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ABSTRACT

In this paper, we propose a feature-based augmentation, a simple and efficient
method for semi-supervised learning, where only a small part of the data is la-
beled. In semi-supervised learning, input image augmentation is typically known
to be a technique for ensuring generalization of unlabeled data. However, un-
like general input augmentation(translation, filp, Gaussian noise, etc.), our method
adds noise to features that have the most contribution on prediction, generating an
augmented features. We call this method “Feature-based augmentation” because
the noise is determined by the network weight itself and augmentation is carried
out at the feature level. A prediction by augmented features is used as a target for
unlabeled data. The target is stable because it is augmented by the noise based on
its extracted features. Feature-based augmentation is applied to semi-supervised
learning on SVHN, CIFAR-10 datasets. This method achieved a state-of-the-art
error rate. In particular, performance differences from other methods were more
pronounced with the smaller the number of labeled data.

1 INTRODUCTION

“Deep Learning” has recently achieved tremendous results in areas such as image recognition and
speech recognition. A large number of labeled data is an essential element for these tasks. If the
architecture of the network is deep and has a large number of parameters, more labeled data is
needed because it is likely to be over-fitted easily (Bishop, 2006). However, the labeled data is
limited and labeling the data is expensive and requires human-effort. To avoid problems such as
over-fitting, noise can be added around the input data to make the model more robust (Goodfellow
et al., 2016). Data augmentation is to create new data that has the same input data distribution by
transforming the existing data in various way (DeVries & Taylor, 2017). In the previous works of
Laine & Aila (2016), Tarvainen & Valpola (2017), and Miyato et al. (2018), they showed impressive
results, achieving very low error rates mainly with input data augmentation. Therefore, efficient
data augmentation is a good regularization technique that can prevent the model from over-fitting in
semi-supervised learning.

To overcome the lack of labeled data, we apply augmentation to higher-level representations, which
are derived hierarchically from lower-level representations rather than augmenting directly to lower-
level representations. Bengio et al. (2013) claimed that higher-level representations potentially cap-
ture relatively higher-level abstractions. Transformation in the manifold around the data point tends
to exponentially unfold when represented at higher levels. Indeed, adding such higher-level noise
around unlabeled data makes the decision boundaries smooth. Augmentation in the latent space is
suitable for regularization as it can produce new data point that is more plausible and comprehensive.

Furthermore, similar phenomenon(like augmentation in the latent space) can be found in biological
neurons, which are neuronal activity in the brain has stochastic character at the microscopic level, it
called noise (Destexhe, 2012). The neuronal response varies depending on the distance or position
it is viewed at the same distance. A single neuron responds differently to a particular input signal.
This is the variability of neurons, specifically the variability of the neurotransmitter released from
the axon terminal fiber into the synapse (Richard B. Stein, 2005). In the early days, the variability
in neurons circuits was thought to have a negative effect on signal transmission, but a recent study
found that the variability of neurons improve information processing in complex and non-linear sys-
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Figure 1: Feature-based augmentation for semi-supervised learning. The figure depicts the flow of
labeled data and unlabeled data. We employ the output of the last convolution layer as the features,
i.e. the input of the fully connected layer. Random noise is not applied to the layer but to the weights
corresponding to label logit, similar to the synaptic variability of biological neurons. Our method
adds noise to the weights that contribute the most to classification, so the feature-based augmented
image has implicitly the regularization.

tems (Ward, 2011). The variability of neurons has shown that population of neurons automatically
represent the probabilistic distribution over the stimulus (Wei Ji Ma, 2006).

Goodfellow et al. (2014b) generated adversarial examples through adversarial training, which assign
a label to an input data that is similar to the labels of their neighbors in the adversarial direction.
Choosing noise in the latent space should further be very careful and it has a huge impact on the
performance of the model because it is so implicit. For that reason, the neural network uses the
parameters to determine the amount and direction of noise on its own.

