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ABSTRACT

Recent work on bilingual lexicon induction (BLI) has frequently depended either
on aligned bilingual lexicons or on distribution matching, often with an assump-
tion about the isometry of the two spaces. We propose a technique to quantitatively
estimate this assumption of the isometry between two embedding spaces and em-
pirically show that this assumption weakens as the languages in question become
increasingly etymologically distant. We then propose Bilingual Lexicon Induction
with Semi-Supervision (BLISS) — a novel semi-supervised approach that relaxes
the isometric assumption while leveraging both limited aligned bilingual lexicons
and a larger set of unaligned word embeddings, as well as a novel hubness fil-
tering technique. Our proposed method improves over strong baselines for 11 of
14 language pairs on the MUSE dataset, particularly for languages whose embed-
ding spaces do not appear to be isometric. In addition, we also show that adding
supervision stabilizes the learning procedure, and is effective even with minimal
supervision.

1 INTRODUCTION

Bilingual lexicon induction (BLI), the task of finding corresponding words in two languages from
comparable corpora (Haghighi et al., 2008; Xing et al., 2015; Zhang et al., 2017b; Artetxe et al.,
2017; Lample et al., 2018), finds use in numerous NLP tasks like POS tagging (Zhang et al., 2016),
parsing (Xiao & Guo, 2014), document classification (Klementiev et al., 2012), and machine trans-
lation (Irvine & Callison-Burch, 2013; Qi et al., 2018).

Most work on BLI uses methods that learn a mapping between two word embedding spaces (Ruder,
2017), which makes it possible to leverage pre-trained embeddings learned on large monolingual
corpora. A commonly used method for BLI, which also empirically works well, involves learning an
orthogonal mapping between the two embedding spaces (Mikolov et al. (2013a), Xing et al. (2015),
Artetxe et al. (2016), Smith et al. (2017)). However, learning an orthogonal mapping inherently
assumes that the embedding spaces for the two languages are isometric (subsequently referred to as
the orthogonality assumption). This is a particularly strong assumption that may not necessarily hold
true, and consequently we can expect methods relying on this assumption to provide sub-optimal
results. In this work, we examine this assumption, identify where it breaks down, and propose a
method to alleviate this problem.

We first formally describe this orthogonality assumption, and then present a theoretically motivated
approach based on the Gromov-Hausdroff (GH) distance to check the validity and extent of the
orthogonality assumption (§2). We show that the constraint indeed does not hold, particularly for
etymologically distant language pairs.

SpeMotivated by the above observation, we propose a framework for Bilingual Lexicon Induction
with Semi-Supervision (BLISS) (§3.2) that alleviates the aforementioned issues. Moreover, besides
addressing the limitations of the orthogonality assumption, the semi-supervised framework also
addresses the shortcomings of purely supervised and purely unsupervised methods for BLI (§3.1).
Our framework jointly optimizes for supervised embedding alignment, unsupervised distribution
matching, and a weak orthogonality constraint in the form of a back-translation loss. Our results
show that the different losses work in tandem to learn a better mapping than any one could on its
own (§4.3). We also show that the proposed framework improves performance over strong baselines
on two datasets, particularly for the case of embedding spaces where the orthogonal assumption is
not valid.
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Our analysis (§4.3) demonstrates that adding supervision to the learning objective, even in the form
of a small seed dictionary, significantly improves the stability of the learning procedure. In par-
ticular, for cases where either the embedding spaces are far apart according to GH distance or
the quality of the original embeddings is poor, our framework converges where the unsupervised
baselines fail to. We also show that for the same amount of available supervised data, lever-
aging unsupervised learning allows us to obtain superior performance over baseline supervised
and unsupervised methods using a comparable amount of data. All our code can be found at
www.toaddhereifaccepted.com.

2 ISOMETRY OF EMBEDDING SPACES

Both supervised and unsupervised BLI often rely on the assumption that the word embedding spaces
are isometric to each other. Thus, they learn an orthogonal mapping matrix to map one space to
another. For example, for the case of supervised Bilingual Lexicon Induction, Xing et al. (2015)
learn an orthogonal mapping matrix to minimize the distance between the projected source and the
target embeddings; while in the unsupervised case, Lample et al. (2018) propose learning a matrix
near the manifold of orthogonal matrices to match the distributions of the projected source and target
word embeddings.

We hypothesize that this assumption might not always hold, in particular for the cases when the
language pairs in consideration are etymologically distant — Zhang et al. (2017a) and Søgaard et al.
(2018) provide evidence of this by observing a higher Earth Mover’s distance and eigenvector simi-
larity metric respectively between etymologically distant languages. In order to test this hypothesis,
we propose a novel way of a-priori analyzing the validity of the orthogonality assumption using the
Gromov Hausdorff (also referred as GH) distance.

