Sigmoid, l∞ MNIST - FC1, Tanh, l∞ MNIST - FC1, ArcTan, l∞
plain

12

9.06 0.7547

12

9.69 0.8078

12

8.76 0.7304
at 10.92 0.9104 11.23 0.9356 11.19 0.9326

PER 8.84 0.7369 9.02 0.7513 8.84 0.7369
PER+at 9.67 0.8060 9.64 0.8030 9.62 0.8020

MNIST - FC1, Sigmoid, l2 MNIST - FC1, Tanh, l2 MNIST - FC1, ArcTan, l2
plain

14

10.55 0.7534

14

10.96 0.7831

14

9.99 0.7134
at 11.83 0.8447 12.64 0.9032 12.30 0.8783

PER 12.09 0.8633 12.20 0.8717 12.08 0.8626
PER+at 12.22 0.8728 12.50 0.8928 12.30 0.8786

Table 8: Number of steps of bound calculation for the optimal ε in CROWN (TCRO) and PEC (TPEC) for
non-ReLU networks. Note that TCRO is a constant for different models given the original interval [ε, ε̄].
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