Whereas the Temporal ensembling (Laine & Aila, 2016) and Mean Teacher (Tarvainen & Valpola,
2017) produce stable targets using an exponential moving average (EMA) prediction or model, our
method can yield quite stable targets with real-time prediction alone compared with that, so that
target update is not necessary. This method is also available for on-line training. VAT (Miyato et al.,
2018) adds adversarial perturbations to the input data in a gradient direction so that it can exhibit
better generalization than simple random perturbations. And the adversarial perturbations play a
role as a regularization term in VAT, but feature-based augmentation has the benefit of reducing the
computation costs because it is based on network parameters without having to compute a gradient.
It can also generate abstract and implicit augmented images because it is higher-level perturbations
unlike input space augmentation.

Our goal is to improve target quality of unlabeled data and to obtain a robust model even if the
number of labeled data is smaller. And our method is inspired by biological synaptic noise which
improve information processing in complex and non-linear systems.

2 METHOD

2.1 FEATURE-BASED AUGMENTATION

We propose feature-based augmentation for semi-supervised learning. Let N be the number of
training data, L and U denote the set of labeled data and the set of unlabeled data, respectively. The
input images are denoted by xi, where i ∈ {1, 2, 3...N}. For xi, yi∈L ∈ {1, 2, 3...C} is a label
and zi∈U ∈ {1, 2, 3...C} is a target of unlabeled data, where C is the number of classes. Also, we
employ f(x), g(x) and h(x) as the prediction of neural network with parameter θ, the stochastic
input augmentation function (random translation, horizontal flips, Gaussian noise) and the feature
of neural network.
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Here we select the higher-level feature-vector f ∈ R128 (i.e. the output of the last convolution layer
and the input of the fully connected layer) to be applied to augmentation. The parameter of the fully
connected layer is θfc, of size 128 × C. Since perturbations at higher-feature level is applied, we
call this method feature-based augmentation.

Figure 1 shows the architecture of feature-based augmentation and Algorithm 1 shows the pseu-
docode. We describe how we can use our method to create a robust target for unlabeled data. The
first step is to generate the noise to the features.

noise = θfc ·Randomuniform[−k, k]

ziaug = f(f + noise),

where Randomuniform[−k, k] is randomly uniform sampling from hyperparmeter −k to k ∈
[0, 1], of same size as f and ziaug

is the target(the prediction of the model) with feature-based aug-
mentation. At the equation above, noise is a slightly scaled value up to k times the θfc. The higher
the parameter value, the more likely the noise will be. However, because θfc is about the relation-
ship between the feature and the logit, the greater the value of the parameter corresponding to the
feature element, the greater the feature value contributes to the logit.

In other words, noise for feature-based augmentation is generated by adding the most likely value to
the element that contributes the most to the prediction among the features being learned. It is natural
to think that applying appropriate manipulation to the feature that contributes the most is effective
in learning. This feature-based augmentation is also similar to the variability of neurotransmitters
released by biological neurons into the synapses for the specific input signal. Conversely inducing
other similar input signals(little different) to be recognized in the same class. Thus, without having
to calculate a gradient, the feature that has the greatest effect on the error rates can be identified, and
this operation can have the effect of pushing the labeling data from the decision boundaries.It adds
noise based on weight value, it has the effect of sharpening logits more. The feature-augmented
image has implicitly the regularization effect to generate a robust target ziaug

. Depending on the k
value, the degree of augmentation can be adjusted, which greatly affects network performance.

The second step is to average the target over input images with and without augmentation to make
the target more stable. Temporal ensembling generates the mean target value generated according to
the time axis, but and our mean target value z̃i is generated by various kinds of augmentation at the
same time. In order words, z̃i is mean target of images without input augmentation and images with
feature augmentation. In addition to generating targets for unlabeled data, the same can be done for
labeled data to lead to more stable learning. Various feature-based augmentations can be made to
improve the quality of the mean target, z̃i. Unlike Temporal ensembling, it can be called “parallel
ensembling”.

z̃i = Average(zi, ziaug )

where zi = fθ(xi∈L∩U )

2.2 OBJECTIVE FUNCTION

We define the objective function Ltotal, which utilizes the target z̃i for unlabeled data with the
feature-based augmentation method described in Section 2.1. For semi-supervised learning, Our
method produces the “guess” labels for unlabeled data U with feature augmentation and compute
them to the objective function Ltotal, which consists of

Lclassification = −
∑
x∈L

y log fθ(g(x))

Lconsistency = d(
∑
xi∈L

hθ(g(xi))−
∑
xj∈U

hθ(g(xj)))