In order to analyze the validity of the orthogonality assumption, we quantitatively check how well
the metric spaces of the word vectors of two languages can be aligned under an isometric transform
using the GH distance.1

The Hausdorff distance between two metric spaces is a measure of the worst case or the diametric
distance between the spaces. Intuitively, it measures the distance between the nearest neighbours
that are the farthest apart. Concretely, given two metric spaces X , and Y with a distance function
d(., .), the Hausdorff distance is defined as:

H(X ,Y) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) }. (1)

The Gromov-Hausdorff distance minimizes the Hausdorff distance over all isometric transforms
between X and Y , thereby providing a quantitative estimate of the isometry of two spaces

H(X ,Y) = inf
f,g
H(f(X ), g(Y)), (2)

where f, g belong to set of isometric transforms.

Computing the Gromov-Hausdorff distance involves solving hard combinatorial problems, but can
be tractably approximated using the Bottleneck distance (Chazal et al., 2009). In order to com-
pute the Bottleneck distance between two metric spaces, we compute the first order Vietoris-Rips
complex (first order for computational efficiency) at t for both spaces: a graph containing an edge
between two points iff they lie within a Euclidean distance t from each other in the metric space. As
t is varied, the Vietoris-Rips complex goes from the individual points (at t = 0) to a single cluster
(at t = ∞). As t increases, clusters are formed (birth) and eventually merge together (death). The
persistence diagram is a 2D plot of the (tbirth, tdeath) of each cluster, where tbirth and tdeath are
the values of t at which the cluster was born and died respectively. Given two persistence diagrams
f, g, let γ be a bijective map from the points of f to the points of g. The bottleneck distance (B) is
then defined as:

B(f, g) = inf
γ

(
sup
u∈f
||u− γ(u)||∞

)
(3)

1Note that since we mean center the embeddings, the orthogonal transforms are equivalent to isometric
transforms.
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Source→ Target Incorrect Predicted
aunt→ тетя бабушка (Grandmother)

uruguay→ уругвая аргентины (Argentina)

regiments→ полков кавалерийские (Cavalry)

comedian→ комик актёр (Actor)

Table 1: Words for which semi-supervised method pre-
dicts correctly, but unsupervised method doesn’t. The
unsupervised method is able to guess the general fam-
ily but fails to pinpoint exact match

Figure 1: Language Pairs and their GH
distance

Chazal et al. (2009) showed that the Gromov-Hausdorff distance can be lower bounded by the Bot-
tleneck Distance between the Persistence Diagrams of the Vietoris-Rips Filtration of the two spaces.

We compute this lower bound for the top frequency words of different language pairs. As can be
observed from Figure 1, the GH distances are higher for distant language pairs.

3 SEMI-SUPERVISED FRAMEWORK

In this section, we motivate and define our semi-supervised framework for BLI. First we describe
issues with purely supervised and unsupervised methods, and then lay the framework for tackling
them along with orthogonality constraints.

3.1 DRAWBACKS OF PURELY SUPERVISED AND UNSUPERVISED METHODS

Purely supervised methods for aligning word vectors do not utilize the rich information present in
the topology of the word vectors. Purely unsupervised methods, on the other hand, can suffer from
poor performance if the distribution of the embedding spaces of the two languages are very different
from each other. Moreover, unsupervised methods can successfully align clusters of words together,
but miss out on fine grained alignment within the clusters.

We explicitly show the aforementioned problem of purely unsupervised methods with the help of
the toy dataset shown in 2a, and 2b. In this dataset, due to the density difference between the two
large blue clusters, unsupervised matching is consistently able to align them properly, but has trouble
aligning the smaller embedded green and red sub-clusters. The correct transformation of the source
space is a clockwise 90◦ rotation followed by reflection along the x-axis. Unsupervised matching
converges to this correct transformation only half of the time; in rest of the cases, it ignores the
alignment of the sub-clusters and converges to a 90◦ counter-clockwise transformation as shown in
2c.

We also find evidence of this problem in the real datasets used in our experiments as shown in
Table 1. It can be seen that the unsupervised method aligns clusters of similar words, but is poor at
the fine grained alignment. We hypothesize that this problem can be resolved by giving it a some
supervision in the form of matching anchor points inside these sub-clusters, which correctly aligns
them. Analogously, for the task of BLI, generating a small supervised seed lexicon is generally
feasible for most language pairs, through either bilingual speakers, existing dictionary resources, or
Wikipedia language links. This can provide the requisite supervision.

3.2 A SEMI-SUPERVISED FRAMEWORK

In order to alleviate the problems with the orthogonality constraints, the purely unsupervised and
supervised approaches, we propose a semi-supervised framework, described below.