Lnoise consistency = DKL[p(fθ(g(x)) | x ∈ U , θ) ‖ p(z̃i | x ∈ U , θ)]

Ltotal = Lclassification + λ1Lconsistency + λ2Lnoise consistency

where Lclassification is cross-entropy loss among the labeled dataset L, Lconsistency is mean
squared error(MSE) loss among the features that correspond to labeled L and unlabeled dataset U
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Algorithm 1: Feature-based Augmentation pseudocode.
1 Require: L = set of training labeled data
2 Require: U = set of training unlabeled data
3 Require: xi = training input image
4 Require: yi = label of labeled data i ∈ L
5 Require: fθ(x) = prediction of neural network with parameter θ
6 Require: hθ(x) = features of neural network with parameter θ
7 Require: g(x) = stochastic input augmentation function
8 Require: Aug(x) = feature-based augmentation function
9 for e← 1 to total epochs do

10 for b← 1 to total minibatch,B do
11 zi ← fθ(xi∈U∩B)
12 ziaug

← fθ(Aug(g(xi∈U∩B))) . with feature-based augmentation
13 z̃i ← Average(zi, ziaug

) . prediction target for unlabeled data
14 loss← H(yi, fθ(g(xi∈L∩B))) . cross-entropy classification loss
15 + λ1 · d(hθ(g(xi∈L∩B)), hθ(g(xi∈U∩B))) . consistency loss
16 + λ2 ·D[fθ(g(xi∈U∩B)), zifaug

] . noise consistency loss
17 update θ
18 end
19 end
20 return θ

respectively and Lnoise consistency represents the expected distance between the targets(with input
augmentation) and the augmented targets(with feature-based augmentation) using KL-divergence in
the unlabeled dataset U . And λ1 and λ2 are scaling factors of Lconsistency and Lnoise consistency ,
respectively.

In our works, MSE is used for d and DKL is KL-divergence1. For semi-supervised learn-
ing, the amount of labeled data L and unlabeled data U within a mini-batch is not usually the
same(sometimes the same depending on the model’s design) because the number of unlabeled data
is much larger than the number of labeled data. For this reason, when Lconsistency is calculated, the
distance can be obtained between the average feature value of labeled L and unlabeled data U with
the same class value.

3 EXPERIMENTS

We conducted an experiment using two datasets to evaluate the performance of our methods. We
tested the semi-supervised learning for SVHN and CIFAR-10 benchmarks and used the model with a
13-layer convolutional neural network (ConvNet) just like the previous works (Tarvainen & Valpola,
2017; Laine & Aila, 2016; Miyato et al., 2018) with three types of input noise: random translation,
horizontal flips, Gaussian noise. Also we applied feature-based augmentation. Our model was
trained under TensorFlow framework(Abadi et al., 2015) environment.

We ran 10 experiments on each case. We used dropout (Srivastava et al., 2014; Gal & Ghahramani,
2016) and mean-only batch normalization (Salimans & Kingma, 2016) as regularization, and up-
dated the network parameters using Adam optimizer (Kingma & Ba, 2014). In addition, we did not
use the ramp-up, ramp-down function applied to the scaling factor λ1, λ2 of L and learning rate.
More details about model architectures, hyperparameters, and etc., are described in the Appendix.

3.1 BASELINE

As the baseline of comparison, the methods of supervised-only learning, Π-model (Tarvainen &
Valpola, 2017), Temporal Ensembling (Laine & Aila, 2016), Mean Teacher (Tarvainen & Valpola,
2017), and Virtual Adversarial Training (Miyato et al., 2018) were considered. No techniques for

1KL-divergence is empirically more stable than cross-entropy.
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further regularization (SNTG, SWA, etc.) were used (Luo et al., 2018; Athiwaratkun et al., 2018; Li
et al., 2019). The other methods as the baseline are used the dropout probability p = 0.5, but our
method is set to dropout probability p = 0.8 because feature-based augmentation inherently has its
own regularization.

3.2 SVHN

Table 1: SVHN semi-supervised error rates with 13-layer CNN architecture over 10 runs(4 runs
when using all labels). See table Appendix

250 labels
73257 images

500 labels
73257 images

1000 labels
73257 images

Supervised-only (Tarvainen & Valpola, 2017) 27.77 ± 3.18 16.88 ± 1.30 12.32 ± 0.95
Π-model (Tarvainen & Valpola, 2017) 9.69 ± 0.92 6.83 ± 0.66 4.95 ± 0.26
Temporal Ensembling (Laine & Aila, 2016) 5.12 ± 0.13 4.42 ± 0.16
Mean Teacher (Tarvainen & Valpola, 2017) 4.35 ± 0.50 4.18 ± 0.27 3.95 ± 0.19
VAT (Miyato et al., 2018) 5.42 ± 0.22
VAT + EntMin (Miyato et al., 2018) 3.86 ± 0.11
This work 4.25 ± 0.25 4.12 ± 0.16 3.92 ± 0.28

The Street View House Numbers (SVHN) (Netzer et al., 2011) dataset is a 32 × 32 × 3 RGB
real-world image dataset for developing machine learning and object recognition algorithms with
minimal requirement on data preprocessing and formatting. The dataset consists of 73257 training
images and 10 classes for each digits and 26032 test images. SVHN is obtained from house numbers
in Google Street View images. Using SVHN dataset, semi-supervised learning was conducted and
Table 1 shows the results compared to recent state-of-the-art-methods. We evaluate error rates with
a varying number of labels from 250 to 1000. Our method obtains slightly better error rates for both
250 and 500 labels (4.25% and 4.12%, respectively) compared to the 4.18% reported by Tarvainen
& Valpola (2017) for 500 labels. Because our method is feature-based augmentation, which can hold
more abstract meaning at the higher-level, we can see that the smaller the number of data labels, the
more effective it is. Interestingly, when the number of data is smaller, we confirm that our method
is more efficient for data augmentation.

3.3 CIFAR-10

Table 2: CIFAR-10 semi-supervised error rates over 10 runs. The whole hyperparameter and exper-
imental setup is in Appendix.

1000 labels
50000 images

2000 labels
50000 images

4000 labels
50000 images

Supervised-only (Tarvainen & Valpola, 2017) 46.43 ± 1.21 33.94 ± 0.73 20.66 ± 0.57
Π-model (Tarvainen & Valpola, 2017) 27.36 ± 1.20 18.02 ± 0.60 13.20 ± 0.27
Temporal Ensembling (Laine & Aila, 2016) 12.16 ± 0.31
Mean Teacher (Tarvainen & Valpola, 2017) 21.55 ± 1.48 15.73 ± 0.31 12.31 ± 0.28
VAT (Miyato et al., 2018) 11.36 ± 0.34
VAT + EntMin (Miyato et al., 2018) 10.55 ± 0.05
This work 19.45 ± 1.02 14.69 ± 0.52 11.34 ± 0.27

The CIFAR-10 dataset consists of 32 × 32 × 3 RGB 60000 color images in 10 classes, with 6000
images per class. The 10 different classes represent airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. There are 50000 training images and 10000 test images (Krizhevsky,
2009). In CIFAR-10, similarly, we used our method to perform tasks, and input augmentation
was applied. We evaluate error rates with a varying number of labels from 1000 to 4000. The
results from Table 2 show that although the recently released VAT + EntMin (Miyato et al., 2018)
shows somewhat better performance than our method in 4000 labels, our method shows an error
rate of 11.34%, which is better than the 11.36% error rate when only the VAT method without
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additional regularization term such as entropy minimization. Our method obtains better error rates
for both 1000 and 2000 labels (19.45% and 14.69%, respectively) compared to the 15.73% reported
by Tarvainen & Valpola (2017) for 2000 labels. In addition, as with SVHN, we could see that the
smaller the number of labeling data, the higher the performance improvement. We achieved the
state-of-the-art with no techniques for further regularization terms.

3.4 THE EFFECT OF FEATURE-BASED AUGMENTATION ON THE INPUT IMAGES

(a)

(b)

Figure 2: The effect of feature-based augmentation on the input images. We reconstruct the noise-
added image using autoencoder(Appendix). It was verified that higher-level augmentation occurred,
such as a change in direction of the animal’s head, creating a new wing shape of the airplane,
etc. All of input images were preprocessed by ZCA. Although the restored images are somewhat
blurred because the decoder of the autoencoder is fairly shallow compared with the encoder, the
augmentation can be clearly observed. (a) Reconstructed original image without any augmentation.
(b) Reconstructed image with augmentation at the feature level.