Let X = {x1 . . . xn} and Y = {y1 . . . ym}, xi, yi ∈ Rd be two sets of word embeddings from
the source and target language respectively and let S = {(xs1, ys1) . . . (xsk, y

s
k)} denote the bilingual

aligned word embeddings. Define W to be the mapping matrix.
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(a) Source distribution (b) Target distribution (c) Misaligned source distribution

Figure 2: A toy dataset demonstrating the shortcomings of unsupervised distribution matching. Fig.
a) and b) show two different distributions (source and target respectively) over six classes. Classes
1 and 2; classes 3 and 4; classes 5 and 6 were respectively drawn from a uniform distribution over
a sphere, rectangle and triangle respectively. Fig. c) shows the misprojected source distribution
obtained from unsupervised distribution matching which fails to align with the target distribution of
Fig. b).

For learning W , we leverage unsupervised distribution matching, aligning known word pairs and a
data-driven weak orthogonality constraint.

Unsupervised Distribution Matching: Given all word embeddings X and Y , the unsupervised loss
LW |D aims to match the distribution of both embedding spaces. In particular, for our formulation,
we use an adversarial distribution matching objective, similar to the work of Lample et al. (2018).
Specifically, a mapping matrix W from the source to the target is learned to fool a discriminator D,
which is trained to distinguish between the mapped source embeddings WX = {Wx1 . . .Wxn}
and Y . The corresponding objectives are defined as:

LD|W = − 1

n

∑
xi∈X

log(1−D(Wxi))−
1

m

∑
xi∈Y

logD(xi) (4)

LW |D = − 1

n

∑
xi∈X

logD(Wxi) (5)

Aligning Known Word Pairs: Given aligned bilingual word embeddings S, we aim to minimize a
similarity function (fs) which maximizes the similarity between the corresponding matched pairs of
words. Specifically, the loss is defined as:

LW |S = − 1

|S|
∑

(xs
i ,y

s
i )∈S

fs(Wxsi , y
s
i ) (6)

Weak Orthogonality Constraint: Given an embedding space X , we define a consistency loss that
maximizes the similarity fa between x and WTWx, x ∈ X . This cyclic consistency loss LW|O
encourages orthogonality of the W matrix based on the joint optimization:

LW |O = − 1

|X |
∑
xi∈X

fa(xi,W
TWxi) (7)

The above loss term allows the model adjust the trade-off between orthogonality for accuracy, based
on the joint optimization. This is particularly helpful for cases where the orthogonality constraint
is violated, where the embedding spaces are not isometric, specifically for etymologically distant
language pairs, as we show in (4.3).
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The final loss function for the mapping matrix is:

L = LW |D + LW |S + LW |O (8)

LW |D enables the model to leverage the distributional information available from the two embed-
ding spaces, thereby using all available monolingual data. On the other hand, LW |S allows for
the correct alignment of labeled pairs when available in the form of a small seed dictionary. Fi-
nally, LW |O encourages orthogonality. One can think of LW |O and LW |S as working against each
other when the spaces are not isometric. Jointly optimizing both helps the model to strike a bal-
ance between them in a data driven manner, encouraging orthogonality but still allowing for flexible
mapping.

3.3 ITERATIVE PROCRUSTES REFINEMENT AND HUBNESS REMOVAL

A common method of improving BLI is iteratively expanding the dictionary and learning the matrix
as a post-processing step (Artetxe et al., 2017; Lample et al., 2018). Given a learnt mapping matrix,
Procrustes Refinement first finds the pair of points in the two languages that are very closely matched
by the mapping matrix and constructs a bilingual dictionary from these pairs. These pair of points
are found by considering the nearest neighbors (NN) of the projected source words in the target
space. The mapping matrix is then refined by setting it to be the Procrustes solution of the dictionary
obtained. Iterative Procrustes Refinement (also referred as Iterative Dictionary Expansion) applies
the above step iteratively until some metric (CSLS in case of Lample et al. (2018)) converges.

However, learning an orthogonal linear map in such a way leads to some words (known as hubs) to
become nearest neighbors of a majority of other words (Radovanović et al., 2010; Dinu & Baroni,
2014). In order to estimate the hubness of a point, Radovanović et al. (2010) first computed the
distribution Nx(k), the counts of all points y such that x ∈ k −NN(y), normalized over all k. The
skewness of this distribution was defined as the hubness of the point, with positive skew representing
hubs and negative skew representing isolated points. An approximation to this would be Nx(1), i.e
the number of points that x is the 1-NN of.

We use a simple hubness filtering mechanism to filter out words in the target domain that are hubs,
i.e., words in the target domain which have more than a threshold number of neighbors in the source
domain are not considered in the iterative dictionary expansion. Empirically, this leads to a small
boost in performance. In our models, we use iterative Procrustes refinement with hubness filtering
at each refinement step.