To verify how feature-based augmentation actually affects the input images, we used the au-
toencoder. Generative adversarial networks (Goodfellow et al., 2014a), variational autoencoders
(Kingma & Welling, 2013) are also used in this context to extract useful high-level features. The
encoder part of the autoencoder is the same as the 13-layer CNN structure used in Section 3, and the
input of decoder that restores the image is the feature we add noise to, and the decoder structure is
the 4-layer transposed convolution architecture. (See Appendix for more details)

We could find interesting facts through images restored by the autoencoder. Figure 2 shows an
abstract, high-dimensional augmentation that cannot be obtained by standard input augmentation,
such as changing the head direction of an animal, creating a new type of airplane wing, or bending
the tail.

Based on these experimental observations, we can infer why our methods are effective when the
number of labeled data is smaller. Variations in the manifolds around the data point allow the
exponentially diverse forms of images to be represented, thus yielding a more stable and accurate
target for unlabeled data.

3.5 ABLATION STUDY

To verify that feature-based augmentation actually shows a regularization such as dropout, the fol-
lowing experiments were carried out by varying dropout probability p, feature-based augmentation
scaling factor k on 4000 CIFAR-10 labels. Figure 3(a) shows the relation between dropout prob-
ability p and test error when the rest of the hyperparameters are fixed. When the dropout p was
0.5, the performance was rather decreased. Thus, the experimental results also showed that feature-
based augmentation had a regularization, and 0.8 was the optimal value. Figure 3(b), we can reveal
that the feature-based augmentation scaling factor k is beneficial to semi-supervised learning and
converging better results. There is an optimal value for k and 0.15 is that value.
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Figure 3: Test error comparison on 4000-label CIFAR-10 for varying dropout probability p, feature-
based augmentation scaling factor k. Feature-based augmentation has the regularization effect as
traditional regularization, which is useful for semi-supervised learning. (a) feature-based augmenta-
tion scaling factor k = 0.15. (b) dropout probability p = 0.8

4 RELATED WORK

Zhu (2005) say that unlabeled data can be easily obtained compared to labeled data, but there are
not many ways to use it. Therefore, semi-supervised learning can solve this problem by designing
better classifiers using large amounts of unlabeled data, together with labeled data. Semi-supervised
learning is receiving great attention because it can achieve high accuracy with little effort.

There are various semi-supervised learning methods. The key idea is to improve the quality of the
target of unlabeled data, and there are two main approaches. The first is to add noise to representa-
tions. The other approach is to select a teacher model that can generate consistent target values.

From the perspective of the first approach, Sajjadi et al. (2016) analyzed that the stochastic transfor-
mations and perturbations can achieve better generalization and stability. and Miyato et al. (2018)
adds adversarial perturbations to input data in a gradient direction. Any slight change in the input
should be recognized as the same (Goodfellow et al., 2015). This method also confirmed that it had
better generalization performance than the random perturbation and showed impressive performance
at the CIFAR-10 dataset 4000 labels.

Rasmus et al. (2015) implemented DDS(Sarela & Valpola, 2005), which produces noise-added stu-
dent predictions and noise-free teacher predictions. This method uses a denoising layer to make
teacher predictions from student predictions. Both Temporal ensembling(Laine & Aila (2016)) and
Mean Teacher(Tarvainen & Valpola (2017)) use exponential moving average(EMA) to generate sta-
ble and accurate targets. However, Laine & Aila (2016) applies EMA to the prediction value itself,
and Tarvainen & Valpola (2017) applies EMA to the network parameters of the model. Therefore,
Tarvainen & Valpola (2017) shows better performance than Laine & Aila (2016) because it allows
more frequent target updates.

Another methods for semi-supervised learning is the use of a generative models. Kingma et al.
(2014) employed multiple probabilistic models and solves semi-supervised problem as if it were a
classification problem with specialized missing data.

Data belonging to the same class resemble each other. Thus, the label propagation of Zhu & Ghahra-
mani (2002) has the advantage of pushing the labeled data out of the decision boundaries away.
Weston et al. (2008) is applied the label propagation method to semi-supervised learning. Using the
kernel, the embedded features are shown to have a regularization effect.