4 EXPERIMENTS AND RESULTS

In this section, we measure the GH distances between embedding spaces of various language pairs,
and compute their correlation with several empirical measures of orthogonality. Next, we analyze the
performance of the instantiations of our semi-supervised framework for two settings of supervised
losses, and show that they outperform their supervised and unsupervised counterparts for a majority
of the language pairs. Finally we analyze our performance with varying amounts of supervision and
highlight the framework’s training stability over unsupervised methods.

4.1 GH DISTANCE

To evaluate the lower bound on the GH distance between the two embedding spaces, we select the
5000 most frequent words of the source and target language and compute the Vietoris-Rips complex
of the zeroth order (which considers only pairwise edges for identifying clusters). These embeddings
are mean centered, unit normed and the Euclidean Distance is used as the distance metric.

Row 1 of Table 2 summarizes the GH distances obtained for different language pairs. We find
that etymologically close languages such as en-fr and ru-uk have a very low GH distance and can
possibly be aligned well using orthogonal transforms. In contrast, we find that etymologically distant
language pairs such as en-ru and en-hi cannot be aligned well using orthogonal transforms.

To further corroborate this, similar to Søgaard et al. (2018) , we compute correlations of the GH
distance with the accuracies of several methods for BLI. We find that the GH distance exhibits a
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Prop ru-uk en-fr en-es es-fr en-uk en-ru en-sv en-el en-hi en-ko |Corr| |Corr|
(GH) (Λ)

GH 0.18 0.17 0.2 0.24 0.34 0.44 0.46 0.47 0.5 0.92 * *
Λ 16.4 4.1 5.9 4.1 11.7 14.7 7.3 11.5 7.7 6.6 * *

MUSE(U) * 82.3 81.7 85.5 29.1 44.0 53.3 37.9 34.6 5.1 0.87 0.61
RCSLS * 83.3 84.1 87.1 38.3 57.9 61.7 47.6 37.3 37.5 0.74 0.52
GeoMM * 82.1 81.4 87.8 39.1 51.3 65 47.8 39.8 34.6 0.76 0.49

BLISS (R) * 83.9 84.3 87.1 40.7 57.1 65.1 48.5 38.1 39.9 0.73 0.50

||I −WTW ||2 0.03 0.01 0.03 0.02 59.8 54.3 71.6 72.6 106.3 98.46 0.84 0.75

Table 2: Correlation of GH and Eigenvector similarity with performance of BLI methods

strong negative correlation with these accuracies, implying that as the GH distance increases, it be-
comes increasingly difficult to align these language pairs. Søgaard et al. (2018) also proposed the
eigenvector similarity metric between embedding spaces for measuring similarity between the em-
bedding spaces. We compute their metric over top n (100, 500, 1000, 5000 and 10000) embeddings
(Column Λ in Table 2 shows correlation for the best setting of n) and show that the GH distance
(Column GH) correlates better with the accuracies than eigenvector similarity.

Furthermore, we also compute correlations against an empirical measure of the orthogonality of two
embedding spaces by computing ||I −WTW ||2, where W is a mapping from one language to the
other obtained from an unsupervised method (MUSE(U)). Note that an advantage of this metric is
that it can be computed even when the supervised dictionaries are not available (ru-uk in Table 2).
We obtain a strong correlation with this metric as well.

4.2 PERFORMANCE OF BLISS ON BENCHMARK TASKS

4.2.1 BASELINE METHODS

MUSE (U/S/R) (Lample et al., 2018) proposed two models: MUSE(U) and MUSE(S) for unsuper-
vised and supervised BLI respectively. MUSE(U) uses a GAN based distribution matching followed
by iterative Procrustes refinement. MUSE(S) learns an orthogonal map between the embedding
spaces by minimizing the Euclidean distance between the supervised translation pairs. Note that for
unit normed embedding spaces, this is equivalent to maximizing the cosine similarity between these
pairs. MUSE(R) is the semi-supervised extension of MUSE(S), which uses iterative refinement us-
ing the CSLS metric starting from the mapping learnt by MUSE(S). We also use our proposed hub-
ness filtering technique during the iterative refinement process (MUSE(HR)) which leads to small
performance improvements. We consequently use the hubness filtering technique in all our models.

RCSLS (Joulin et al., 2018) propose optimizing the CSLS metric 2 directly for the supervised match-
ing pairs. This leads to significant improvements over MUSE(S) and achieves state of the art results
for a majority of the language pairs at the time of writing.

VecMap models (Artetxe et al., 2017) and (Artetxe et al., 2018a) proposed two models, VecMap and
VecMap++ which were based on iterative Procrustes refinement starting from a small seed lexicon
based on numeral matching.

4.2.2 BLISS MODELS

We instantiate two instances of our framework corresponding to the two supervised losses in the
baseline methods mentioned above. BLISS(M) optimizes the cosine distance between supervised
matching pairs as its supervised loss (LW |S), while BLISS(R) optimizes the CSLS metric between
these matching pairs for its LW |S . Similar to Lample et al. (2018) we use the unsupervised CSLS
metric as a stopping criterion during training.

2Since the CSLS metric requires computing the nearest neighbors over the whole embedding space, this can
also be considered a semi-supervised method.
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Model en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en
MUSE (U) 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 32.5 31.4
MUSE (S) 81.4 82.9 81.1 82.4 73.5 72.4 51.7 63.7 42.7 36.7
MUSE (R) 81.9 83.5 82.1 82.4 74.3 72.7 51.7 63.7 42.7 36.7

MUSE (HR) 82.3 83.3 82.5 83.2 75.7 72.8 52.8 64.1 42.7 36.7
BLISS (M) 82.3 84.3 83.3 83.9 75.7 73.8 55.7 63.7 41.1 41.4

GeoMM 81.4 85.5 82.1 84.1 74.7 76.7 51.3 67.6 49.1 45.3
RCSLS 84.1 86.3 83.3 84.1 79.1 76.3 57.9 67.2 45.9 46.4

BLISS (R) 84.3 86.2 83.9 84.7 79.1 76.6 57.1 67.7 48.7 47.3

Table 3: Performance comparison of BLISS against various baseline models on the MUSE dataset.
Numbers in bold correspond to best in the set

Pairs # Vec Vec MUSE MUSE BLISS RCSLS BLISS GeoMM Vec
seeds Map Map++ (U) (R) (M) (R) Map (U)++

en-it all 39.7 45.3 45.8 45.3 45.9 45.4 46.2 48.3 48.5Num. 37.3 - 0.7 44.3 0.3 44.6 1.2

en-de all 40.9 44.1 0 47.0 48.3 47.3 48.1 48.9 48.1Num. 39.6 - 39.9 47.2 1.0 46.5 2.3

Table 4: Performance of different models on the VecMap dataset

After learning the final mapping matrix, the translations of the words in the source language are
mapped to the target space and their nearest neighbors according to the CSLS distance (Lample
et al., 2018) are chosen as the translations.

4.2.3 DATASETS

We evaluate our models against baselines on two popularly used datasets: the MUSE dataset and the
VecMap dataset. The MUSE dataset used by Lample et al. (2018) consists of embeddings trained by
Bojanowski et al. (2016) on Wikipedia and bilingual dictionaries generated by internal translation
tools used at Facebook. The VecMap dataset introduced by Dinu & Baroni (2014) consists of the
CBOW embeddings trained on the WacKy crawling corpora. The bilingual dictionaries were ob-
tained from the Europarl word alignments. We use the standard training and test splits available for
for both the datasets.

4.2.4 RESULTS

Table 3 shows the performance of BLISS (M) and BLISS (R) against its supervised and unsupervised
counterparts on the MUSE datasets. As can be seen, the semi-supervised framework outperforms
the both methods for 9 of 10 language pairs for either cases.

Our semi-supervised framework outperforms its supervised and unsupervised counterparts on the
VecMap datasets too. Table 4 groups by model category, and contrasts the performance between
different models on the VecMap datasets. It can be seen that BLISS(M) and BLISS(R) perform
better than the MUSE baselines (MUSE(U), MUSE(R)) and RCSLS respectively.

We also compare against GeoMM (Jawanpuria et al., 2018) and Vecmap (U)++ (Artetxe et al.,
2018b). These methods learn orthogonal mappings for both source and target spaces to a common
embedding space, and subsequently do the translations in the common space. We believe that these
models outperform BLISS in the VecMap dataset because BLISS suffers from a slight disadvantage
by translating in the target space, as opposed to in the common embedding space. This hypothesis
is also supported by the results of Kementchedjhieva et al. (2018).

All the hyperparameters for the experiments can be found in the Appendix (§7.4)

7



Under review as a conference paper at ICLR 2019

0 5 10 15 20 25
Epochs

0

10

20

30

40

50

60

70

A
cc

ur
ac

y

Acc: Unsup Acc: Semi

0.025

0.050

0.075

0.100

0.125

0.150

0.175

C
S

LS

en-de
CSLS: Unsup CSLS: Semi

en-de

0 5 10 15 20 25
Epochs

0

10

20

30

40

50

A
cc

ur
ac

y

Acc: Unsup Acc: Semi

0.000

0.025

0.050

0.075

0.100

0.125

C
S

LS

en-ru
CSLS: Unsup CSLS: Semi

en-ru

0 5 10 15 20 25
Epochs

5

10

15

20

25

30

35

A
cc

ur
ac

y

Acc: Unsup Acc: Semi

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

C
S

LS

en-zh
CSLS: Unsup CSLS: Semi

en-zh

Figure 3: Training Stability of different language pairs

4.3 BENEFITS OF BLISS

Languages with high GH distance BLISS particularly shines over its supervised counterpart when
the two embedding spaces are significantly different and the orthogonality constraint is violated.
Table 2 shows that BLISS (R) achieves performance gains over RSCLS for language pairs with high
GH distance.