Grandvalet & Bengio (2005) claimed one of the regularization techniques, which is the entropy
minimization method. This method has the effect of exaggerating the prediction of the model at
each data point. Therefore, higher performance was achieved when this method was applied in VAT
(Miyato et al., 2018), which is suitable for semi-supervised learning tasks.
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5 CONCLUSION

Semi-supervised learning, both in theory and in practice, is a big concern. There were several
attempts to overcome the lack of labeled data. In this respect, data augmentation is considered as
a effective way especially for semi-supervised learning. In this work, we proposed a simple and
efficient feature-based augmentation method, which is a way to generate new data that is more
realistic and plausible because it adds noise based on the parameters of the network in the latent
space, which is the intermediate stage of representation. To verify how feature-based augmentation
actually affects on input images, we used an autoencoder to check the variations in input images.
In fact, we have seen more abstract augmentation taking place in higher dimensions. Also, it is
expected to improve the quality of the target, if we perform parallel ensembling with augmented
features. Our method has confirmed that it has a greater effect, especially when the number of
labeling data is smaller, and achieved the state-of-the-art results.
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A APPENDIX

A. NETWORK ARCHITECTURE

Table 3: The classifier network(the encoder of the autoencoder)
13-layer CNN

3× 3 conv. 128 leaky ReLU
3× 3 conv. 128 leaky ReLU
3× 3 conv. 128 leaky ReLU

Maxpool 2× 2, stride 2
dropout, p = 0.8

3× 3 conv. 256 leaky ReLU
3× 3 conv. 256 leaky ReLU
3× 3 conv. 256 leaky ReLU

Maxpool 2× 2, stride 2
dropout, p = 0.8

3× 3 conv. 512 leaky ReLU
1× 1 conv. 256 leaky ReLU
1× 1 conv. 128 leaky ReLU

Avgpool 6× 6→ 1× 1
dense 128→ 10 (Feature-based augmentation in this layer.)

softmax

. The input of the dense layer is a feature that applies augmentation in this paper of size [batch size,
128].

. Decoder was used to see how augmentation on feature-level affects the input image. Although
the restored images are somewhat blurred because the decoder of the autoencoder is fairly shallow
compared to the encoder, the augmentation can be clearly observed in Figure. 3 of Section 3.3. We
did not use batch normalization in decoder unlike encoder.
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Table 4: The decoder of autoencoder
4-layer Transposed Convolutional network

4× 4 Trasnposed conv. 512 leaky ReLU
3× 3 Trasnposed conv. 256 leaky ReLU
3× 3 Trasnposed conv. 128 leaky ReLU

3× 3 Trasnposed conv. 3

B. SVHN

We normalized the input images to have zero mean and unit variance. We applied the stochastic input
augmentation; translation(randomly 2× 2 pixel translate), Gaussian noise(adding noise, σ = 0.15).
We used feature-based augmentation scaling factor k = 0.15. We used leaky ReLU with α = 0.1.
We used dropout and mean-only batch normalization as regularization, and updated the network
parameters using Adam optimizer with learning rate 0.001 and parameters β1 = 0.9, β2 = 0.999,
and ε = 10−8. In addition, We used the scaling factor λ1 = 1, λ2 = 2 of objective function.

We trained the network with minibatches of size 100 and the number of unlabeled data is 50. We
trained during total epoch 300.

C. CIFAR-10

We conducted ZCA preprocessing prior to the semi-supervised learning. We applied the stochastic
input augmentation; translation(randomly 2× 2 pixel translate), horizontal flip(randomly, p = 0.5),
Gaussian noise(adding noise, σ = 0.15). We used feature-based augmentation scaling factor k =
0.15. We used leaky ReLU with α = 0.1. We used dropout and mean-only batch normalization as
regularization, and updated the network parameters using Adam optimizer with learning rate 0.001
and parameters β1 = 0.9, β2 = 0.999, and ε = 10−8. In addition, We used the scaling factor
λ1 = 1, λ2 = 2 of objective function.

We trained the network with minibatches of size 100 and the number of unlabeled data is 50. We
trained during total epoch 500.
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