Performance with varying amount
of supervision Table 5 shows the
performance of BLISS(R) as a function
of the number of data points provided
for supervision. As can be observed,
the model performs reasonably well
even for low amounts of supervision
and outperforms the unsupervised
baseline MUSE(U) and it’s supervised
counterpart RCSLS. Moreover, note
that the difference is more prominent
for en↔zh, whose spaces are not
isometric, as can be seen from the
GH distance. In this case the baseline
models completely fail to train for 50
points, whereas BLISS(R) performs
reasonably well. For a detailed abla-
tion, please refer to Appendix Section 8.

Stability of Training We also observe
that providing even a little bit of super-
vision helps stabilize the training pro-
cess, when compared to purely unsuper-
vised distribution matching. We mea-
sure the stability during training using

src-tgt Model Num Sup Points
50 500 5000 all

en-de

MUSE (U) 74.0
MUSE (R) 31.9 73.1 75.2 75.7

RCSLS 0.1 9.9 72.5 79.1
BLISS (R) 75.1 74.7 75.7 79.1

de-en

MUSE (U) 72.2
MUSE (R) 72.7 72.7 72.4 72.8

RCSLS 0.13 10.2 70.9 76.3
BLISS (R) 72.7 73.1 72.5 76.6

en-zh

MUSE (U) 32.5
MUSE (R) 0.3 34.5 39.2 42.7

RCSLS 0.0 6.6 42.5 45.9
BLISS (R) 32.6 36.3 42.5 48.7

zh-en

MUSE (U) 31.4
MUSE (R) 0.3 32.2 36.3 36.7

RCSLS 0.0 7.1 41.9 46.4
BLISS (R) 32.5 35.1 42.8 47.3

Table 5: Performance with varying Data

both the ground truth accuracy and the unsupervised CSLS metric (which Lample et al. (2018)
showed to be correlated with the ground truth accuracy). As can be seen from Figure 3, BLISS(M)
is significantly more stable than MUSE(U), converging to better accuracy and CSLS values.

When the word vectors are not rich enough (word2vec (Mikolov et al., 2013b) instead of fastText),
the unsupervised method can completely fail to train. This can be observed for the case of en-de in
Table 4. BLISS(M) does not face this problem: adding supervision, even in the form of 50 mapped
words for the case of en-de, helps it to achieve reasonable performance.

5 RELATED WORK

Mikolov et al. (2013a) first used anchor points to align two embedding spaces, leveraging the fact
that these spaces exhibit similar structure across languages. Since then, several approaches have
been proposed for learning bilingual dictionaries (Faruqui & Dyer, 2014; Zou et al., 2013; Xing
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et al., 2015). Xing et al. (2015) showed that adding an orthogonal constraint significantly improves
performance, and admits a closed form solution. This was further corroborated by the work of Smith
et al. (2017), who showed that in orthogonality was necessary for self-consistency. Artetxe et al.
(2016) showed the equivalence between the different methods, and their subsequent work (Artetxe
et al., 2018a) analyzed different techniques proposed in various works (like embedding centering,
whitening etc.), and showed that leveraging a combination different methods showed significant
performance gains.

However, the validity of this orthogonality assumption has of late come into question: Zhang et al.
(2017a) found that the Wasserstein distance between distant language pairs was considerably higher
, while Søgaard et al. (2018) explored the orthogonality assumption using eigenvector similarity. We
find our weak orthogonality constraint (along the lines of (Zhang et al., 2017b)) when used in our
semi-supervised framework to be more robust to this.

There has also recently been an increasing focus on generating these bilingual mappings without
an aligned bilingual dictionary, i.e., in an unsupervised manner. Zhang et al. (2017b) and Lample
et al. (2018) both use adversarial training for aligning two monolingual embedding spaces without
any seed lexicon, while Zhang et al. (2017a) used a Wasserstein GAN to achieve this adversarial
alignment, and use an earth-mover based fine-tuning approach; while Grave et al. (2018) formulate
this as a joint estimation of an orthogonal matrix and a permutation matrix. However, we show that
adding a little supervision, which is usually easy to obtain, improves performance. Another vein of
research (Jawanpuria et al., 2018; Artetxe et al., 2018b; Kementchedjhieva et al., 2018) has been to
learn orthogonal mappings from both the source and the target embedding spaces into a common
embedding space and doing the translations in the common embedding space. Artetxe et al. (2017)
and Søgaard et al. (2018) motivate the utility of using both the supervised seed dictionaries and,
to some extent, the structure of the monolingual embedding spaces. They use iterative Procrustes
refinement starting with a small seed dictionary to learn a mapping; but doing may lead to sub-
optimal performance for distant language pairs. However, these methods are close to our methods
in spirit, and consequently form the baselines for our experiments.

Another avenue of research has been to try and modify the underlying embedding generation algo-
rithms. Cao et al. (2016) modify the CBOW algorithm Mikolov et al. (2013b) by augmenting the
CBOW loss to match the first and second order moments from the source and target latent spaces,
thereby ensuring the source and target embedding spaces follow the same distribution. Luong et al.
(2015), in their work, use the aligned words to jointly learn the embedding spaces of both the source
and target language, by trying to predict the context of a word in the other language, given an align-
ment. An issue with the proposed method is that it requires the retraining of embeddings, and cannot
leverage a rich collection of precomputed vectors (like ones provided by Word2Vec (Mikolov et al.,
2013b), Glove (Pennington et al., 2014) and FastText (Bojanowski et al., 2016)).

6 CONCLUSIONS

In this work, we analyze the validity of the orthogonality assumption and show that it breaks for dis-
tant language pairs. We motivate the task of semi-supervised BLI by showing the shortcomings of
purely supervised and unsupervised approaches. We finally propose a semi-supervised framework
which combines the advantages of supervised and unsupervised approaches and uses a joint opti-
mization loss to enforce a weak and flexible orthogonality constraint. We show that our framework
obtains gains over several baseline models for numerous language pairs. On analyzing the model
errors, we find that a large fraction of them arise due to polysemy and antonymy (An interested
reader can find the details in Appendix (§7.2).

An interesting line of future work would be to extend the method proposed here to account for pol-
ysemy in translation, possibly by leveraging the work of Upadhyay et al. (2017), which uses multi-
lingual context for sense disambiguation. Another confounding factor is synonyms and antonyms,
which appear in similar contexts, and often incorrectly get translated to each other: leveraging the
work done by Mrkšić et al. (2016) and Faruqui et al. (2014) might be an interesting way to mitigate
this problem.
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7 APPENDIX

7.1 TOY DATASET EXPERIMENT

(a) Actual distributions (b) Misaligned source and actual target dis-
tribution

Unsupervised distribution matching solution remains invariant to the permutations of the words
within a language. One can easily construct a toy dataset on which this scenario can arise. 4a
shows a source and target distribution. Although, in the real dataset each point carries a different
label, we only consider 2 labels for the sake of simplicity. The correct transformation for matching
distribution and labels is an anticlockwise rotation on the source. Since the GAN does not see the
labels, it just matches the distributions by half of the times either choosing the correct anticlockwise
rotation or the incorrect clockwise rotation on source 4b. This problem can be solved by giving
some labeled data correspondence and adding a supervised loss term.

7.2 ANALYZING MODEL ERRORS

We characterize the mistakes made by the model, and find that most fall into the following 4 cate-
gories:

Polysemy on the target side: These are the cases in which the predicted words and the gold trans-
lation are synonyms/hypernyms/hyponyms of each other.

Polysemy on the source side: These are the cases in which the gold translations and the predicted
words are different senses of the source word.

Antonyms: The distribution of the context of antonyms is often very similar. Unsurprisingly the
word vectors of antonyms are quite similar. This leads to cases where the predicted words and gold
labels are antonyms of each other.

12



Under review as a conference paper at ICLR 2019

Figure 4: Fraction of errors coming from polysemy in the source/target side and antonymy, for the
language pairs en-zh, en-it, en-es and en-fr

Words that occur in common contexts: Words that occur in numerous contexts often have poor
word embeddings, since a single embedding can’t capture polysemy. Consequently, multiple such
word embeddings that are frequent and have poor representations often get incorrectly translated to
each other. Some examples include proper nouns and numbers

We quantitatively estimate the fraction of errors due to these reasons using WordNet synsets. Given
2 synsets, WordNet provides a score denoting how similar two word senses are, based on the shortest
path that connects the senses in the is-a (hypernym/hypnoym) taxonomy. The score is in the range
0 to 1. A score of 1 represents identity i.e. comparing a sense with itself will return 1.
We approximate the fraction of target polysemy errors by finding those cases for which the afore-
mentioned similarity scores between the synsets of the predicted words and the gold translations
≥ 0.1. Similarly we approximate the fraction of source polysemy errors by finding those cases for
which the similarity scores between the synsets of the source word and the predicted word ≥ 0.1.
Fig 4 shows these estimations for different language pairs. See Table 5a in (§7.2) for examples
sampled from each of these error types.

Type of Error Source Gold Predicted Comments
Target Polysemy Shadows 影子 阴影 synonyms
Target Polysemy Quest Quest Avventura synonyms
Source Polysemy Worn usé vêtement Gold: used, Predicted: cloth
Source Polysemy Bitter 苦 辛辣 Gold: bitter (taste), predicted: bitter (feeling)
Antonyms Unofficial Ufficiale Funzionario funzionario: official
Antonyms Mature Mature Jeune Jeune: young
Antonyms Afraid Paura Contento Gold: fear, Predicted: happy
Common Words Everybody Jeder Spaß Gold: Everybody, Predicted: Fun
Common Words Fourteen Vierzehn Dreirzehn Numbers translated incorrectly

(a) Sampled Errors

7.3 β ORTHOGONALITY PROJECTION VS. AUTOENCODING LOSS

Lang Ortho β Auto1e-2 1e-3 1e-4

en-de 19.9 74.8 67.4 73.7 74.3
en-ru 102.5 40.8 30.7 36.7 46.1
en-zh 171.1 0 23.8 32.1 33.3

Table 6: Unsupervised accuracies for different values of β (MUSE) and our autoencoding loss.
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Lample et al. (2018) constraint the mapping matrix to be close to the manifold of orthogonal matrices
by applying the following projection step after every update.

W ← (1 + β)W − β(WWT )W

In our experiments we found out that the final accuracy is highly sensitive to the value of the hyper-
parameter β (Table 6). Our approach on the other hand uses an autoencoding loss which allows the
model to flexibly adjusts the degree of orthogonality in a data driven manner and works consistently
well for one choice of the scaling of the autoencoding loss.

7.4 HYPER-PARAMETERS

The following are the hyper parameters used in the experiments. The values separated by / are the
different values tried in the parameter search.

• Number of words per language considered for GAN training: top 75000
• Discriminator Parameters:

– embedding dim: 300
– hidden dim: 2048
– dropout prob: 0.1 (Only on the input layer)
– label smoothing: 0.1

• Generator Parameters
• Initialization: Identity / Random Orthogonal
• Mean Center: True
• GAN Training Parameters

– batch size: 32
– Optimizer: SGD
– Supervised loss optimizer: SGD / Adam
– lr: 0.1 (with a schedule of 0.98 decay per round, and halved if unsupervised CSLS

metric does not improve over two rounds).
– Hubness Threshold: 20

• fa = cosine
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8 PERFORMANCE WITH DIFFERENT LEVELS OF SUPERVISION

Model en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en

Unsupervised

MUSE (U) 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 32.5 31.4

50 Datapoints

MUSE (R) 0.3 82.7 0.5 1.6 31.9 72.7 0.1 0.0 0.3 0.3
GeoMM 0.3 1.9 0.3 1.0 0.3 0.3 0.0 0.6 0.0 0.0
RCSLS 0.1 0.4 0.0 0.3 0.1 0.1 0.1 0.1 0.0 0.0

BLISS (R) 82.1 83.6 82.8 83 75.1 72.7 39.3 61 32.6 32.5

500 Datapoints

MUSE (R) 81.6 83.5 82.1 82.0 73.1 72.7 40.3 62 34.5 32.2
GeoMM 31.9 46.6 34.4 44.7 13.5 14.7 10.6 20.5 3.9 2.9
RCSLS 22.9 44.9 22.4 43.5 9.9 10.2 7.9 19.6 6.6 7.1

BLISS (R) 82.3 83.4 82.3 82.9 74.7 73.1 41.6 63.0 36.3 35.1

5000 Datapoints

MUSE (R) 81.9 82.8 82.2 82.1 75.2 72.4 50.4 63.7 39.2 36.3
GeoMM 79.7 82.7 79.9 83.2 71.7 70.6 49.7 65.5 43.7 40.1
RCSLS 80.9 82.9 80.4 82.5 72.5 70.9 51.3 63.8 42.5 41.9

BLISS (R) 82.4 84.9 82.6 83.9 75.7 72.5 52.1 65.2 42.5 42.8

Table 7: Performance with different levels of supervision.

Table 7 shows the performance of different models by varying the amount of supervised data points.
We always outperform the unsupervised baseline method, as well as the supervised methods at the
same level of supervision for most cases. Furthermore, we observe that iterative Procrustes refine-
ment doesn’t always yield the best model (measured in terms of the unsupervised CSLS metric). For
low data points (50 and 500), we find that iterative Procrustes always helps. For 5000 datapoints, we
find that it only helps when the languages have a low GH distance. Under an improved supervised
loss function, BLISS (R) does not require iterative Procrustes refinement when all data is available.
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